Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIAN Plot 91, Cadastral Zone, Nnamdi Azikiwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES JANUARY/FEBRUARY 2017_2 Examination

Course Code: MTH301 Course Title: Functional Analysis I Credit Unit: 3 Time Allowed: 3Hours Total Marks: 70%

INSTRUCTION: ANSWER QUESTION ONE(1) AND ANY FOUR (4) QUESTIONS (TOTAL = 5 QUESTIONS IN ALL)

1(a)	Define a metric space? Give one example of a metric space.	(4½marks
1(b)	What is meant by a topological space? Give an example of a topological space?	ological space. (5marks)
1(c)	Define the length or norm of a vector x εR^3	(8marks)
1(d)	Define the length or norm of a vector x εR^2 (TOTA	(4½marks) L = 22Marks)
2(a)	Let E . be a normed space. Then the addition, scalar multiplication and the norm mapping itself are continuous (with respect to metric induced by the norm). That is, if $X_n \rightarrow x$, $Y_n \rightarrow y$ and in E and $\lambda n \rightarrow \lambda$ in R . Show that $X_n + Y_n \rightarrow x + y$, $X_n \rightarrow x$ and $\lambda_n X_n \rightarrow \lambda x$ and $ X_n \rightarrow x $ (5½marks)	
2(b)	Let X be a complete metric space and $\{A_n\}$ is countable collection of dense open	

- 2(b) Let X be a complete metric space and $\{A_n\}$ is countable collection of dense open subset of X. Show that $\bigcup A_n$ is not empty. (6¹/2marks) (TOTAL = 12Marks)
- 3(a) Let $M = \{A, d\}$ be a metric space. Given any four points x, y, z, t \in A. Prove that $d(x, z) + d(y, t) \ge |d(x, y) d(z, t)|$ (6¹/2marks)
- 3(b) Define a complete normed linear space. Prove that E is complete if and only if every absolutely convergent series in E converges to a part in E

(5½marks)

Click to download more NOUN PQ from NounGeeks.com

(TOTAL = 12Marks)

MTH301

4(a) Let X be a normed space and let Y be a closed subspace of X. If f is continuous, bounded, real-valued function in Y. Show that we can find a continuous, bounded real-valued function F on X such that F = f and $||F||_{\infty} = ||f||_{\infty}$

 $(5\frac{1}{2}marks)$

4(b) Prove that for any s, $t \in \Re$, $\max(s,v) = \frac{1}{2}[t+v+|t-v|],$ $\min(t,v) = \frac{1}{2}[t+v-|t-v|].$

 $(6^{1/2} marks)$

(TOTAL = 12Marks)

- 5 Let (X, H) and (Y, S) be topological spaces. Show that a function $f : X \to Y$ is continuous is and only if $f(X_a) \to f(x)$ for every net $(X_a)_{a \in A}$ such that $X_a \to x$ (12marks)
- 6 Let (S, d) and (T, d) be metric spaces and f a mapping of S into T. Let τ_1 and $\tau_{2 be}$ the topologies determined by d and d₁ respectively. Then $f(S, \tau) \rightarrow (T, \tau)$ is continuous if and only if $S_n \rightarrow S \rightarrow f(S_n, \tau) \rightarrow f(s)$; that is if $s_1, s_2, \ldots, s_n, \ldots$, is a sequence of points in (S, d) converging to x, show that the sequence of points $f(s_1), f(s_2), \ldots, f(s_n), \ldots$ in (T, d) converges to f(x). (12marks)