Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2020_1 EXAMINATIONS

Course Code: MTH 304 Course Title: Complex Analysis I Credit Unit: 3 Time Allowed: 3 Hours Instruction: Answer Question Number One and Any other Four Questions.

1. a) If f(z) = u(x, y) + iv(x, y) is analytic in a region \Re and $u(x, y) = y^3 - 3x^2 y$. Find v(x, y)? [5 Marks]

b) Show that (i)
$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
. (ii) $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ [3 Marks]

c) Evaluate
$$\int_{3i}^{2177} (2y + x^2) dx + (3x - y) dy$$
 along the parabola $x = 2t$ and $y = t^2 + 3$. [5 Marks]

d) Let $w = f(z) = z^2$. Find the values of w which correspond to: (i) z = -2 + i(ii) z = 1 - 3i

(ii)
$$z = 1 - 3i$$
 [2¹/₂ Marks]
e) Express in polar form the complex number $z = -3i$ [4 Marks]

[2¹/₂ Marks]

2. a) Given the complex function $f(z) = \frac{1}{(z^2 + 4)}$. Find the first four terms of the Taylor series expansion f(z) about z = -i. [7 Marks]

b) Find
$$\frac{df}{dz}$$
 of this function: $f(z) = 4x + y + i(-x + 4y)$ along real axis. [5 Marks]

3. a) Using Cauchy – Riemann equation, show that $f(z) = z^3$ is analytic in the entire z – plane [8 Marks]

b) Find
$$f(z)$$
 such that $f'(z) = 4z - 3$ and $f(1+i) = -3i$ [4 Marks]

4. a) If
$$z_1 = 2 + i$$
 and $z_2 = 3 - 2i$.

 $2 \pm 4i$

- (i) Evaluate $|3z_1 4z_2|$ [4 Marks]
- (ii) Find the dot product of $z_1 \bullet z_2$. [3 Marks]

Click to download more NOUN PQ from NounGeeks.com

b) Find the value of the integral $\int_C (x+y)dx + x^2 y dy$ along $y = x^2$,

having (0, 0) and (3, 9) as end points.

5. a) Show that the function $e^x(\cos y + i \sin y)$ is an analytic function, find its derivative. [5 Marks] b) Evaluate (i) $\lim_{z \to 1+i} (z^2 - 5z + 10)$. [3 Marks]

(ii)
$$\lim_{z \to -2i} \frac{(2z+3)(z-1)}{z^2 - 2z + 4}$$
 [4 Marks]

6. a) Find the bilinear transformation that maps the points $z_1 = -i$, $z_2 = 0$, $z_3 = i$ into the points $w_1 = -1$, $w_2 = i$, $w_3 = 1$ respectively. Into what curve that y – axis is transformed to this transformation? [9 Marks]

b) Find the modulus and the argument of this complex number $\frac{1-i}{1+i}$. [3 Marks]

[5 Marks]