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Course Title:  Abstract Algebra 
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Time Allowed: 3 Hours 

Total: 70 Marks  

Instruction: Answer Question One (1) and Any Other 4 Questions 

 

 

1a) Define the following terms: i)  ,  is a homomorphism. ii)  ,  is a homomorphism. iii) 

Commutative ring. iv) an Alternating group. (8 marks) 

b) Show that if  is a group homomorphism. Then   is 

injective if and only if  . Where  is the identity element of the group 

.(7 marks) 

c) Define a Sylow -subgroup ii)State without prove the first Sylow’s theorem.(7 marks) 

 

2a) Define i). a ring homomorphism ii). An epimorphism(4 marks) 

bi) Let  be a ring. Show that the identity map is a ring homomorphism. What are  and ? 

Is  an epimorphism? 

bii) Let , show that the map  given by  for all  is a ring 

homomorphism. What are  and ? Is  an epimorphism? (8 marks)    

 

3a)  Define the terms i).Principal ideal ii). Nilpotent iii). Nil radical of .(6 marks) 

b) Given a ring  and an ideal . Show that  is a ring with respect to addition and multiplication 

defined by  and  for all .(6 marks) 
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4a)  Show that  (6 marks)   

b)   Show that any cyclic group is isomorphic to  or . (6 marks)                                                                                                   

 

5a) Define the terms 

i) ideal of a ring. ii) proper ideal of a ring. iii) The ideal generated by , elements of a ring. 

(6 marks) 

bi) Given that  is an infinite set and  is the class of all finite subsets of . Show that  is an ideal of 

. 

bii) For any ring  and . Show that  is an ideal of . 

 (6 marks)         

  

 6a). Explain the following terms i.) when a permutation is called r-cyclic. ii) A transposition. iii). 

When two cycles are said to be disjoint. iv) The signature of (6 marks) 

b) Express each of the following permutations as products of disjoint cycles.  

i.       ii.     

iii.  

(3 marks) 

c) Given that , show that .(3 marks) 
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