NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OFMATHEMATICS

Course Code: MTH382
Course Title:
Mathematical methods IV
Credit Unit:
3
Time Allowed:
Total:
3 Hours
Instruction:
70 Marks
Answer Question Number One and any Other Four Questions

1. (a) Verify that the indicated function is a solution of the given differential equation on the interval $(-\infty, \infty)$.
(i) $\quad d y / d x=x y^{1 / 2} ; y=\frac{1}{16} x^{4}$
(ii) $y^{\prime \prime}-2 y^{\prime}+y=0 ; y=x e^{x}$ (2 marks)
(b) In the problem below, verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval \boldsymbol{I} of definition for each solution
(i) $\frac{d P}{d t}=P(1-P) ; P=\frac{c_{1} e^{t}}{1+c_{1} e^{t}}$
(ii) $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=12 x^{2}$;
$y=c_{1} x^{-1}+c_{2} x+c_{3} x \operatorname{In} x+4 x^{2} \quad(\mathbf{2}$ marks)
(c) In the problem bellows, $y=1 /\left(1+c_{1} e^{-x}\right)$ is a one-parameter family of solutions of the first-order DE $y^{\prime}=y-y^{2}$. Find a solution of the first-order IVP consisting of this differential equation and the given initial condition.
(i) $y(0)=-\frac{1}{3}$
(ii) $y(-1)=2$
(iii) Solve the given differential equation.

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin y+y \cos y} \tag{3marks}
\end{equation*}
$$

(d) Find the first three picard approximations for the initial value problem

$$
\begin{equation*}
y^{\prime}=t+y, y(0)=1 \tag{i}
\end{equation*}
$$

(ii) Consider the initial value problem

$$
y^{\prime}=t+y \quad y(0)=1 .
$$

Click to download more NOLIN PQ from NounGeeks.com

For $n \geq 1$, find the $n t h$ Picard approximation and determine the limiting function $y=\lim _{n \rightarrow \infty} y_{n}$. Show that this function is a solution and, in fact, the only solution.
(2 marks)
(iii) Show that the following differential equations have unique solutions on all of \mathbb{R}

$$
\text { I. } \quad y^{\prime}=e^{\text {sinty }}, y(0)=0 \quad \text { II. } \quad y^{\prime}=|t y|, y(0) 0 \text { (2 marks) }
$$

(e) (i) Write the corresponding integral equation for the initial value problem. $y^{\prime}=\frac{t-y}{t+y} \quad y(0)=1 \quad$ (1 mark)
(ii) Find the first n Picard approximations for the initial value problems

$$
y^{\prime}=t y, \quad y(1)=1, \quad n=3(\mathbf{1} \text { mark })
$$

(iii) Which of the following initial value problems are guaranteed a unique solution by Picard's theorem? Explain.
I. $\quad y^{\prime}=1+y^{2}, y(0)=0$
II. $y^{\prime}=\sqrt{y}, y(1)=0$
III. $y^{\prime}=\sqrt{y}, \quad y(0)=1$
IV. $y^{\prime}=\frac{t-y}{t+y}, y(0)=-1$
V. $y^{\prime}=\frac{t-y}{t+y}, \quad y(1)=-1$
(4 marks)
(f)
(i) Derive $\Gamma(1 / 2) \quad$ (3 mark)
(ii) Prove Stirling's approximation $n!\approx \sqrt{2 \pi n} n^{n} e^{-n}$ for large n (1 mark)
(iii) Prove the result $\Gamma(n)=2 \int_{0}^{\infty} y^{2 n-1} e^{-y^{2}} d y$
2. (a) Show that if n is a positive integer

$$
\begin{equation*}
\Gamma(n, x)=(n-1)!e^{-x} \sum_{k=0}^{n-1} \frac{x^{k}}{k!} \tag{2marks}
\end{equation*}
$$

