Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja. FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS September, Examination 2020_1

COURSE CODE: MTH312 COURSE TITLE: Abstract Algebra II CREDIT UNIT: 3 TIME ALLOWED: 3 Hours INSTRUCTION: Answer Question Number One and Any Other Four Questions.

 1.(a). Define the following: (i). Ring homomorphism (ii). Group Isomorphism (ii). Automorphism (b). (i). If Ø: G → H and θ: H → K are two isomorphisms of groups, show that θ ∘ isomorphism of G onto K. (ii). Prove that any cyclic group is isomorphic to (Z, +) or (Z_n, +). (c). Show that every subgroup of Z is normal in Z. 	(6 marks) Ø is an (6 marks) (6 marks) (4 marks)		
2. Consider the groups $(R, +)$ and $(C, +)$ and define $f: (C, +) \rightarrow (R, +)$ by $f(x + iy) = x$, the real part of $x + iy$.			
(i) Show that <i>f</i> is a homomorphism.	(8 marks)		
(ii) Hence, find the Im f and Ker f .	(4 marks)		
3. (a). Show that (S_n, \circ) is non-commutative group for $n \ge 3$. (6 marks)			
(b) Do the cycles (1 3) and (1 5 4) commute? Give reason for your answer.	(6 marks)		
4. (a). Define the following:			
i. External direct product	(3 marks)		
ii. Internal direct product	(3 marks)		
(b). Let a group G be internal direct product of its subgroups H and K. Prove that:			
i. Each $x \in G$ can be uniquely expressed as $x = hk$, where $h \in H, k \in H$	<i>K</i> ; (3 marks)		
ii. $hk = kh \forall h \in H, k \in K.$	(3 marks)		

Click to download more NOUN PQ from NounGeeks.com

4. (a). Define a ring for a non-empty set R. (4 marks)
(b). Consider the set Z + iZ = {m + in: m and n are integers}, where i² = -1. Verify that Z + iZ is a ring under addition and multiplication of complex number. (8 marks)

5. (a). Define an ideal I of a ring R. (2 marks) (b). (i). Let R be a ring and $a_1, a_2 \in R$, show that $Ra_1 + Ra_2 = \{x_1a_1 + x_1a_1: x_1, x_2 \in R\}$ is an ideal of R. (6 marks) (ii). Show that $\{\overline{0}, \overline{3}\}$ and $\{\overline{0}\ \overline{2}\ \overline{4}\}$ are proper ideals of Z_6 . (4 marks)

6. (a). Define the following:

i.	Sylow p-subgroup of <i>G</i> .	(3 marks)
ii.	Simple group.	(3 marks)

(b). Show that every group of order 20 has a proper normal non-trivial subgroup. (6 marks)