Hek to download more NOUN PQ from NounGeeks.con

NATIONAL OPEN UNIVERSITY OF NIGERIA
 Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja
 FACULTY OF SCIENCES
 DEPARTMENT OF MATHEMATICS
 June Examination 2020

Course Code: MTH341
Course Title: Real Analysis
Credit Unit: 3
Time Allowed: 3 Hours
Instruction: Answer Number One (1) and Any Other Four (4) Questions

1. Define the following:
i. Derivative at a point
(2 marks)
ii. Derivative in an interval
(2 marks)
b. Let $f: R \rightarrow R$ be a function defined as $f(x)=x^{2} \cos (1 / x)$ if $x \neq 0$ and $f(0)=0$. Find the derivative of f at $x=0$, if it exists.
(6 marks)
c. Let a function $f:[0,5] \rightarrow R$ be defined as $f(x)=\binom{2 x+1,0 \leq x \leq 3}{x^{2}-2,3 \leq x \leq 5}$ is f derivable at $\mathrm{x}=3$
(6 marks)
d. Show that the function f defined on R by $f(x)=x^{3}-3 x^{2}+3 x-5$ for all
$x \in R$ is increasing in every interval.
(6 marks)
2. Separate the intervals in which the function f defined on R by $f(x)=2 x^{3}-15 x^{2}+36 x+5$ for all $x \in R$ is increasing in every interval
(8 marks)
b. Let $f: R \rightarrow R$ be a continuous function defined on R . Show that f
is differentiable on R
(4 marks)
3. Verify the Rolle's theorem for the function defined by:
i. $f(x)=x^{3}-6 x^{2}+11 x-6$ for all $x \in[1,3]$
ii. $f(x)=(x-a)^{m}(x-b)^{n}$ for all $x \in[a, b]$ where m and n are positive integers (6 marks)
4. Show that there is no real number λ, for which the equation $f(x)=x^{3}-27 x+\lambda=0$ has two distinct roots in $[0,2]$
5. Let f be the function defined on $[-1,2]$ as $f(x)=|x|$. Find the derivative of f
(6 Marks)
b. Verify the hypothesis and conclusion of Langrange's mean value theorem for the functions

$$
\text { defined as } f(x)=\frac{1}{x} \text { for all } x \in[1,4]
$$

6. Apply Cauchy's mean value theorem to the functions f and g defined as $f(x)=x^{2}, g(x)=x$ for all $x \in[a, b]$.
b. Show that $\frac{\sin \alpha-\sin \beta}{\cos \beta-\cos \alpha}=\cot \theta$. where $0<\alpha<\theta<\beta<\pi / 2$
