Click to download more NOUN PQ from NounGeeks.con

NATIONAL OPEN UNIVERSITY OF NIGERIA FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2020_1 EXAMINATION

Course Code: **MTH 412 Course Title: Functional Analysis Credit Units:** 3 Time Allowed: 3 Hours Instruction: Answer Question Number One (1) and Any Other Four (4) Questions 1. (a) Define (i) Normed linear space (4 marks) (ii) Equivalent norms in a linear space (2 marks) (b) (i) Let $\|.\|$ be a norm defined on a linear space X. If $d: X \times X \to \Re$ is defined for arbitrary x, $y \in X$ by d(x, y) = ||x - y|| prove that d is a metric on X and as such (X,d) is a metric space. (5 marks) (ii) Verify that the real line \Re becomes a normed linear space if we set ||x|| = |x| for every number $x \in \Re$ (4 marks) (c)(i) Prove that all norms defined on a finite dimensional space are equivalent. (7 marks) 2. (a) Define the following concepts: (i) convex subspace of a linear space. (2 marks) (ii) Line segment joining two points in a linear space (2 marks)

(b)Let X and V be two vector spaces in \mathfrak{R}^n . Prove that the line L through X

In the direction of V given by $L = \{x + \alpha V : \alpha \in \Re\}$ is a convex set. (4 marks)

(c)Prove that a nonempty subset C of a vector space X is convex if and only if C contains all convex combinations of all its points. (4 marks)

3. (a) Define the following concepts:

(i) Convergence sequence of a metric space	(2 marks)
(ii) Cauchy sequence in a metric space	(2 marks)
(iii) Banach space.	(2 marks)

(iv) Give an example of incomplete normed linear space. (2 marks)

(b) Prove that the space C[a,b] of continuous real valued functions defined [a,b] is complete if it is endowed with the supremum norm

$$\left\| \cdot \right\|_{0} = \max_{a \le t \le b} \left| f(t) \right|.$$
(4 marks)

Click to download more NOUN PQ from NounGeeks.con

4. (a) Define the following

(i) Linear map	(2 marks)
(ii) Linear functional	(2 marks)
(iii) Bounded maps	(2 marks)
(b) Let X and Y be two normed linear spaces and let	t $T: X \to Y$ be a linear map.

Prove that the following are equivalent: (1) T is continuous (2) T is continuous at the origin (3) T is Lipschitz (4) If $D := \{x \in X : ||x|| \le 1\}$ is closed unit disc in X, then T(D) is bounded, that is, there exists a constant $M \ge 0$ such that $||T_x|| \le M$.

(6 marks)

5. (a) (i) Define the Topological dual of a normed linear space (2 marks)

(ii) State the Hahn – Banach theorem (2 marks)

(iii) Explain uniform convergence of bounded linear operators. (2 marks)

(b) Let X be a normed linear space and F be its scalar field. Suppose that $\{x_1, x_2, ..., x_n\}$ is a basis of X over F. Let $f_1, f_2, ..., f_n \in X$ be the linear functionals defined by

$$f_i(x_j) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

Prove that $\{f_1, f_2, \dots, f_n\}$ is a basis for X. (6 marks)

6. (a) Define (i)The graph of a linear operator in normed linear spaces

(3	marks)
----	--------

(ii) Closed linear operator	(3 marks)
(b) Let T be the differentiation operator. Prove that	
(i) T is linear	(2 marks)
(ii) T is closed	(2 marks)
(iii) T is not bounded.	(2 marks)