Click to download more NOUN PQ from NounGeeks.con

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021_2 Examinations...

Course Code:	MTH402
Course Title:	General Topology II
Credit Unit:	3
Time Allowed:	3 Hours
Total:	70 Marks
Instruction: Answer	Question One (1) and Any Other 4 Questions

(a) Let X be a set. Define a basis for a topology on X.
 (b) What conditions make a collection C of subsets of a set X, a basis for a topology on X?

(3 marks)

(c) Let X be a set. Let a topology on X be a collection τ of subsets of X. Show that arbitrary unions $\bigcup_{i=1}^{n} U_i$ of elements of τ are in τ .

(6 marks)

(d) Show that if **B** is a basis for the topology on X and **C** is the basis for the topology on Y, then the collection $D = \{B \times C : B \in B \text{ and } C \in C\}$ is a basis for the topology on X \times Y. (7 marks)

- 2. (a) Define a metric on a set X. (3 marks)
 (b) Let X and Y be two topological spaces. Let B be the collection of all sets of the form U × V, where U is an open subset of X and V is an open subset of Y. i.e., B: = {U × V: U is open in X and V is open in Y}. Show that B is basis for topology on X × Y. (3 marks)
 (c) Prove that the collection S = {π₁⁻¹(U): U is open in X} ∪ {π₂⁻¹(V): V is open in Y} is a subbasis for the product on X x Y. (6 marks)
- 3. (a) Let A be a subset of the topological space X. Let A⁰ be the set of all limit points of A and A be the closure of A. Show that A = A ∪ A⁰. (5 marks) (b) Show that if X is a Hausdorff space, then for all x ∈ X, the singleton set {x} is closed (7 marks)

(i (i (i (i	 State whether each of the following is Hausdorff space or not: (i) Every metric topology. (ii) Every discrete space. (iii) The real line R with the finite complement topology. (iv) R with the finite complement topology. 	(1 mark) (1 mark) (1 mark) (1 mark)
one 6. (a) cor (b) (c)	 a) Show that the Union of a collection of connected subspaces of e point in common is connected. b) Show that the real line R endowed with the standard topology is mpact. c) State the tube lemma. c) Let X, Y and Z be topological spaces. If f : X → Y and g : Y → ntinuous, show that the map g ∘ f : X → Z is continuous. 	(8 marks) s not (4 marks) (3 marks)