Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja.

FACULTY OF SCIENCES 2020 1 EXAMINATIONS

Course Code: MTH402

Course Title: General Topology II

Credit Unit: 3

Time Allowed: 3 Hours

Instruction: Attempt Number One (1) and Any Other Four (4) Questions

1. (a) Define a topological space.

(3 marks)

- (b) Show that the intersection $\tau = \bigcap_{\alpha} \tau_{\alpha}$ of topologies $\{\tau_{\alpha \in \Delta} \text{ on } X \text{ is itself a topology in } X\}$ where Δ is some indexing set. (14 marks)
- X}, where Δ is some indexing set.

(14 marks)

(c) Let X and Y be two topological spaces. Let B be the collection of all sets of the form U x V, where U is an open subset of X and V is an open subset of Y. i.e.,

 $\mathbf{B} := \{ \mathbf{U} \times \mathbf{V} : \mathbf{U} \text{ is open in } \mathbf{X} \text{ and } \mathbf{V} \text{ is open in } \mathbf{Y} \}.$

Show that $\bf B$ is basis for topology on $\bf X \, \bf x \, \bf Y$.

(3 marks)

- (d) Let Y be a subspace of X. If U is open in Y and Y is open in X, show that U is open in X. (2 marks)
- 2. (a) Define the following terms:
 - (i) basis for a topology on a set X.

(3 marks)

(ii) topology generated by a basis.

(3 marks)

- (b) Let **B** and **B**⁰ be bases for the topologies τ and τ ⁰ respectively on X. Show that the following are equivalent:
- i. τ^0 is finer than τ .

(3 marks)

- ii. For each $x \in X$ and each element $B \in \mathbf{B}$ containing x, there exists a basis element $B^0 \in \mathbf{B^0}$ such that $x \in B^0 \subset \mathbf{B}$. (3 marks)
- (a) Let d be a metric on the set X. Show that the collection of all r balls B_d (x, r), for x ∈X and r > 0 is a basis for a topology on X, called the metric topology induced by d.
 (6 marks)
 - (b) Prove that the collection

 $S = \{\pi_1^{-1}(U) \colon U \text{ is open in } X\} \cup \{\pi_2^{-1}(V) \colon V \text{ is open in } Y\}$

is a subbasis for the product on X x Y.

(6 marks)

- 4. (a) Let Y be a subspace of X. Show that a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y. (6 marks)
 - (b) Let A be a subset of the topological space X. Prove that:

Click to download more NOUN PQ from NounGeeks.com

- (i) The $x \in \overline{A}$ if and only if every open set U containing x intersects A.
- (ii) Supposing the topology of X is given by a basis, then $x \in \overline{A}$ if and only if every basis element B containing x intersects A. (6 marks)
- 5. (a) Let A be a subset of the topological space X. Let A^0 be the set of all limit points of A. Show that $\bar{A} = A \cup A^0$. (6 marks)
 - (b) State whether each of the following is a Hausdorff space or not:

(i) Every metric topology.	$\left(1\frac{1}{2} \text{ marks}\right)$
(ii) Every discrete space.	$\left(1\frac{1}{2} \text{ marks}\right)$
(iii) The real line R with the finite complement topology.	$\left(1\frac{1}{2} \text{ marks}\right)$
(iv) R with the usual topology.	$\left(1\frac{1}{2} \text{ marks}\right)$

- 6. (a) Show that if X is a Hausdorff space, then for all $x \in X$, the singleton set $\{x\}$ is closed. (7 marks)
 - (b) Let X be a Hausdorff space, then a sequence of points of X converges to at most one point of X. (i.e., if a sequence $\{x_n\}$ in X, a Hausdorff space, converges, the limit is unique. (5 marks)