(b) (i) Show that $\mathrm{F}(m,-m, 1 / 2 ;(1-x) / 2)=T_{m}(x)$.
(ii) Prove the result 2(b)(i)
(c) (i) Show that setting $x=z / b$ in the hypergeometric equation, and letting $b \rightarrow \infty$, yields the confluent hypergeometric equation.
(ii) Prove the result $\mathrm{M}(a, c, x)=\frac{\Gamma(\mathrm{c})}{\Gamma(\mathrm{a}) \Gamma(\mathrm{c}-\mathrm{a})} \int_{0}^{1} e^{t x} t^{a-1}(1-t)^{c-a-1} d t$ (2 marks)
3. (a) (i) Show that $T_{n}^{\prime}(x)=n U_{n-1}(x)$,
(3 marks)

Click to download more NOLIN PQ from NounGeeks.com
 $$
\left(1-x^{2}\right) U_{n}^{\prime}(x)=x U_{n}(x)-(n+1) T_{(n+1)}(x)
$$

(ii) Find the general solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0$.
(b) If n is an integer, show that $Y_{n+\frac{1}{2}}(x)=(-1)^{n+1} J_{-n-1 / 2}(x)$.
(c) Show that $f(x)=J_{v}(\propto x)$ satisfies $x^{2} f^{\prime \prime}+x f^{\prime}+\left(\alpha^{2} x^{2}-v^{2}\right) f=0$
4. (a) Evaluate the integral

$$
\begin{equation*}
\int_{a}^{b} J_{v}^{2}(\propto x) x d x \tag{4marks}
\end{equation*}
$$

(b) Given that $J_{1 / 2}(x)=(2 / \pi x)^{1 / 2} \sin x$ and that $J_{-1 / 2}(x)=(2 / \pi x)^{1 / 2} \cos x$, express $J_{3 / 2}(x)$ and $J_{-3 / 2}(x)$ in terms of trigonometry functions.
(4 marks)
(c) Use the generating function to prove, for integer v, the recurrence relation

$$
\begin{equation*}
J_{v-1}(x)+J_{v+1}(x)=\frac{2 v}{x} J_{v}(x) \tag{4marks}
\end{equation*}
$$

5. (a) Show that for integer n the Bessel function $J_{v}(x)$ is given by

$$
\begin{equation*}
J_{v}(x)=\frac{1}{n} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta \tag{3marks}
\end{equation*}
$$

(b) (i) Show that the l th spherical Bessel function is given by

$$
\begin{equation*}
f_{t}(x)=(-1)^{\prime} x^{\prime}\left(\frac{1}{x} \frac{d}{d x}\right)^{\prime} f_{o}(x), \tag{3marks}
\end{equation*}
$$

where $f_{t}(x)$ denotes either $j_{t}(x)$ or $n_{t}(x)$
(ii) Use the Wrunskian method to find a closed-form expression for $Q_{0}(x)$. (2 marks)
(c) (i) Use Rodrigues' formula to show that

$$
\begin{equation*}
I_{l}=\int_{-1}^{1} P_{l}(x) P_{l}(x) d x=\frac{2}{2 l+1} . \tag{2marks}
\end{equation*}
$$

(ii) Prove directly that the Legendre polynomials $\mathrm{P}_{t}(x)$ are mutually orthogonal over the interval $-1<x<1$.
6. (a) For

$$
x \frac{\partial u}{\partial x}-2 y \frac{\partial u}{\partial y}=0
$$

find;
(i) the solution that takes the value $2 y+1$ on the line $x=1$, and
(ii) a solution that has the value 4 at the point $(1,1) \quad$ ($\mathbf{4}$ marks)
(b) Find the general solution of

$$
\begin{equation*}
x \frac{\partial u}{\partial x}-2 \frac{\partial u}{\partial y}-2 u=0 \tag{4marks}
\end{equation*}
$$

(c) Find the general solution of

$$
y \frac{\partial u}{\partial x}-x \frac{\partial u}{\partial y}=3 x
$$

Hence find the most general particular solution
(i) which satisfies $u(x, 0)=x^{2}$ and
(ii) which has the value $u(x, y)=2$ at the point $(1,0)$.
(4 marks)

