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FACULTY OF SCIENCES 

DEPARTMENT OF MATHEMATICS 

    2021_2 Examinations5678 

Course Code:   MTH411 

Course Title:    Measure Theory and Integration 

Credit Unit:      3 

Time Allowed:  3 Hours 

Instruction:      Attempt Number One (1) and any four (4) Questions 

 
1. (a) State Fatou’s lemma                                                                                 (3 marks) 

(b) Obtain m(F) given that F = [a, b], S = [a, b] and CsF =  .                             (3 marks) 

(c) Show that the measure of a bounded closed set F is non – negative.             (6 marks) 

(d) Let the bounded open set G be the union of finite or denumerable number of open sets 

Gk (that is, G = ⋃    ). Show that m(G)   ∑       .                                     (10 marks) 

 

2. (a) State Holder’s inequality.                                                                           (3 marks) 

      (b) What is a point mass concentrated at x if (X, M) is a measurable space,  x   X and                 
        fl   M?                                                                                                                        (3 marks) 

        (c) Let (X, fl) have finite measure. Show that       whenever                  
      Moreover, the inclusion map from L

p
 to L

r
 is continuous.                             (6 marks) 

 

3. (a) Define a q – algebra.                                                                                  (6 marks) 

(b) Show that      ∑      
 
    if a finite number of pairwise disjoint open 

intervals I1, I2, … In are contained in an open interval G.                             (6 marks)                                              

4. (a) State the four conditions f must satisfy on the measurable function f: A   [- , + ]. 

                                                                                                                                  (6 marks) 

 (b) Let (X, ℳ) be a measurable space, let A be a subset of X that belongs to ℳ, and  

     let f and g be [- , + ] - valued measurable functions on A.  

      Show that f   g and f   g are measurable.                                            (6 marks) 

 

 

5. (a)  State (i) Monotone Convergence theorem.                                                (3 marks)  

              (ii) Dominated Convergence theorem.                                               (4 

marks) 
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 (b) Let X be an arbitrary set. State the properties of the collection   of subsets of X to be 

called an algebra.                                                                                                         (5 marks)   

6. Let (X, M) be a measurable space, and let fl be a finitely additive measure on (X, M). 

Show that fl is a measure if either  

(i) limk fl(Ak ) = fl(⋃    ) holds for each increasing sequence {Ak } of sets that 

belong to M. Or  

(ii) limk fl(Ak ) = 0 holds for each decreasing sequence {Ak} of sets that belong to M 
and satisfy ⋂     =  .                                                         (12 marks)                                                                                                                                                                                                                                                                
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