

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES DEPARTMENT OF PURE AND APPLIED SCIENCES

SEPTEMBER, 2020_1 EXAMINATION

COURSE CODE:	PHY 301
COURSE TITLE:	CLASSICAL MECHANICS II
CREDIT UNIT	3
TIME ALLOWED	(2 ¹ / ₂ HRS)
INSTRUCTION:	Answer question 1 and any other four questions

Question 1

mass of the bob.

a.	Distinguish between degrees of freedom and constraints	(4 mks)
b.	What is virtual displacement?	(4 mks)
c.	Briefly explain the term conservative systems	(3 mks)
d.	(i) What is classical Langrangian?	
	(ii) Express the Langrange equation in coordinate dimensional oscillator	(3 mks)
e.	(i) What is the relationship between the Hamiltonian function and the Langran	ngian
	function?	
	(ii) State the Hamilton's equation of motion	(4 mks)
f.	Briefly explain the concept of effective potential	(4 mks)
Quest	ion 2	
a.	What is a rigid body?	(3 mks)
b.	State the number of degrees of freedom in an Atwood machine and point particle slic	ling elliptical
	wire. (Give reason)	(3 mks)
c.	Briefly explain Holonomic constraints	(3 mks)
d.	State 3 kinds of non Holonomic constraints.	(3 mks)
Quest	ion 3	
a.	When is a classical system said to be conservative?	(3 mks)
b.	Express the Langrangian L in Cartesian coordinates	(2 mks)
c.	What is a gauge transformation?	(2 mks)
d.	Find the gauge transformation of Langrangian of harmonic oscillator	(5 mks)
Quest	ion 4	
a.	State D'Alembert's principle	(2 mks)
b.	Derive D'Alembert's principle from Newton's second law of motion	(5 mks)
c.	Use D'Alembert's principle to relate generalized forces to the rate of change of mom	entum
		(5mks)
Quest	ion 5	
a.	State Kepler's laws of planetry motion	(12mks)
b.	Use the 2 nd Kepler's law and the expression for the angular momentum to prove Kep	oler's 3 rd law.
Quest	ion 6	
a.	Use momentum conservation to reduce a two body problem to the problem of one be	ody motion
	in a central force field	(8mks)
b.	Show that lagragian equation of motion for a simple pendulum is given by $ml^2\theta$ = -	mglsinθ
	where l is the length of a light rigid rod, θ the angle the rod makes with the vertical a	and m is the

(4mks)