Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021_2 Examinations...

Course Code: MTH411

Course Title: Measure Theory and Integration

Credit Unit: 3

Time Allowed: 3 Hours

Instruction: Attempt Number One (1) and any four (4) Questions

1. (a) State Fatou's lemma (3 marks)

(b) Obtain m(F) given that F = [a, b], S = [a, b] and $C_sF = \emptyset$. (3 marks)

(c) Show that the measure of a bounded closed set F is non – negative. (6 marks)

(d) Let the bounded open set G be the union of finite or denumerable number of open sets G_k (that is, $G = \bigcup_k G_k$). Show that $m(G) \leq \sum_k m(G_k)$. (10 marks)

2. (a) State Holder's inequality.

(3 marks)

- (b) What is a point mass concentrated at x if (X, M) is a measurable space, $x \in X$ and $fl \in M$? (3 marks)
- (c) Let (X, fl) have finite measure. Show that $L^p \subseteq L^R$ whenever $1 \le r . Moreover, the inclusion map from <math>L^p$ to L^r is continuous. (6 marks)
- 3. (a) Define a q algebra.

(6 marks)

- (b) Show that $m(G) \ge \sum_{k=1}^{n} M(I_k)$ if a finite number of pairwise disjoint open intervals $I_1, I_2, ... I_n$ are contained in an open interval G. (6 marks)
- 4. (a) State the four conditions f must satisfy on the measurable function f: $A \rightarrow [-\infty, +\infty]$.

(6 marks)

(b) Let (X, \mathcal{M}) be a measurable space, let A be a subset of X that belongs to \mathcal{M} , and let f and g be $[-\infty, +\infty]$ - valued measurable functions on A. Show that f V g and f \wedge g are measurable. (6 marks)

5. (a) State (i) Monotone Convergence theorem.

(3 marks)

(ii) Dominated Convergence theorem.

(4

marks)

Click to download more NOUN PQ from NounGeeks.com

called an algebra. (5 marks)

- 6. Let (X, M) be a measurable space, and let fl be a finitely additive measure on (X, M). Show that fl is a measure if either
 - (i) $\lim_k fl(A_k) = fl(\bigcup_k A_k)$ holds for each increasing sequence $\{A_k\}$ of sets that belong to M. Or
 - (ii) $\lim_k fl(A_k) = 0$ holds for each decreasing sequence $\{A_k\}$ of sets that belong to M and satisfy $\bigcap_k A_k = \emptyset$. (12 marks)