

National Open University of Nigeria
Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi - Abuja
Faculty of Science
SEPTEMBER 2020_1 EXAMINATION

COURSE CODE: CHM407

COURSE TITLE: REACTION KINETICS
CREDIT: 3 Units
TIME ALLOWED: 3 Hours
INSTRUCTION: Answer Question ONE (1) and any other FOUR (4) Questions
In all calculations $R=8.314 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$

Question 1 (22 MARKS)

(a) Highlight the special techniques used for measuring the constants of fast reactions. (3 marks)
(b) In the reaction: $\mathrm{BrO}_{3}^{-}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Br}_{2}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ (equation unbalanced), If the rate with respect to bromate ions is $\frac{\mathrm{d}\left[\mathrm{BrO}_{3}^{-}\right]}{\mathrm{dt}}=-10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$. What will be:
i. The rate with respect to Br^{-}ions, $\frac{\mathrm{d}\left[\mathrm{Br}^{-}\right]}{\mathrm{d} t} \quad$ (2 marks)
ii. The rate with respect to Br_{2} molecules, $\frac{\mathrm{d}\left[\mathrm{Br}_{2}\right]}{\mathrm{d} t}$ (2 marks)
(c) Explain briefly the collision theory of reaction rates. (5 marks)
(d) What do you understand by the following terms: (i) inhibition (ii) poisoning? (5 marks)
(e) The activation energy of the reaction $\mathrm{A}+\mathrm{B} \rightarrow$ Products is $103.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$. At $40{ }^{\circ} \mathrm{C}$ the products are formed with the rate constant of $0.133 \mathrm{M} \mathrm{min}^{-1}$. What will be the rate constant of product formation at $80^{\circ} \mathrm{C}$?
(5 marks)

Question 2 (12 MARKS)

(a) The decomposition of hydrogen peroxide is a first-order reaction. The half-life of the reaction is 17.0 minutes.
(i) What is the rate constant of the reaction? (3 marks)
(ii) For a bottle of $\mathrm{H}_{2} \mathrm{O}_{2}$, how long would it take for 86% to decompose? (3 marks)
(iii) The reaction is started with $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.1 \mathrm{M}$, what would be the hydrogen peroxide concentration after 15.0 minutes?
(b) State the units of the rate constants for zeroth order, first order and second order reactions. The rate of reaction is measured in $\mathrm{M} \mathrm{s}^{-1}$

Click to download more NOUN PQ from NounGeeks.com

Question 3 (12 MARKS)

(a) The saponification of methyl acetate using sodium hydroxide was studied at 298 K . The initial concentrations of the alkali and ester in the reaction mixture were both $1.00 \times 10^{-2} \mathrm{M}$. The reaction rate was followed by titration of a definite volume of the reaction mixture with standard HC 1 . The concentrations of unreacted alkali, [A] ${ }_{t}$, at various time intervals are given below:

Time $/ \mathrm{s}$	240	550	720	1000	1550
$10^{3}[\mathrm{~A}]_{t} / \mathrm{M}$	6.85	4.81	4.17	3.38	2.49

Calculate the second order rate constant (7 marks)
(b) Many reactions double their rates with every 10° rise in temperature. Assume such a reaction to take place at about 300 K . What must its activation energy be for this statement to hold? (5 marks)

Question 4

(a) What are the basic assumptions of the Langmuir adsorption isotherm? (4 marks)
(b) Discuss briefly the modern methods of surface studies
(4 marks)
(c) Describe briefly the mechanism of an enzyme-catalyzed reaction
(4 marks)

Question 5

(a) The decomposition of hydrogen iodide on gold at 323 K is zeroth order reaction and the rate constant is $1.20 \times 10^{-4} \mathrm{Ms}^{-1}$
(i) If the initial concentration of hydrogen iodide is 0.500 M , calculate its concentration after 3.00×10^{3} s.
(3 marks)
(ii) How long will it take for all of the hydrogen iodide to decompose? (3 marks)
(b) (i) What is a Clock reaction?
(1 mark)
(ii) How would you use the Clock reaction to monitor the kinetics of the reaction: $2 \mathrm{KI}+\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
$\rightarrow 2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}$.
(5 marks)

Question 6

(a) The light absorbed by a molecule is not always used up in producing a chemical reaction; the absorbed energy can be lost through various physical processes. With the aid of a Jablonski diagram, discuss briefly the fate of an electronically excited molecule.
(b) State any FOUR commercial applications of fluorescence.

