

NATIONAL OPEN UNIVERSITY OF NIGERIA
Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja. FACULTY OF SCIENCES
SEPTEMBER Examination 2020_1

Course Code: STT 311

Course Title: Probability Distribution II
Credit Unit: 3
Time Allowed: 3 Hours
Instruction: Attempt Question One (1) and Any Other Four (4) Questions

1. (a) Explain clearly the term "random variables"
(b) Define the following; (i) Sample Space
(ii) Event Space
(iii) Convergence to a random variable
(c) Distinguish between; (i) Discrete random variables and
(ii) Continuous random variables
(d) State when a sequence of random variables $\left\{X_{n}\right\}$ is said to:
(i) Converge in distribution
(ii) "Converge in probability"(weakly) to the constant C
2. (a) Define the characteristic function of a random variable x
(b) List four properties of characteristic function of a random variable x
3. (a) State the Central Limit theorem
(b) A random variable x has a density function given by

$$
f(x)=\left\{\begin{array}{cc}
2 e^{-2 x}, & x \geq 0 \\
0, & x<0
\end{array}\right.
$$

Find the moment generating function
4. (a) State the weak law of large numbers
(b) Find the variance of the sum obtained in tossing a pair of fair dice
5. (a) Let x be a continuous random variable with density function $f(x)$; Define the expectation of x
(b) If x is the number of points roll with a balance die, that is $F(x)=\frac{1}{6}$, for $x=1,2,3,4,5,6$. Find the mathematical expectation $E(x)$ of x
6. (a) Let x be a discrete random variable with probability density function $f(x)$; Define the expected value of $x, E(x)$
(b) Assume x to be a continuous random variable; Find the expectation of $g(x)=x^{2}$ for the number of points roll with a balance die, i.e. $F(x)=\frac{1}{6}$, for $x=1,2,3,4,5,6$.

