

NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja
FACULTY OF SCIENCES
JanuarylFebruary Examination 2018

Course Code: MTH304

Course Title: Complex Analysis I
Credit Unit: 3
Time Allowed: 3 Hours
Total: 70 Marks
Iinstruction: Answer Question one and Any other 4 Questions

1. (a) If $z_{1}=2+i$ and $z_{2}=3-2 i$, evaluate each of the following.
(i) $z_{1}^{3}-3 z_{1}^{2}+4 z_{1}-8$ (4 marks)
(ii) $\left|\frac{2 z_{2}+z_{1}-5-i}{2 z_{1}-z_{2}+3-i}\right|^{2}$ (4 marks)
(b) Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, prove that
(i) $\overline{z_{1+} Z_{2}}=\overline{z_{1}}+\overline{z_{2}}$ (4 marks)
(ii) $\left|z_{1} z_{2}\right|$
(4 marks)
(c) (i) Solve the quadratic equation $a z^{2}+b z+c$
(Hint: Use complete the square method)
(iii) Use the solution $\mathrm{c}(\mathrm{i})$ to solve the equation $z^{2}+(2 i-3) z+5-i=0$
(4 marks)
2. (a) Let $w=f(z)=z^{2}$. Find the of w which correspond to $z=-2+i$ ($\mathbf{2}$ marks)
(b) Prove that $\sin ^{2} z+\cos ^{2} z=1$ (6 marks)
(c) Evaluate $\lim _{z \rightarrow-2 i} \frac{(2 z+3)(z-1)}{z^{2}-2 z+4}$ using theorems on limits
(4 marks)
3. Using the definition of first principle, find the derivative of the followings at the point $z=z_{0}$
(i) $f(z)=z^{3}-2 z$
(6 marks)
(ii) $f(z)=\frac{1+z}{1-z}$
4. (a) Show that the complex function $f(z)=z^{3}$ satisfy harmonic function
(6marks)

Click to download more NOUN PQ from NounGeeks.com

(b) Let $z=x+i y$, find the real and imaginary parts of the following complex functions
(i) $f(z)=z^{2}$
(ii) $f(z)=\frac{1}{z}($ for $z \neq 0)$
(6 marks)
(5) Use the Cauchy -Riemann equation to show that the following functions are differentiable at any $z \neq 0$
(i) $f(z)=\bar{z}$
(ii) $f(z)=z \operatorname{Re}(z)$
6. (a) Expand $f(z)=\operatorname{In}(1+z)$ in a Taylor series about $z=0$
(b) If $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$, prove that

$$
z_{1} z_{2}=r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)
$$

