lick to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES January\February Examination 2018

Course Code: MTH304 Course Title: Complex Analysis I Credit Unit: 3 **Time Allowed: 3 Hours Total: 70 Marks Iinstruction: Answer Question one and Any other 4 Questions**

1. (a) If $z_1 = 2 + i$ and $z_2 = 3 - 2i$, evaluate each of the following.

(i)	$z_1^3 - 3z_1^2 + 4z_1 - 8$	(4 marks)
(ii)	$\left \frac{2z_2 + z_1 - 5 - i}{2z_1 - z_2 + 3 - i}\right ^2$	(4 marks)

(b) Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, prove that

(i)
$$\overline{z_{1+}z_2} = \overline{z_1} + \overline{z_2}$$
 (4 marks)

(ii)
$$|z_1 z_2|$$
 (4 marks)

(c) (i) Solve the quadratic equation $az^2 + bz + c$ (2 marks) (Hint: Use complete the square method)

Use the solution c(i) to solve the equation $z^2 + (2i - 3)z + 5 - i = 0$ (iii)

(4 marks)

2. (a) Let $w = f(z) = z^2$. Find the of w which correspond to z = -2 + i (2 marks) (b) Prove that $\sin^2 z + \cos^2 z = 1$

- (6 marks)
- (c) Evaluate $\lim_{z \to -2i} \frac{(2z+3)(z-1)}{z^2-2z+4}$ using theorems on limits (4 marks)

3. Using the definition of first principle, find the derivative of the followings at the point $z = z_0$

(i)
$$f(z) = z^3 - 2z$$
 (6 marks)

(ii)
$$f(z) = \frac{1+z}{1-z}$$
 (6 marks)

4. (a) Show that the complex function $f(z) = z^3$ satisfy harmonic function (6marks)

Click to download more NOUN PQ from NounGeeks.com

(b) Let z = x + iy, find the real and imaginary parts of the following complex functions

(i)
$$f(z) = z^2$$
 (ii) $f(z) = \frac{1}{z}$ (for $z \neq 0$) (6 marks)

(5) Use the Cauchy –Riemann equation to show that the following functions are differentiable at any $z \neq 0$

- (i) $f(z) = \overline{z}$ (6 marks)
- (ii) f(z) = zRe(z) (6 marks)
- 6. (a) Expand f(z) = ln (1 + z) in a Taylor series about z = 0 (6 marks) (b) If $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$, prove that $z_1 z_2 = r_1 r_2(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$ (6 marks)