

NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES
 DEPARTMENT OF MATHEMATICS
 2021_2 EXAMINATION

Course Code: MTH421

Course Title: Ordinary Differential Equations
Credit Unit: 3
Time Allowed: 3 Hours
Total: 70 Marks
Instruction: Answer Question Number One and Any Other Four Questions

1. (a) Define the following
i. Connected Set . (2 marks)
ii. Open Set (2 marks)
iii. Boundary Point (2 marks)
iv Convergence of a sequence of real numbers $\left\{x_{n}\right\} \quad$ ($\mathbf{2}$ marks)
v. Solution to an ODE (2 marks)
(b) . (i) Find the general solution to the ODE

$$
3 y^{\prime \prime}+2 y^{\prime}-2 y=0
$$

(4 marks)
(ii) Solve the $1^{\text {st }}$ order ODE

$$
\frac{d y}{d x}+y \tan x=\sec x .
$$

(4 marks)
(c) Obtain the general solution to the equation:

$$
\left(x^{2}+1\right) \frac{d y}{d x}+\left(y^{2}+1\right)=0
$$

(4 marks)
2. (a) Find the particular solution to the ordinary differential equation:

$$
x \frac{d y}{d x}=y+x, \quad y(0)=0 .
$$

(b) Solve the ODE: $y^{\prime}=-7 y$
(c) Verify if the ODE $\left(1+2 x y^{3}\right) d x+3 x^{2} y^{2} d y=0$ is exact. (4 marks)
3. (a) Solve the ODE:

$$
\frac{2 x}{y} y^{\prime}=\frac{y^{2}}{x^{2}}
$$

(6 marks)
(b) Solve the exact ODE:

$$
\begin{equation*}
\frac{1}{3} x^{3} y^{3} d x+\frac{1}{4} x^{4} y^{2} d y=0 \tag{6marks}
\end{equation*}
$$

4. (a) Show that the general solution to the ODE:

$$
-\frac{1}{x} \cos x y d x-\frac{1}{y} \cos x y d y=0 .
$$

satisfies the equation:

$$
f(x)=c+\frac{\sin x y}{x y}, \quad c \text { constant } .
$$

(b) Solve the ODE:

$$
\frac{1}{2} x^{2} y^{2} d x+\frac{1}{3} x^{3} y d y=0
$$

5. (a) Define Exact ODE
(b) Solve the IVP: $y^{\prime}+y \tan x=\sin 2 x, y(0)=1$.
(c) Solve the IVP: $y^{\prime}-y=e^{2 x}$.
(5 marks)
6. (b) Find a general solution to the following system of ODEs:

$$
\begin{aligned}
& y_{1}^{\prime}=3 y_{2} \\
& y_{2}^{\prime}=12 y_{1} .
\end{aligned}
$$

(a) Solve the following system:

$$
\begin{aligned}
& y_{1}^{\prime}=9 y_{1}+13.5 y_{2} \\
& y_{2}^{\prime}=1.5 y_{1}+9 y_{2}
\end{aligned}
$$

