Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS September Examination 2020 1

Course Code: MTH 381

Course Title: Mathematical Methods III

Credit Unit: 3

Time Allowed: 3 Hours

Instruction: Answer Question Number One and Any other Four Questions.

1. a) If
$$x = r \cos \theta$$
 and $y = r \sin \theta$, evaluate $\frac{\partial(x, y)}{\partial(r, \theta)}$. [5 Marks]

b) Evaluate
$$\int_0^1 dx \int_0^x e^{\frac{y}{x}} dy$$
 [4 Marks]

c) Calculate the *curl* of the vector
$$\vec{f} = xyzi + 3x^2yj + (xz^2 - y^2z)k$$
 [4 Marks]

d) Show that the function
$$e^x(\cos y + i \sin y)$$
 is an analytic function, find its derivative. [5 Marks]

e) Find the *Laplace* transform of
$$\frac{\sin 2t}{t}$$
. [4 Marks]

2. a) If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 = -\frac{9}{(x+y+z)^2}$ [7 Marks]

b) Using Stoke's theorem or otherwise, evaluate
$$\int_C \left[(2x - y) dx - yz^2 dy - y^2 z dz \right]$$
 where *C* is the circle $x^2 + y^2 = 1$, corresponding to the surface of sphere of unit radius. [5 Marks]

3. a) Compute
$$\iiint \frac{dxdydz}{(x+y+z+1)^3}$$
, if the region of integration is bounded by the coordinate planes and

the plane is
$$x + y + z = 1$$
. [7 Marks]
b) Find the complex Fourier transform of Dirac delta function $\delta(t - a)$. [5 Marks]

b) Find the complex Fourier transform of Dirac delta function
$$\delta(t-a)$$
. [5 Marks]

[8 Marks]

4. a) Find the Fourier series representing
$$f(x) = x$$
, $0 < x < 2\pi$ [8 Marks]
b) Find the inverse Laplace transform of $\frac{1}{s^2 + 25}$. [4 Marks]

5. a) Evaluate
$$\int_{1+i}^{2+4i} z^2 dz$$

(i) along the parabola
$$x = t$$
, $y = t^2$ where $1 \le t \le 2$. [4 Marks]

(ii) along the straight line joining the line
$$1+i$$
 and $2+4i$ [4 Marks]

b) Find the finite Fourier sine and cosine transform of
$$f(x) = 1$$
 in $(0, \pi)$. [4 Marks]

Click to download more NOUN PQ from NounGeeks.com

6. a) Evaluate
$$\iint_{\Re} \sqrt{x^2 + y^2} dx dy$$
, where \Re is the region bounded by $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$ [6 Marks]

b) Determine the residues of
$$\frac{z^2}{(z-2)(z^2+1)}$$
 at each simple pole. [6 Marks]