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NATIONAL OPEN UNIVERSITY OF NIGERIA 

Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja 

FACULTY OF SCIENCES 

September 2020_1 Examination 

Course Code:   MTH 301 

Course Title:    Functional Analysis 

Credit Unit:      3 

Time Allowed:  3 Hours 

Instruction:      Answer Number One (1) And Any Other Four (4) Questions 

 

1. (a) Explain what is meant by a topology  on a non-empty set X.        (3 marks)                              

(b) Give an example of discrete and indiscrete topology.             (4 marks) 

(c) Let X be a complete metric space and {On} be a countable collection of    

dense open subsets of X. Show that nO  is not empty.                (10 marks) 

           (d) ) Let K ⊆ X be compact. Show that K is bounded.                        (5 marks) 

 
2. (a) The collection Zd defined as Zd = {A ⊆ X : x ∈ A implies there exists r > 0  

such that B(x, r) ⊆ A} is a topology on X, known as the topology induced by the 

given metric d.  In a metric space (X, d) for each x ∈ X, r > 0,  

show that B(x, r) is an open subset of (X, Zd).                                     (5 marks)                                                                                             

(b) Let K be a collection of nonempty closed subsets of a compact space T such that 

every finite subcollection of K has a nonempty intersection. Show that the intersection 

of all sets from K is non-empty.                                                             (7 marks) 

 

3. (a) State Heine-Borel theorem.                                                                (2 marks) 

(b) Show that a continuous image of a compact space is compact.         (10 marks) 

 

4. (a)  State axioms of addition of a real number system (ℜ,+, ⋅)             (4 marks)  

(b) Prove that a subspace T of a topological space S is disconnected iff it is separated 

by some open subsets U, V of S.                                                              (8 marks) 

 

5. Let (X, d) and (Y, d1) be metric spaces and g is a mapping of X into Y. Let 

𝜏 and 𝜏1 be the topologies determined by d and d1 respectively. Show that 

 g :(x, 𝜏) →(y, 𝜏) is continuous if and only if 𝑥𝑛 → 𝑥 ⇒ g (𝑥𝑛) → g (x): that   

is if x1, x2,…xn,… is a sequence of points in (X, d) converging to x, then the   

sequence of points g(x1), g(x2),…g(xn),… in (Y, d) converges to g(x).       (12 marks)  

 

6.  Prove that a set C is a closed set if and only if it contains all its limit points 

                                                                                                                      (12 marks) 

A-PDF Watermark DEMO: Purchase from www.A-PDF.com to remove the watermark

https://bit.ly/36KiPnm
http://www.a-pdf.com/?wm-demo

