Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES April Examination 2019

Course Code: Course Title: Credit Unit: Time Allowed: Total: Instruction:	MTH301 Functional Analysis I 3 3 HOURS 70 Marks ATTEMPT NUMBER ONE (1) AND ANY OTHE	ER FOUR (4) QUESTIONS
(ii) Dis		(4 Marks) (7 Marks)
(c) Define separable set.		(4 Marks)
 (d) Prove that Qⁿ is separable. 2. (a) Define open ball (ε-neighbourhood) (b) Let x ∈ ℝⁿ, then show that the set B(x, ε) is open. 		(7Marks) (5Marks) (7Marks)
 3. (a) Define boundary point (b) (i) Define closure of subset S of a set X. (ii) Is the closure of S normally denoted by \$\overline{S}\$ closed or open? Justify 		(5Marks) (7Marks)
4. (a) When is a map $f: A \to B$ (metric spaces) said to be continuous? (5Marks)		
-	$A \rightarrow B$ between metric spaces is continuous if and only B = (7Morks)	if $f^{-1}(V)$ is open set in A whenever
<i>V</i> is open set in 5. (a) When is a sequer	B. (7Marks) nee of points x_n in a metric space (X, d) said to be com-	vergent to a point $x \in X$.

(5Marks)

(b) Let (X, d) be a metric space. Prove that A of X is closed in (X, d) if and only if every convergent sequence of points in A converges to a point in A. (7Marks)

6. Let X be a metric space and let Y be a subspace of X then prove
(a) If X is compact and Y is closed in X, then Y is compact . (7Marks)
(b) If Y is compact, then it is closed in X. (5Marks)