Click to download more NOLIN PO from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OFMATHEMATICS

Course Code:

MTH421

Course Title:

Ordinary Differential equations

Credit Unit:

Time Allowed:

3 Hours

Total:

70 Marks

Instruction:

Answer Question Number One and any Other Four Questions

1 (a) (i) Classify the DE $\frac{y''-2}{y'+3} = x$

(3 marks)

(ii) Is the following DE Linear or nonlinear? $\frac{y''-2}{y'+3} = xy$

$$\frac{y''-2}{y'+3} = xy$$

(iii) find the particular solution of the IVP

$$y' = 6x^2y, y(3) = 1$$

And give its interval of existence

(3 marks)

- (b) (i) Show that the function $f(x) = \frac{1}{1+x^2}$ is a solution of $(1+x^2)\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} + 2y = 0$ on interval a < x < b of the x - axis.
- (b) (ii) given that every solution of

$$\frac{dy}{dx} + y = 2xe^{-x}$$

Maybe be written in the form $y = (x^2 + c)e^{-x}$, for some choice of the arbitrary constant c, solve the given initial value problem

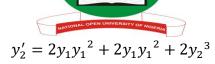
$$\frac{dy}{dx} + y = 2xe^{-x} \quad y(0) = 2$$

(3 marks)

- Use the operator method described in this section to find the general solution of the given linear system 5x' + y' - 5x - y = 0(5 marks)
- (d) Determine the stability property of the critical point at the origin for the following system

$$y_1' = y_1^3 - y_1^3$$

(4 marks)



2. Use the operator method to find the general solution of the linear system

x' + y' - 2x - 4y = e' (12 marks)

3. consider the linear system

x' = 5x + 3y, y' = 4x + y

(a) Show that

 $x = 3e^{7t}$, $y = 2e^{7t}$ and $x = e^{-t}$ $y = -2e^{-t}$

Are solution of the system.

(5 marks)

(2 marks)

- (b) Show that the two solutions of part (a) are linearly independent on every interval $a \le t \le b$, and write the general solution of the system. (2 marks)
- (c) Find the solution

 $y = f(t), \quad y = g(t)$ of the system which is such that f(0) = 0 and g(0) = 8 (5 marks)

4. (a) show that the solutions of the following system of differential equations remain bounded at $t \to \infty$

u' = v - u v' = -u (3 marks)

- 4 (b) let A be the matrix given by: $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$. Find
 - (i) The eigenvalues (3 marks)
 - (ii) The generalized eigenspaces (3 marks)
 - (iii) A fundamental matrix for the system $y'(t) = A_y$. (3 marks)
- 5. Let $V(x, y) = x^2(x 1)^2 + y^2$. Consider the dynamical system

$$\frac{dx}{dt} = -\frac{\partial V}{\partial x},$$

$$\frac{dy}{dt} = -\frac{\partial V}{\partial y},$$

- (a) Find the critical points of this system and determine their linear stability. (5 marks)
- (b) Show that *V* decreases along any solution of the system.

Click to download more NOUN PQ from NounGeeks.com

- (c) Use (b) to prove that if $z_0 = (x_0, y_0)$ is an isolated minimum of V then z_0 is an asymptotically stable equilibrium. (5 marks)
- 6. (a) Consider the boundary value problem

$$x\frac{d^2w}{dx^2} + (a-x)\frac{dw}{dx} = -\lambda w$$
$$w(L) = w(R) = 0$$

Where a, L(>0) and R(>L) are real constants.

By casting the problem in self-adjoint form shows that the eigenfunctions, w_1 and w_2 , corresponding to different eigen values, λ_1 and λ_2 are orthogonal in the sense that

$$\int_{L}^{R} e^{-x} x^{a-1} w_{1} w_{2} dx = \int_{L}^{R} e^{-x} x^{a} \frac{dw_{1}}{dx} \frac{dw_{2}}{dx} dx = 0$$

Show also that

$$\lambda_{i} \frac{\int_{L}^{R} e^{-x} x^{a} \left(\frac{dw_{i}}{dx}\right)^{2} dx}{\int_{L}^{R} e^{-x} x^{a-1} w_{i}^{2} dx}$$

And hence that all eigenvalues are positive.

(6 marks)

6 (b) Determine the eigenvalues and eigenfunctions of the Sturm-Liouville problem

$$y'' + \lambda y = 0$$
, $0 \le x \le L$
 $y(0) = 0$, $y(L) = 0$ (6 marks)