Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja. FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS September, Examination 2020_1

Course Code:MTH401Course Title:General Topology ICredit Unit:3Time Allowed:3 HoursInstruction:Attempt Number One (1) and Any Other Four (4) Questions

1.	 (a) Show that d(x,y) = x-y ³ does not define a metric on R. (b) Let R² be the set of all ordered pairs of real numbers endowed with the n d₁(x, y) = ∑_{i=1}² x_i - y_i for arbitrary x = (x₁, x₂) and y = (y₁, y₂) in R². Dependent of the distribution (a) (a) (b) (b) (c) (c) Why is it that any open ball centered at 0 ∈ [0, 1) with the usual metric of the distribution of the distributi	scribe the (3 marks) on R, not open (2 marks) all x, $y \in R$
2.	Show that in any metric space (E, d), each open ball is an open set in E.	(12 marks)
3.	Show that the interval [a, b] is closed in R. Illustrate with an example.	(12 marks)
4.	Let $E = R$ (the reals) and let d_0 be defined by $d_0(x, y) = 1$, if $x \neq y$; $d_0(x, y) = 0$ and let $F = [0, 1)$. Show that: (i) F has no limit points. (ii) F is closed. (iii) F is open.	= 0 if x = y, (6 marks) (4 marks) (2 marks)
5.	Let $\{F_i\}$ i \in I be a nonempty family of closed sets of a metric space (E, d). Show that (i) $\bigcap_{i \in I} F_i$ is closed in E. (ii) $\bigcup_{i=1}^k F_i$ is closed in E.	(6 marks) (6 marks)
6.	(a) Show that a subset F of a metric space (E, d) is closed in E if and only if complement is open in E.(b) Show that every singleton subset of any metric space is closed. Hence, e is closed.	(6 marks)