NATIONAL OPEN UNIVERSITY OF NIGERIA
 PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES
 DEPARTMENT OF PURE AND APPLIED SCIENCES
 SEPTEMBER, 2020_1 EXAMINATION

COURSE CODE:
COURSE TITLE:
CREDIT UNIT
TIME ALLOWED
INSTRUCTION:

PHY 301
CLASSICAL MECHANICS II
3
($2^{1} / 2$ HRS)
Answer question 1 and any other four questions

Question 1

a. Distinguish between degrees of freedom and constraints
b. What is virtual displacement? (4 mks)
c. Briefly explain the term conservative systems
d. (i) What is classical Langrangian?
(ii) Express the Langrange equation in coordinate dimensional oscillator
e. (i) What is the relationship between the Hamiltonian function and the Langrangian function?
(ii) State the Hamilton's equation of motion
f. Briefly explain the concept of effective potential

Question 2
a. What is a rigid body?
b. State the number of degrees of freedom in an Atwood machine and point particle sliding elliptical wire. (Give reason)
$\begin{array}{ll}\text { c. } & \text { Briefly explain Holonomic constraints } \\ \text { d. } & \text { (} \mathbf{3} \mathbf{~ m k s}) \\ \mathbf{(3 ~ m k s})\end{array}$
Question 3
a. When is a classical system said to be conservative?
b. Express the Langrangian L in Cartesian coordinates
c. What is a gauge transformation?
d. Find the gauge transformation of Langrangian of harmonic oscillator

Question 4

a. State D'Alembert's principle
b. Derive D'Alembert's principle from Newton's second law of motion
c. Use D'Alembert's principle to relate generalized forces to the rate of change of momentum
(5mks)

Question 5

a. State Kepler's laws of planetry motion
(12mks)
b. Use the $2^{\text {nd }}$ Kepler's law and the expression for the angular momentum to prove Kepler's $3^{\text {rd }}$ law.

Question 6

a. Use momentum conservation to reduce a two body problem to the problem of one body motion in a central force field
b. Show that lagragian equation of motion for a simple pendulum is given by $\mathrm{ml}^{2} \theta^{*}=-\mathrm{mglsin} \theta$ where 1 is the length of a light rigid rod, θ the angle the rod makes with the vertical and m is the mass of the bob.

