Click to download more NOUN PQ from NounGeeks.com

Ŀ

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2021_2 EXAMINATIONS ...

COURSE CODE:	РНУ313
COURSE TITLE:	MATHEMATICAL METHODS FOR PHYSICS I
CREDIT UNIT:	3
TIME ALLOWED:	(2 ¹ / ₂ HRS)

Answer question 1 and any other four questions

QUESTION 1

INSTRUCTION:

a. Suppose that
$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$$
 and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$

show that
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2) \right]$$
 7 Marks

b. Evaluate
$$\int_{c} \frac{z^2 + 1}{z^2 - z} dz$$
 where C is the circle $|z - 1| = 1$ 6 Marks

c. What is an analytical function? Can a function be differentiable at a point z_0 without being analytical at z_0 **3 marks**

d. Use Cauchy's integral formula to evaluate
$$\int_{c} \frac{2z+1}{z^2+z} dz$$
 6 marks

QUESTION 2

1. a. State two conditions for a function to be analytical **4 marks**
b. Show that:
$$\int_{0}^{\frac{\pi}{2}} e^{t+it} dt = \frac{1}{2} \left(e^{\frac{\pi}{2}} - 1 \right) + \frac{i}{2} \left(e^{\frac{\pi}{2}} + 1 \right)$$
8 marks

Click to download more NOUN PQ from NounGeeks.com

QUESTION 3

- a. Let $w = f(z) = z^2 + 3z$. Find the real part (*u*) and the imaginary part (*v*) if of *w* and calculate the value of *f* at z = 1 + i3. 5 Marks
- b. Verify that $u = x^2 y^2 y$ is harmonic in the whole complex plane and find a harmonic conjugate function *v* of *u* 7 Marks

QUESTION 4

Express the following functions in polar form:

a.
$$f(z) = z^5 - 4z^2 - 6$$
 6 marks

6 marks

b. State the Cauchy-Riemann equations

QUESTION 5

a. Use Cauchy's integral formula, evaluate $\int_{c} \frac{\cos \pi z^2}{(z-1)(z-2)} dz$ where c is |z|=3/2 6 marks

b. Explain the term residues and how can it be used for evaluating integrals **6 marks**

QUESTION 6

a. Given that $u(x, y) = e^{-x} \cos y$, show that u(x, y) is an harmonic function and find the function v(x, y) that ensure that f(z) = u(x, y) + iv(x, y) is analytic. 6 Marks

b. Evaluate
$$\int_{c} \frac{z^2 + 1}{z^2 - 1} dz$$
 where c is the circle $|z+1|=4$ 6 marks