Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021_2 Examinations...

Course Code:MTH 412Course Title:Functional Analysis IICredit Unit:3Time Allowed:3 HoursInstruction:Attempt Number One (1) and any other Four (4) Questions

1. (a) Find the adjoint of the following functions $G, F: C^3 \rightarrow C^3$ defined by: (i) G(x, y, z) = [x + (1 - 2i)y, (5 + i)x - 4iz, 7ix + (3 - 3i)y + 2z](4 marks) (ii) F(x, y, z) = [-4x + (9 - i)y, (1 - i)x - 3iz, 2ix + (1 + 3i)y - 8z](4 marks) (b) State Hahn – Banach Theorem. (3 marks) (c) Let T be an operator on a Hilbert space H. Show that the following are equivalent: (i) $T^{*}T = I$ (2 marks) (ii) hTx, Tyi = hx, yi(2 marks) (iii) KTx K = KxK for all $x \in H$. (2 marks) (d) Let S consists of the following two vectors in \mathbb{R}^2 : $u_1 = (9, 3), u_2 = (4, -12).$ Verify that the vectors are orthogonal and hence they are linearly independent. (5 marks) 2. (a) State polarization identity. (5 marks) (b) Show that the collection of self – adjoint operators on H forms a closed, real linear subspace of B(H). (7 marks) 3. (a) Consider the basis $\{v_1 = (-1, 2), v_2 = (1, 5)\}$ of \mathbb{R}^2 . Find the dual basis $\{f_1, f_2\}$ of (\mathbf{R}^2) such that $f_1(v_1) = 1$, $f_1(v_2) = 0$, $f_2(v_1) = 0$ $f_2(v_2) = 1$ by finding the linear functional $f_1(x, y) = ax + by$ and $f_2(x, y) = cx + dy$. (10 marks) (b) Let U and V be arbitrary subspaces of a Hilbert space H. Show that $U \subset U^{\perp \perp};$ (2 marks) 4. (a) What is inner product space? (7 marks) (b) State Bessel's inequality. (5 marks) 5. (a) Define the following terms: (i) normal operator (2 marks) (ii) Equivalent norm (3 marks) (b) Let k . k be a norm defined on a linear space X. If $\rho: X \times X \to \mathbb{R}$ is defined for arbitrary $x, y \in X$ by $\rho(x, y) = kx - yk.$ Show that ρ is a metric on X and so (X, ρ) is a metric space. (7 marks)

Click to download more NOUN PQ from NounGeeks.com

6.	Let X and Y be two linear spaces over scalar field, K, and let $T : X \rightarrow$	Y be
	a linear map. Show that	
	(i) T (0) = 0;	(2 marks)

(ii) The range of T , $R(T) = \{y \in Y : Tx = y \text{ for some } x \in X \text{ is a linear subspace of } Y ;$ (5 marks)

(iii) T is one-to-one if and only if T(x) = 0 implies x = 0. (5 marks)