Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja FACULTY OF SCIENCES Department of Mathematics November 2021_2 Examinations...

Course Code: MTH308 Course Title: Introduction to Mathematical Modeling Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 4 Questions

1.	. (a) What do you understand by the term "Mathematical modeling"?		
	(b) Differentiate between the following:		
	i. Static and dynamic model	(5 marks)	
	ii. Discrete and continuous model	(5 marks)	
	(c) State and discuss two limitations of mathematical modeling.	(7 marks)	
2.	(a) Why is it necessary to formulate a mathematical model?	(5 marks)	
	(b) Differentiate between linear and non-linear model.	(7 marks)	
3.	(a) Show that the solution of $\frac{dQ}{dt} = -kQ$ is $Q(t) = Q_0 e^{-kt}$, where $Q(0) = Q_0$	(5 marks)	
	(b) State and discuss the steps you will follow when developing a model.	(7 marks)	

Click to download more NOUN PQ from NounGeeks.com

4. (a) A raindrop beginning at rest falls from a cloud 705.6m above the ground. How long does					
take to rea	(7 marks)				
(b) Define the following:					
i.	Supply of a commodity	(2 marks)			
ii.	Production lag	(2 marks)			
iii.	The demand for a commodity	(1 marks)			

5. (a) Suppose the demand functions D_i for period t are given as follows:

 $D_i = aPt + b$ St = APt + B

Where a, b, A, B are all constants.

Derive the Equilibrium price.

(b) Water enters a cylindrical tank at a constant rate, a hole at the bottom of the tank allows water to escape at a rate proportional to $V^{\frac{2}{3}}$ where V(t) is the volume of water at any time t. Write out the differential equation describing the process and compute equilibrium volume. (6 marks)

6. (a) Define the following:

i.	Dynamic model	(2.5 marks)
ii.	Theoretical model	(2.5 marks)
iii.	Empirical model	(2.5 marks)

(b) Using Elliptic Integral, find T_0 if $\theta_0 = 20^\circ$, given that l = 20cm and $g = 980cm/\sec^2$.

(4.5marks)

(6 marks)

it