Click to download more NOUN PQ from NounGeeks.com

Ŀ

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2021_2 EXAMINATIONS ...

COURSE CODE:	PHY401
COURSE TITLE:	ELEMENTARY PARTICLES PHYSICS
CREDIT UNIT:	3
TIME ALLOWED:	(2 ¹ / ₂ HRS)

INSTRUCTION:

Answer question 1 and any other four questions

QUESTION 1

A. Which of the following reactions violate a conservation law?

Where there is a violation, state the law that is violated.

$$\begin{array}{l} \mu^+ \rightarrow e^+ + \gamma \\ e^- \rightarrow \nu_e + \gamma \\ p + p \rightarrow p + \Sigma^+ + K^- \\ p \rightarrow e^+ + \nu_e \\ p \rightarrow e^+ + n + \nu_e \\ n \rightarrow p + e^- + \bar{\nu}_e \\ \pi^+ \rightarrow \mu^+ + \nu_\mu \end{array}$$

(14 marks)

B. For each of the following decays state a conservation law that forbids it:

 $n \rightarrow p + e^{-}$ $n \rightarrow \pi^{+} + e^{-}$ $n \rightarrow p + \pi^{-}$ $n \rightarrow p + \gamma$ (8marks)

QUESTION 2

A. Explain the meaning of the terms: boson, fermion, hadron, lepton, baryon.	(4 marks)
B. Give one example of a particle for each of the above	(4 marks)
C. Which of the above name is, and which is not, applicable to the photon?	(4 marks)

QUESTION 3

Consider the following high-energy reactions or particle decays, Indicate for each case:

A. allowed or forbidden,

B. reason if forbidden,

(1)
$$\pi^{-} + p \rightarrow \pi^{0} + n$$

(2) $\pi^{0} \rightarrow \gamma + \gamma + \gamma$
(3) $\pi^{0} \rightarrow \gamma + \gamma$
(4) $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$
(5) $\pi^{+} \rightarrow \mu^{+} + \bar{\nu}_{\mu}$
(6) $p + \bar{p} \rightarrow \Lambda^{0} + \Lambda^{0}$

(12marks)

QUESTION 4

The following is a list of conservation laws (or symmetries) for interactions between particles. For each indicate by S,E,W those classes of interactions — strong, electromagnetic, weak — for which no violation of the symmetry or conservation law has been observed. For each of these conservation laws, indicate an experiment which established a violation.

- (i) I-spin conservation
- (ii) I₃ conservation
- (iii) strangeness conservation
- (iv) invariance under CP

(12 marks)

QUESTION 5

Suppose that π^- has spin 0 and negative intrinsic parity. If it is captured by a deuterium nucleus from a p orbit in the reaction

 $\pi^- + d \to n + n$,

Show that the two neutrons must be in a singlet state. The deuteron's spin-parity is 1^+ . (12 marks)

QUESTION 6

A. What is the G-parity operator? And why was it introduced in particle physics? (4marks)

B. What are the eigenvalues of the G-operator for pions of different charges, and for a state of n pions? (4**marks**)

C. What are the G values for ρ , ω , ϕ , and η mesons?

(4marks)