

NATIONAL OPEN UNIVERSITY OF NIGERIA
 UNIVERSITY VILLAGE, PLOT 91 CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESS WAY, JABI - ABUJA.
 FACULTY OF SCIENCES
 DEPARTMENT OF PURE AND APPLIED SCIENCE
 APRIL/MAY, 2019 EXAMINATION

COURSE CODE: CHM 406
COURSE TITLE: Nuclear and radiochemistry
COURSE UNIT: 2
TIME: 2 Hours
INSTRUCTION: Answer question one and any three questions.

QUESTION ONE

1ai. Are the nuclei above the stability belt neutron rich or neutron poor?
1 mark

1aii. Explain how the nuclei with high ratio of neutron to protons than those within the stability belt can attain stability.

6 marks

1b. Identify the symbol X in each of the following:
i) $\quad{ }_{-1}{ }_{-1} \mathrm{X}=$? ${ }^{(1 / 2)} \quad 2 \mathrm{mks}$
(ii) ${ }_{2} \mathrm{X}=$? ${ }^{(1 / 2)} \quad 2 \mathrm{mks}$
(iii) ${ }^{0}{ }_{+1} \mathrm{X}=?^{(1 / 2)} 2$ mks (iv)
${ }^{1} 0 X=?^{(1 / 2)}$
2 mks
1c. . In energetic of nuclear radiation study, list the objectives a facilitator intends to achieve.
3 marks
1d. Explain (i) Thermal neutrons (ii) Moduration
3 marks
1e. In large organization, discuss the three stages involved in protection of radiation. 4 marks

QUESTION TWO

2a. Define radioactive decay.
2 marks
2b. Enumerate the properties of particles emitted by radioactive decay. 9 marks
2c. Differentiate K-capture from L-capture. 2 marks
2d. Complete and balance the following equations:
i) ${ }^{14}{ }_{7} \mathrm{~N}+{ }^{1} \mathrm{n} \rightarrow{ }_{6} \mathrm{C}+{ }_{1}{ }_{1} \mathrm{H}$
ii) ${ }^{14}{ }_{6} \mathrm{C} \rightarrow{ }^{14}{ }_{7} \mathrm{~N}+$?

QUESTION THREE

3a. Explain briefly the following:

i.	Chain reaction	2 mark
ii.	Nuclear Fission	2 mark
iii.	Nuclear Fusion	2 mark
iv.	Nuclear Fusion Reactor	3 mark

3b. Complete and balance the equations below:
i) ${ }_{0} \mathrm{n} \rightarrow{ }^{1}{ }_{1} \mathrm{P}+? \quad 2$ mark
ii) ? $\rightarrow{ }^{40}{ }_{20} \mathrm{Ca}+{ }_{-1} \beta$

2 mark
iii) ${ }^{4} \mathrm{He}_{2}+{ }^{14} \mathrm{~N}_{1} \rightarrow{ }^{1} \mathrm{H}_{1}+$? 2 mark

QUESTION FOUR

4a. With specific examples explain the application of radiation in
i) Agriculture 2 mks (ii) Industry 3 mks (iii) Medical uses 3 mks (iv) Scientific research 2 mks (v) Archeology 1 mk

4bi. Under what condition do you say that the nucleus of an atom is dense?
2 marks
4b ii)

$$
{ }^{97}{ }_{40} \mathrm{Zr} \rightarrow{ }^{97}{ }_{41} \mathrm{Nb}+?
$$

2 marks

QUESTION FIVE

5a. Identify and discuss the radioactive process in the chemical equation below
${ }_{92}^{238} \mathrm{U} \longrightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \mathrm{He} \quad 5$ marks

5b. Mention any three rules that guide prediction of nuclear stability.
3 marks

5c. Explain decay process in terms of energy loss.
3 marks
5d.Complete the following nuclear reactions using the symbol X to represent the new element formed or particle involved.

Click to download more NOU̧N PQ from NounGeeks.com

