Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021_2 Examinations...

Course Code: MTH401
Course Title: General Topology
Credit Unit: 3
Time Allowed: 3 Hours
Total: 70 Marks
Instruction: Answer Question One (1) and Any Other 4 Questions

1a) Define the following terms:		
i) An open set in a metric space,	(2 marks)	
ii) An interior point in a metric space,	(2 marks)	
iii) A closed set in a metric space.	(2 marks)	
b) State without prove the Cauchy schwartz's inequality.	(4 marks)	
c) Show that $K = (0,2) \cap [3,4]$ is a subspace of a metric space of a metric space.	pace (E, d) is disconnected.	(6 marks)
d) Show that \mathbb{R}^2 is connected.		(6 marks)
2a) Define a metric on a nonempty set E.	(2 ma	rks)

b) State without prove the Minkowski's inequality.	(4 marks)
c) Verify that $d_{\infty}(x, y) = \max_{1 \le i \le n} \{ x_i - y_i \}$ is a metric on \mathbb{R}^2 .	(6 marks)

- 3a)Define the following terms: i.an open ball centred at \mathbf{x}_0 of radius $\mathbf{r} > 0$. Ii. A sphere centred at \mathbf{x}_0 of radius $\mathbf{r} > 0$.iii. a close ball centred at \mathbf{x}_0 of radius $\mathbf{r} > 0$.(6 marks)
- b) Show that in any metric space (E, d), each open ball is an open set E.(6 marks)

4a) Define the following terms:			
i) a limit of a sequence $\{x_n\}_{n=1}^{\infty}$	(2 marks)		
ii) a Cauchy sequence	(2 marks)		
iii) a subsequence of a sequence {x _n }	(2 marks)		
b) Given that $\{x_n\} = \{x_n^{(1)}, x_n^{(2)}\}$ is a sequen	ce in $\mathbf{E} = (\mathbf{E}_1, \mathbf{d}_1) \times (\mathbf{E}_2)$	2, d ₂). Show that the follo	wing are
equivalent :			
i) $\{x_n\}$ converges in E with respect to the me	etric ρ _{max} .	(2 marks)	

ii) $\{x_n\}$ converges in E with respect to the metric ρ_2 . (2 marks)

Click to download more NOUN PQ from NounGeeks.com

iii) $\{x_n\}$ converges in E with respect to the metric ρ_1 . iv) $\{x_n^{(1)}\}$ and $\{x_n^{(2)}\}$ converges in (E_1, d_1) and (E_2, d_2) respectively. (2 marks)

 $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2}, & \text{ for } x^2+y^2 \neq 0\\ 0, & \text{ for } x=y=0 \end{cases}$

Verify the continuity of **f** at **(0,0)**.

(4 marks)

6a) Show that every compact subset of a metric is closed and bounded. (6 marks)

b)Show that every real-valued continuous function defined on a compact set is uniformly continuous.

(6 marks)