# Chiok to download more NOUN PQ from NounGeeks.com 

Default for STT205
The default category for questions shared in context 'STT205'.
Fill in the Blank (FBQs)
FBQ1
Any measure indicating the Centre of a set of data, arranged in an increasing or decreasing order of magnitude, is called a measure of: $\qquad$
*Central tendency*
1.0000000
0.0000000

FBQ2
Scores that differ greatly from the measures of central tendency are called: $\qquad$
*Outliers*
1.0000000
*Extreme values*
1.0000000
*Extreme scores*
1.0000000

FBQ3
The total of all the observations divided by the number of observations is called: $\qquad$
*Arithmetic mean*
1.0000000
0.0000000

FBQ4
The sample mean is an example of $a$ : $\qquad$
*Statistic*
1.0000000
0.0000000

FBQ5
The population mean $\hat{I}_{1 / 4}$ is an example of a:
*Parameter*
1.0000000
0.0000000

FBQ6
The arithmetic mean is highly affected by: $\qquad$
*Extreme values*
1.0000000
*Outliers*
1.0000000

FBQ7

## Click to download more NOUN PQ from NounGeeks.com

If a constant value is added to every observation of data, how would the value of the arithmetic mean behave? $\qquad$
*Increased by the constant*
1.0000000
0.0000000

FBQ8
The median is considered a robust measure because it is resistant to: $\qquad$
*Outliers*
1.0000000
*Extreme values*
1.0000000

FBQ9
What effect will the elimination of extreme scores at the bottom of a data set have on the mean? $\qquad$
*Increase the mean*
1.0000000
0.0000000

FBQ10
The elimination of extreme scores at the top of the set has the effect of:
*Reduce the mean*
1.0000000
0.0000000

FBQ11
The sum of deviations taken from mean is: $\qquad$
*0*
1.0000000
*Zero*
0.0000000

FBQ12
The sum of the squares of the deviations about mean divided by the number of observations is: $\qquad$
*Variance*
1.0000000
0.0000000

FBQ13
If then sample mean X - will be: $\qquad$

# Click to download more NOUN PQ from NounGeeks.com 

0.0000000

FBQ14
*25*
1.0000000
0.0000000

FBQ15
The sum of the squares of the deviations of the values of a variable is least when the deviations are measured from: $\qquad$
*Arithmetic mean*
1.0000000
0.0000000

FBQ16
If $X-=100$ and $Y=2 X$ â "" 200 , then mean of $Y$ values will be: $\qquad$
*0*
1.0000000
*Zero*
1.0000000

FBQ17
Step deviation method or coding method is used for computation of the $\qquad$
*Arithmetic mean*
1.0000000
0.0000000

FBQ18
If the arithmetic mean of 20 values is 10 , then sum of these 20 values is: $\qquad$
*200*
1.0000000
0.0000000

FBQ19
Ten families have an average of 2 boys. How many boys do they have together?
*20*
1.0000000
0.0000000

FBQ20
If the arithmetic mean of the two numbers X 1 and X 2 is 5 if $\mathrm{X} 1=3$, then X 2 is: $\qquad$

## Click to download more NOUN PQ from NounGeeks.com

1.0000000
0.0000000

FBQ21
Given $\mathrm{X} 1=20$ and $\mathrm{X} 2=-20$. The arithmetic mean will be: $\qquad$
*0*
1.0000000
*Zero*
1.0000000

FBQ22
The mean of 10 observations is 10 . All the observations are increased by $10 \%$. The mean of increased observations will be: $\qquad$
*11*
1.0000000
0.0000000

FBQ23
The frequency distribution of the hourly wage rate of 60 employees of a paper mill is as follows:

The mean wage rate is: N $\qquad$
*59.00*
1.0000000
*59*
1.0000000

FBQ24
The sample mean X - of first n natural numbers is: $\qquad$

* $(\mathrm{n}+1) / \mathbf{2}^{*}$
1.0000000
0.0000000

FBQ25
The sum of deviations is zero when deviations are taken from: $\qquad$
*Mean*
1.0000000
0.0000000
0.0000000

FBQ26
When the values in a series are not of equal importance, we calculate the:

## Click to download more NOUN PQ from NounGeeks.com

*Weighted mean*1.0000000
0.0000000FBQ27When all the values in a series occur the equal number of times, then it is not possibleto calculate the:
$\qquad$
*Weighted mean*
1.0000000
0.0000000
FBQ28
The mean for a set of data obtained by assigning each data value a weight that reflectsits relative importance within the set, is called:
$\qquad$
*Weighted mean*
1.0000000
0.0000000
FBQ29
The arithmetic mean of 10 items is 4 and the arithmetic mean of 5 items is 10 . Thecombined arithmetic mean is:
$\qquad$
*6*1.0000000
0.0000000
FBQ30
The midpoint of the values after they have been ordered from the smallest to thelargest or the largest to the smallest is called:
$\qquad$
*Median*
1.0000000
1.0000000
FBQ31
The first step in calculating the median of a discrete variable is to determine the:
*Array*
1.0000000
0.0000000FBQ32The suitable average for qualitative data is:
$\qquad$
*Median*

