# NATIONAL OPEN UNIVERSITY OF NIGERIA <br> PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES <br> DEPARTMENT OF PURE AND APPLIED SCIENCES <br> SEPTEMBER, 2020_1 EXAMINATION 

COURSE CODE:
COURSE TITLE:
CREDIT UNIT
TIME ALLOWED
INSTRUCTION:

PHY 309
QUANTUM MECHANICS I
3
(2 HRS)
Answer question 1 and any other four questions

## QUESTION 1

(a) (i) Check whether the following vectors are linearly independent:
$2 i+3 j-k,-i+j+3 k$ and $-3 i+2 j+k$
(ii) Find the inner product of the vectors $\mathrm{ix}^{2}+2$ and $2 \mathrm{x}-3 \mathrm{i} \quad 0 \leq x \leq 0 \quad$ [4marks]
(b) Write conditions that apply for a bound state
(c) Differentiate eigenvalues from eigenstates
(d) Write down Planck's formula with the assumption that radiant energy could only be emitted or absorbed in quanta.
(e) Find the change in wavelength if a photon is scattered at an angle of $23^{\circ}$ after its collision with an electron initially at rest.
(f) Write the formula guiding photoelectric effect.
(g) State Heisenberg's uncertainty principle.
[4marks]
[2 marks]
[2 marks]

## QUESTION 2

(a) Show that the set $\left[\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)\right]$ is linearly independent. $\quad$ [6 marks]
(b) Show that is $(\bar{i}+\bar{j}, \bar{i}-\bar{j})$ a set of basis vectors in 2-dimensional space [3 marks]
(c) Normalise each vector in the set $\left[\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}-2 \\ 0 \\ 4\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)\right]$ [3 marks]

## QUESTION 3

(a) Given the matrix $\left[\begin{array}{cc}3 & -2 \\ 1 & 2\end{array}\right]$, find the corresponding eigenvectors and the eigenvalues.

## Click to download more NOUN PQ from NounGeeks.com

(b) Write the (i) Stefan-Boltzmann formula for the total radiant energy emitted by a blackbody per unit surface area per unit time.
[2 marks]
(ii) Rayleigh and Jeans predicted formula for radiation emitted by a blackbody per unit time, per unit area.
[2 marks]

## QUESTION 4

(6. (a) Discuss
(i) Blackbody radiation [4 marks]
(ii) Photoelectric effect [4 marks]
(b) Find the maximum kinetic energy with which an electron is emitted from a metal of work function $3.2 \times 10^{-39} \mathrm{~J}$ when a radiation of energy $E=3.313 \times 10^{-39} \mathrm{~J}$ falls on it, given that the work function is $3.2 \times 10^{-39} \mathrm{~J}$. [4 marks]

## QUESTION 5

(a) State Bohr's postulates in theory of the hydrogen atom. [2 marks]
(b)What are the conditions that must be fulfilled for any function to satisfy time-independent

Schroedinger equation? [2 marks]
(c)By solving the time-dependent Schroedinger equation for a free particle ( $V=0$ ), find the condition imposed on the angular frequency and the wave number. [4 marks]
(d) State 4 postulates of quantum mechanics. [4 marks]

## QUESTION 6

(a) Let the total wave function of the particle in the potential well be where $\Psi=\mathrm{Dx}$ where D is a normalisation constant. Find the probability that the particle is in state $0,1,2$ and 5 given that $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L} \quad[6$ marks]
(b) Normalise the eigenfunction $\psi(x)=A \exp \left(\frac{-m \omega x^{2}}{2 \hbar}\right)$ Hence, find the probability that the particle subjected to a harmonic oscillation lies in the range $0 \leq x \leq \frac{1}{2}$ [ 6 marks]

