Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES April/May 2019 Examinations

Course Code: MTH311

Course Title: Calculus of Several Variables

Credit Unit:

Time Allowed: 3 Hours **Total:** 70 Marks

Instruction: Answer Question One and Any Other 4 Questions

1a) Let f be a function defined by $f(x,y) = (x^2 + y, xy)$

Find i) f(2,-3) ii) f(3,2) iii) f(-2,3) iv) f(-2,-3)(8 marks)

b) Evaluate i) $\lim_{y\to 2} \frac{3x^2y}{x^2+y^2+5}$

 $(3 \frac{1}{2} \text{ marks})$

ii) $\lim_{v \to 3} \frac{2x-3}{x^3+4y^3}$

 $(3 \frac{1}{2} \text{ marks})$

c) If $u = (1 - 2xy + y^2)^{-1/2}$ prove that $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = y^2 u^3$

(7 marks)

2 a) If $x = r \cos \theta$ and $y = r \sin \theta$, then evaluate $\frac{\partial(x,y)}{\partial(r \theta)}$

(6 marks)

b) i) State the Clairaut's Theorem

(2 marks)

ii) Hence, verify the theorem with $F(x, y) = y^2 e^{2x} + \cos 2y$

(4 marks)

3) a) Define total derivative of the function F(x, y, z, ..., u)

(3 marks)

b) Find the value of the Jacobian $\frac{\partial(u,v)}{\partial(r,\theta)}$, where $u=x^2-y^2$, v=2x and

 $x = r \cos \theta, y = r \sin \theta.$

(9 marks)

Click to download more NOUN PQ from NounGeeks.com

- 4a) Find f_{xx} , f_{xy} , f_{yx} , f_{yy} of the following:
 - i) $f = 2x^3 xy^2 y^4$

3marks

ii) $f = 3e^{-xy} - y\cos x$

- **3marks**
- b) Let z = f(x, y) where $x = e^u \cos v$, $y = e^u \sin v$ show that

$$y\frac{\partial z}{\partial u} + x\frac{\partial z}{\partial v} = e^{2u}\frac{\partial z}{\partial y}$$

6marks

- 5) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for each of the following implicit functions:
 - i) $z^2 2x^4yz^3 = 3x^3 y^2$

6 marks

ii) $y \cos(4xz) = 2z^3 - x^2 \sin(2xy)$

- 6 marks
- 6 a) Compute a second order Taylor Series expansion around the origin of the function $f(x,y) = e^x \log(1+y)$ 3 marks
- (b) State the (i) necessary and (ii) sufficient conditions for a maxima or minima of the function z = f(x, y)

5marks

c) Hence find the maxima and minima of the function $z = 2x^2 + xy - y^2 + y$

4 marks