

NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OFMATHEMATICS

Course Code: MTH381

Course Title: Mathematical Methods III

Credit Unit: 3

Time Allowed: 3 Hours Total: 70 Marks

Instruction: Answer Question Number One and any Other Four Questions

1(a) (i) write the quotient $\frac{1+i}{\sqrt{3}-i}$ in polar form. (2 marks)

(ii) compute $\frac{1+i}{\sqrt{3}-i}$ (1 marks)

(iii) Find all the cube roots of $\sqrt{2} + i\sqrt{2}$ (2 marks)

1 (b) (i) Evaluate $|\bar{z}^2 - 2 - (-2 + 2i)|$ (2 marks)

(ii) Evaluate $\left| |\bar{z}^2 - 2| - \sqrt{8} \right|$ (2 marks)

(iii) Let $f(z) = \bar{z}e^{-|z|^2}$. Determine the points at which f'(z) exists, and find f'(z) at these points. (2 marks)

(iv) Find an analytic function f whose imaginary part is given by $e^{-y}sinx$. (2 marks)

1 (c) (i) Use Demoivre's theorem with n=4 to prove that $\cos 4\theta = 8\cos^4 \theta - 8\cos^2 \theta + 1$

And deduce that $\cos \frac{\pi}{8} = \left(\frac{2+2\sqrt{2}}{4}\right)^{\frac{1}{2}}$. (2 marks)

(ii) Find an analytic function of z = x + iy whose imaginary part is (2 marks) (ycosy + xsiny)expx

(iii) Find the radius of convergence of the following Taylor series: (1 marks)

$$\sum_{n=1}^{\infty} z^n n^{\ln n}$$

1 (d) (i) Find the residue at each of the singularities of $f(z) = \frac{e^{z^3}}{z(z+1)}$. The function f(z) has simple poles at z=0 and z=-1. Therefore, we have

$$R[f,0] = \lim_{z \to 0} zf(z) = \lim_{z \to 0} \frac{e^{z^3}}{z(z+1)} = 1$$

And $R[f,-1] = \lim_{z \to -1} (z+1)f(z) = \lim_{z \to -1} \frac{e^{z^3}}{z} = -e^{-1}$ (1 mark)

(ii) Find the residue of $f(z) = \frac{\cot z}{z^2}$ at z = 0. (1 marks)

(iii) Evaluate $I = \int_0^{2\pi} \frac{1}{1 + a \sin \theta} d\theta$, 0 < |a| < 1. (2 marks)

2 (a) (i) Evalaute $\int_0^1 \frac{1}{x^{\frac{1}{5}}} dx$

(2 marks)

(ii) show that $\int_{-\infty}^{\infty} \frac{x}{x^3 - a^3} dx = \frac{\pi}{\sqrt{3a}}$; a > 0

(1 mark)

(iii) show that $\int_{-\infty}^{\infty} \frac{\sqrt{x}}{x^3 + 1} dx = \frac{\pi}{3}$

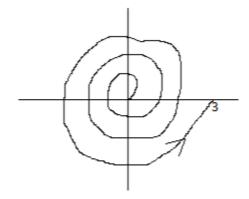
(2 marks)

2 (b) (i) Evaluate $\int_{\gamma} f(z)dz$. If f(z) = z - 1 and γ is the curve given by

$$z(t) = t + it^2, \quad 0 \le t \le 1.$$

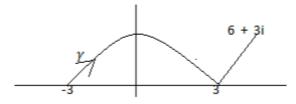
(1 mark)

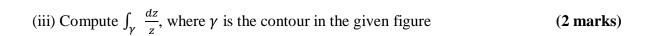
- (ii) Let f(z)=z-1 and $\gamma=\gamma_1+\gamma_2$ where γ_1 is given by $z_1(t)=t$, $0 \le t \le 1$ and γ_2 is given by $z_2(t)=1+i(t-1)$, $1 \le t \le 2$, then evaluate $\int_{\gamma} f(z)dz$ (1 mark)
- (iii) let γ be given by $z(t) = 2e^{it}$, $0 \le t \le 2\pi$. Show that $\left| \int_{\gamma} \frac{e^z}{z^2 + 1} dz \right| \le \frac{4\pi e^2}{3}$ (1 mark)
- 2 (c) (i) compute the integral $\int_{\gamma} (z^2 1) dz$, where γ is the contour in (1 mark)

