NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES

DEPARTMENT OFMATHEMATICS

Course Code: MTH381
Course Title: Mathematical Methods III
Credit Unit:
Time Allowed:
3

Total:
3 Hours
70 Marks
Instruction: Answer Question Number One and any Other Four Questions
1(a) (i) write the quotient $\frac{1+i}{\sqrt{3}-i}$ in polar form.
(ii) compute $\frac{1+i}{\sqrt{3}-i}$
(iii) Find all the cube roots of $\sqrt{2}+i \sqrt{2}$

1 (b) (i) Evalaute $\left|\bar{z}^{2}-2-(-2+2 i)\right|$
(ii) Evalaute $\left|\mid \bar{z}^{2}-2\right)|-\sqrt{8}|$
(iii) Let $f(z)=\bar{z} e^{-|z|^{2}}$. Determine the points at which $f^{\prime}(z)$ exists, and find $f^{\prime}(z)$ at these points.
(2 marks)
(iv) Find an analytic function f whose imaginary part is given by $e^{-y} \sin x$. (2 marks)

1 (c) (i) Use Demoivre's theorem with $n=4$ to prove that $\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$ And deduce that $\cos \frac{\pi}{8}=\left(\frac{2+2 \sqrt{2}}{4}\right)^{\frac{1}{2}}$.
(ii) Find an analytic function of $z=x+i y$ whose imaginary part is ($\mathbf{2}$ marks)

$$
(y \cos y+x \sin y) \exp x
$$

(iii) Find the radius of convergence of the following Taylor series: (1 marks)

$$
\sum_{n=1}^{\infty} z^{n} n^{\ln n}
$$

1 (d) (i) Find the residue at each of the singularities of $f(z)=\frac{e^{z^{3}}}{z(z+1)}$. The function $f(z)$ has simple poles at $z=0$ and $z=-1$. Therefore, we have

$$
\begin{gather*}
\qquad R[f, 0]=\lim _{z \rightarrow 0} z f(z)=\lim _{z \rightarrow 0} \frac{e^{z^{3}}}{z(z+1)}=1 \\
\text { And } R[f,-1]=\lim _{z \rightarrow-1}(z+1) f(z)=\lim _{z \rightarrow-1} \frac{e^{z^{3}}}{z}=-e^{-1} \tag{1mark}
\end{gather*}
$$

(ii) Find the residue of $f(z)=\frac{\cot z}{z^{2}}$ at $z=0$.
(iii) Evaluate $I=\int_{0}^{2 \pi} \frac{1}{1+a \sin \theta} d \theta, \quad 0<|a|<1$.

Click to download more NOLUN PQ from NounGeeks.com

2 (a) (i) Evalaute $\int_{0}^{1} \frac{1}{x^{\frac{1}{5}}} d x$
(2 marks)
(ii) show that $\int_{-\infty}^{\infty} \frac{x}{x^{3}-a^{3}} d x=\frac{\pi}{\sqrt{3 a}} ; a>0$
(1 mark)
(iii) show that $\int_{-\infty}^{\infty} \frac{\sqrt{x}}{x^{3}+1} d x=\frac{\pi}{3}$
(2 marks)

2 (b) (i) Evalaute $\int_{\gamma} f(z) d z$. If $f(z)=z-1$ and γ is the curve given by

$$
z(t)=t+i t^{2}, \quad 0 \leq t \leq 1
$$

(ii) Let $f(z)=z-1$ and $\gamma=\gamma_{1}+\gamma_{2}$ where γ_{1} is given by $z_{1}(t)=t, 0 \leq t \leq 1$ and γ_{2} is given by $z_{2}(t)=1+i(t-1), 1 \leq t \leq 2$, then evaluate $\int_{\gamma} f(z) d z \quad$ (1 mark)
(iii) let γ be given by $z(t)=2 e^{i t}, 0 \leq t \leq 2 \pi$. Show that $\left|\int_{\gamma} \frac{e^{z}}{z^{2}+1} d z\right| \leq \frac{4 \pi e^{2}}{3}$ (1 mark)

2 (c) (i) compute the integral $\int_{\gamma}\left(z^{2}-1\right) d z$, where γ is the contour in ($\mathbf{1}$ mark)

(ii) compute the integral $\int_{\gamma} \sin z d z$, where γ is the contour
(1 mark)

Click to download more NOLIN PQ from NounGeeks.com

(iii) Compute $\int_{\gamma} \frac{d z}{z}$, where γ is the contour in the given figure
(2 marks)

3. (a) Let $\gamma=\gamma_{1}+\gamma_{2}$, where γ_{1} and γ_{2} respectively are given by $z_{1}(t)=t i$ and $z_{2}(t)=t+i$, $t \in[0,1]$. Furthermore, let $f(z)=(y-x)+3 i x^{2}$. Show that the function f cannot have an antiderivative.

3 (b) (i) Compute $\int_{\gamma} \frac{e^{z}}{z(z-2)} d z$, where γ is the following contour

(ii) compute $\int_{\gamma} \frac{e^{z}}{z(z-2)} d z$, where γ is the following contour

Click to download more NOLIN PQ from NounGeeks.com

4 (a) (i) Compute $\int_{\gamma} \frac{3 z+1}{z(z-2)^{2}} d z$ along the contour γ given in 3 b (i) above.
(2 marks)
(ii) Compute $\int_{\gamma} \frac{\cosh z}{z(z-2)^{2}} d z$ where the contour γ is given in the figure below

(iii) Evaluate the function $f(z)=\int_{0}^{1} e^{-z^{2} t} d t$. Let γ be any simple closed contour in the complex plane. Changing the order of integration, we have

4 (b) Find the Taylor expansion up to quadratic terms in $x-2$ and $y-3$, of $f(x, y)=y e^{x y}$
(2 marks
4 (c) Find and evaluate the maxima and saddle points of the function

$$
\begin{equation*}
f(x, y)=x y\left(x^{2}+y^{2}-1\right) \tag{3marks}
\end{equation*}
$$

5 (a) (i) by finding $\frac{d I}{d y}$, evaluate the integral

$$
\int_{0}^{\infty} \frac{e^{-x y} \sin x}{x} d x
$$

(ii) show that the function $1, x, \sin x$ are linearly independent
(2 marks)
(iii) Find the Laplace transform of the function $f(t)=e^{a t}(\mathbf{2}$ marks $)$

5 (b) (i) Evaluate the double integral
$I=\iint_{R} x^{2} y d x d y$
(2 marks)

Click to download more NOLIN PQ from NounGeeks.com

where R is the triangular area bounded by the lines $x=0, y=0$ and $x+y=1$. Reverse the order of integration and demonstrate that the same results is obtained.
(ii) Find the Laplace transform of $\frac{d^{2} f}{d t^{2}}$
(3 marks)

6 (a) In spherical polar coordinates r, θ, \emptyset the element of volume for a body that is symmetrical about the polar axis is $d V=2 \pi r^{2} \sin \theta d r d \theta$, whilst its element of surface area is $2 \pi r \sin \theta\left[(d r)^{2}+r^{2}(d \theta)^{2}\right]^{\frac{1}{2}}$. A particular surface is defined by $r=2 a \cos \theta$, where a is a constant and $0 \leq \theta \leq \frac{\pi}{2}$. Find its total surface area and the volume it encloses, and hence identify the surface.

6 (b) By transforming to cylindrical polar coordinates, evaluate the integral

$$
I=\iiint \ln \left(x^{2}+y^{2}\right) d x d y d z
$$

Over the interior of the conical region $x^{2}+y^{2} \leq z^{2}, 0 \leq z \leq 1$

