NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2020_1 EXAMINATIONS

Course Code: MTH 304

Course Title: Complex Analysis I
Credit Unit: 3
Time Allowed: 3 Hours
Instruction: Answer Question Number One and Any other Four Questions.

1. a) If $f(z)=u(x, y)+i v(x, y)$ is analytic in a region \mathfrak{R} and $u(x, y)=y^{3}-3 x^{2} y$. Find $v(x, y)$?
b) Show that (i) $\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}$. (ii) $\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$
c) Evaluate $\int_{3 i}^{2+4 i}\left(2 y+x^{2}\right) d x+(3 x-y) d y$ along the parabola $x=2 t$ and $y=t^{2}+3$.
[5 Marks]
d) Let $w=f(z)=z^{2}$. Find the values of w which correspond to:
(i) $z=-2+i$
[21² Marks]
(ii) $z=1-3 i$
[2 ${ }^{1 / 2}$ Marks]
e) Express in polar form the complex number $z=-3 i$
2. a) Given the complex function $f(z)=\frac{1}{\left(z^{2}+4\right)}$. Find the first four terms of the Taylor series expansion $f(z)$ about $z=-i$.
b) Find $\frac{d f}{d z}$ of this function: $f(z)=4 x+y+i(-x+4 y)$ along real axis.
3. a) Using Cauchy - Riemann equation, show that $f(z)=z^{3}$ is analytic in the entire z - plane [$\mathbf{8}$ Marks]
b) Find $f(z)$ such that $f^{I}(z)=4 z-3$ and $f(1+i)=-3 i$
4. a) If $z_{1}=2+i$ and $z_{2}=3-2 i$.
(i) Evaluate $\left|3 z_{1}-4 z_{2}\right|$
(ii) Find the dot product of $z_{1} \bullet z_{2}$.

Click to download more NOUN PQ from NounGeeks.com

b) Find the value of the integral $\int_{C}(x+y) d x+x^{2} y d y$ along $y=x^{2}$, having $(0,0)$ and $(3,9)$ as end points.
[5 Marks]
5. a) Show that the function $e^{x}(\cos y+i \sin y)$ is an analytic function, find its derivative. [5 Marks]
b) Evaluate (i) $\lim _{z \rightarrow 1+i}\left(z^{2}-5 z+10\right)$.

$$
\begin{equation*}
\text { (ii) } \lim _{z \rightarrow-2 i} \frac{(2 z+3)(z-1)}{z^{2}-2 z+4} \tag{4Marks}
\end{equation*}
$$

6. a) Find the bilinear transformation that maps the points $z_{1}=-i, z_{2}=0, z_{3}=i$ into the points $w_{1}=-1$, $w_{2}=i, w_{3}=1$ respectively. Into what curve that y-axis is transformed to this transformation? [9 Marks]
b) Find the modulus and the argument of this complex number $\frac{1-i}{1+i}$.