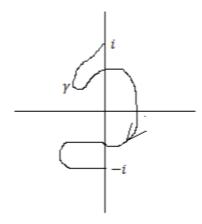


(ii) compute the integral $\int_{\gamma} sinzdz$, where γ is the contour

(1 mark)

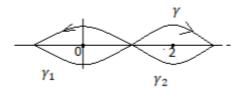




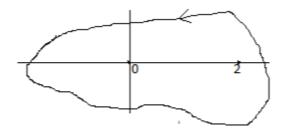


3. (a) Let $\gamma = \gamma_1 + \gamma_2$, where γ_1 and γ_2 respectively are given by $z_1(t) = ti$ and $z_2(t) = t + i$, $t \in [0,1]$. Furthermore, let $f(z) = (y - x) + 3ix^2$. Show that the function f cannot have an antiderivative. (4 marks)

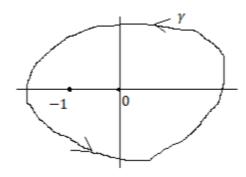
3 (b) (i) Compute $\int_{\gamma} \frac{e^z}{z(z-2)} dz$, where γ is the following contour (4 marks)



(ii) compute $\int_{\gamma} \frac{e^z}{z(z-2)} dz$, where γ is the following contour (4 marks)



- (2 marks)
- (ii) Compute $\int_{\gamma} \frac{\cosh z}{z(z-2)^2} dz$ where the contour γ is given in the figure below (3)
 - (3 marks)



- (iii) Evaluate the function $f(z) = \int_0^1 e^{-z^2 t} dt$. Let γ be any simple closed contour in the complex plane. Changing the order of integration, we have (2 marks)
- 4 (b) Find the Taylor expansion up to quadratic terms in x-2 and y-3, of $f(x,y)=ye^{xy}$ (2 marks
- 4 (c) Find and evaluate the maxima and saddle points of the function

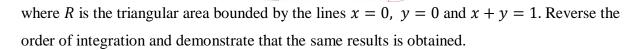
$$f(x,y) = xy(x^2 + y^2 - 1)$$
 (3 marks)

5 (a) (i) by finding
$$\frac{dl}{dy}$$
, evaluate the integral (3 marks)

$$\int_0^\infty \frac{e^{-xy}\sin x}{x} dx$$

- (ii) show that the function $1, x, \sin x$ are linearly independent (2 marks)
- (iii) Find the Laplace transform of the function $f(t) = e^{at}(2 \text{ marks})$
- 5 (b) (i) Evaluate the double integral

$$I = \iint_{R} x^{2}y dx dy$$
 (2 marks)



- (ii) Find the Laplace transform of $\frac{d^2f}{dt^2}$ (3 marks)
- 6 (a) In spherical polar coordinates r, θ, \emptyset the element of volume for a body that is symmetrical about the polar axis is $dV = 2\pi r^2 \sin\theta dr d\theta$, whilst its element of surface area is $2\pi r \sin\theta [(dr)^2 + r^2(d\theta)^2]^{\frac{1}{2}}$. A particular surface is defined by $r = 2a\cos\theta$, where a is a constant and $0 \le \theta \le \frac{\pi}{2}$. Find its total surface area and the volume it encloses, and hence identify the surface. (7 marks)
- 6 (b) By transforming to cylindrical polar coordinates, evaluate the integral

$$I = \iiint \ln(x^2 + y^2) dx dy dz$$

Over the interior of the conical region $x^2 + y^2 \le z^2$, $0 \le z \le 1$ (5 marks)