Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021 2 Examinations...

Course Code: MTH303

Course Title: VECTORS AND TENSORS ANALYSIS

Time Allowed: 3 Hours Total: 70 Marks

Instruction: Answer Question One (1) and Any Other 4 Questions

1 a i Define dot product of two vectors? (4 marks)

ii. What is scalar product of 4i + 3j - 5k and 4i - 7j - 5k? (6 marks)

b. IF $\bar{a} = -2i + 3j + 2k$, $\bar{b} = 2i + 5k$

What is (i) $\bar{a} + 2\bar{b}$ (ii) $2\bar{a} - 3\bar{b}$ (6 marks)

c. Define Divergence theorem. (6 marks)

2 a. Given that $\underline{Q} = \cos 3ti + \sin 3tj$. (4 marks)

Evaluate $\left| \frac{dQ}{dt} \right|$.

b. Define gradient of a function (4 marks)

c. Given that $\emptyset(n, y, z) = 2n^2yz^2$, obtain $\nabla \emptyset$. (4 marks)

3 a. Given that $\emptyset \underline{A} = 2n^3yz^2i + n^2y^2zj - n^3y^3zk$, Obtain the $\nabla \cdot (\emptyset A)$ at point (1, 1, 1)

(4 marks)

b. Show that $\frac{\partial x^p}{\partial x^q} = \int_q^p$ (4 marks)

c. i. Define the product of two tensor. (2 marks)

ii. Define contraction (2 marks)

4 a. What is the volume of $x^2 - y^3$ at evaluated at points (0,2) and (2,4). (4 marks)

b. When is vector said to be continuous. (4 marks)

c. A particle moves along the curve $n = 3t^2$, $y = t - 4t^2$, z = 3t - 15 where t is the time. Find the component of its velocity and acceleration at t=1. (4 marks)

Click to download more NOUN PQ from NounGeeks.com

5 a. **Define** Stokes's Theorem
b. What is work done by a force field on a particle along a curve?
c. Determine if $\underline{C} = (2x^2 + 8x^2yz, 9x^3y - 3ny, 2x^3y^2)$ is solenoidal.

6 a. Define Greens theorem.
b. Define integral of the tangential component
c. If $\emptyset(n, y, z) = xyz$ and $\underline{A} = nzi - ny^2i + yn^2k$ (4 marks)

find $\frac{\partial^3 \emptyset}{\partial n^2 \partial z}$ at point (1, -1, 1)