Click to download more NOUN PQ from NounGeeks.con

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja

FACULTY OF SCIENCES

September 2020_1 Examination

Course Code: MTH 301

Course Title: Functional Analysis

Credit Unit:

Time Allowed: 3 Hours

Instruction:

Answer Number One (1) And Any Other Four (4) Questions

- 1. (a) Explain what is meant by a topology τ on a non-empty set X. (3 marks)
 - (b) Give an example of discrete and indiscrete topology. (4 marks)
 - (c) Let X be a complete metric space and {O_n} be a countable collection of dense open subsets of X. Show that $\bigcup O_n$ is not empty. **(10 marks)**
 - (5 marks) (d) Let $K \subseteq X$ be compact. Show that K is bounded.
- 2. (a) The collection Zd defined as $Zd = \{A \subseteq X : x \in A \text{ implies there exists } r > 0\}$ such that $B(x, r) \subseteq A$ is a topology on X, known as the topology induced by the given metric d. In a metric space (X, d) for each $x \in X$, r > 0, show that B(x, r) is an open subset of (X, Zd). (5 marks) (b) Let K be a collection of nonempty closed subsets of a compact space T such that every finite subcollection of K has a nonempty intersection. Show that the intersection of all sets from K is non-empty. (7 marks)
- 3. (a) State Heine-Borel theorem. (2 marks)
 - (b) Show that a continuous image of a compact space is compact. **(10 marks)**
- 4. (a) State axioms of addition of a real number system $(\Re, +, \cdot)$ (4 marks) (b) Prove that a subspace T of a topological space S is disconnected iff it is separated by some open subsets U, V of S. (8 marks)
- 5. Let (X, d) and (Y, d_1) be metric spaces and g is a mapping of X into Y. Let τ and τ_1 be the topologies determined by d and d₁ respectively. Show that $g:(x,\tau)\to(y,\tau)$ is continuous if and only if $x_n\to x\Rightarrow g(x_n)\to g(x)$: that is if $x_1, x_2, \dots x_n, \dots$ is a sequence of points in (X, d) converging to x, then the sequence of points $g(x_1)$, $g(x_2)$,... $g(x_n)$,... in (Y, d) converges to g(x). (12 marks)
- 6. Prove that a set C is a closed set if and only if it contains all its limit points

(12 marks)