Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021_2 Examinations...

Course Code: MTH 305

Credit Unit: 3

Course Title: Complex Analysis II

Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 4 Questions	
Q1 (a) (i) Define a single-valued complex function $w(z)$.	(2 marks)
(ii) If $z \in C$ and $w(z)$. Suppose $f(z) = z^2$, find $u(x, y)$ and $v(x, y)$,	(4 marks)
(b) Define each of the following:	
(i) a continuous function f at a point z_0 .	(3 marks)
(ii) a branch point.	(2 marks)
(c) (i) Show that the function $u(x,y) = y^3 - 3x^2y$ is harmonic.	(4 marks)
(ii) Determine the poles and the residues at the poles of $f(z) = \frac{2z+1}{(z+1)(z-2z)}$	(5 marks)
(d) State the Green's theorem in a plane.	(2 marks)
Q2 (a) Define a transformation.	(6 marks)
(b) Given that z is a complex number and $w = f(z)$. Find $\frac{1}{z}$.	(6 marks)
Q3 (a) Define the limit of a complex function $f(z)$.	(4 marks)
(b) Suppose $z \in C$. Show that $sin^2z + cos^2z = 1$.	(8 marks)
Q4 (a) Define each of the following:	
(i) removable singularities	(3 marks)
(ii) bounded complex function.	(2 marks)

Click to download more NOUN PQ from NounGeeks.com

(b) Prove that if
$$f(z) = \frac{\sin z}{z}$$
 then $z = 0$ is a removable singularity. (7 marks)

Q5 (a) State the residue theorem. (4 marks)

(b) Expand
$$f(z) = \frac{1}{z-3}$$
 in a Laurent series valid for $|z| > 3$. (8 marks)

Q6 (a) Define an analytic function
$$f(z)$$
. (3 marks)

(b) Establish that the real and imaginary part of the function $f(z) = z^2 + 5iz + 3 - i$ satisfy the Cauchy Riemann equation and deduce the analyticity of the function. (9 marks)