## Click to download more NOUN PQ from NounGeeks.com

1.0000000
0.0000000

FBQ33
If the smallest observation in a data is decreased, the average which is not affected is:
*Median*
1.0000000
0.0000000

FBQ34
Sum of absolute deviations of the values is least when deviations are taken from:
*0*
1.0000000
*zero*
1.0000000

FBQ35
The frequency distribution of the hourly wages rate of 100 employees of a paper mill is as follows:

The median wage rate is: N $\qquad$
*59.00*
1.0000000
*59*
1.0000000

Multiple Choice Questions (MCQs)
MCQ1
The values of the variate that divide a set of data into four equal parts after arranging the observations in ascending order of magnitude are called:

Semi-interquartle
0.0000000
quartiles
1.0000000
mean
0.0000000
limits
0.0000000

MCQ2

## Click to download more NOUN PQ from NounGeeks.com

The lower and upper quartiles of a symmetrical distribution are 40 and 60 respectively. The value of median is:

50
1.0000000

45
0.0000000

60
0.0000000

35
0.0000000

MCQ3
If in a discrete series $75 \%$ values are less than 30 , then:
Third quartile $=30$
1.0000000

Second quartile $=30$
0.0000000

Third quartile $=75$
0.0000000

None of the options
0.0000000

MCQ4
The probability of the amount X (in million Naira) of investment in the shares of ABC Company is given as follows:

Find $E(X)$.
73/5
0.0000000

36/21
0.0000000

35/18
1.0000000

4/5
0.0000000

MCQ5

## Click to download more NOUN PQ from NounGeeks.com

The mean of first 2 n natural numbers is:
$(2 n+1) / 2$
1.0000000
(2n-1)/2
0.0000000
$(\mathrm{n}+1) / 2$
0.0000000
$(2 n+5) / 2$
0.0000000

MCQ6
If $X-1, X-2, X-3, a ̂ €_{\mid} . X-k$ be the arithmetic means of $k$ distributions with respective frequencies n1, n2, n3, â $€_{!}, n k$, then the mean of the whole distribution $X-c$ is given by:
â‘nX-â‘‘2n
0.0000000
â^nX-â^n
1.0000000
â^‘2nX-4â^n
0.0000000
â^'2X-â^n
0.0000000

MCQ7
The combined arithmetic mean of two sets of means is calculated by which formula?
n1X-1+n2 X-22n1+n2
0.0000000
n1X-1+n2 X-2n1+2n2
0.0000000
n1X-1-n2 X-2n1+2n2
0.0000000
n1X-1+n2 X-2n1+n2
1.0000000

MCQ8
Extreme scores will have the following effect on the median of an examination
They may have no effect

# Click to download more NOUN PQ from NounGeeks.com 

1.0000000

The effect is always skewed
0.0000000

The effect is always negative
0.0000000

The effect is always positve
0.0000000

MCQ9
The probability of the amount $X$ (in million Naira) of investment in the shares of ABC Company of Adewale is given as follows:
$E(X)$. is actually 5.89 . What is the variance of $X$ ?

### 1.61

0.0000000
3.64
0.0000000
2.11
1.0000000
4.76
0.0000000

MCQ10
The grouped frequency distribution shown below is to be used to answer the following question

Which class is the modal class?
20-24
1.0000000

10-14
0.0000000

30-34

# Click to download more NOUN PQ from NounGeeks.com 

0.0000000

15-19
0.0000000

MCQ11
The grouped frequency distribution shown below is to be used to answer the following question

Which class is the median class?

20-24
1.0000000

10-14
0.0000000

30-34
0.0000000

15-19
0.0000000

MCQ12
The grouped frequency distribution shown below is to be used to answer the following question

What is the cumulative frequency of the modal class?
16
0.0000000

10
0.0000000

14
1.0000000

12
0.0000000

MCQ13
For a standard normal distribution, what is the values of the mean and variance?

## Click to download more NOUN PQ from NounGeeks.com

Mean $=0$, variance $=1$
1.0000000

Mean $=1$, variance $=0$
0.0000000

Variance $=0$
0.0000000

Mean = 1
0.0000000

MCQ14
Given the set of numbers: $15,16,12,11,19,18,13$ then is,

1200
0.0000000

980
0.0000000

1460
0.0000000

1600
1.0000000

MCQ15
The mean of $63,19,52,10,95,18$ is
56.18
0.0000000
42.83
1.0000000
60.5
0.0000000
50.21
0.0000000

MCQ16
The median of $63,19,52,10,95,18$ is
30.6

## Click to download more NOUN PQ from NounGeeks.com

### 0.0000000

50.8
0.0000000
35.5
1.0000000
40.7
0.0000000

MCQ17
The mode and the range of the above data are
40, 40
1.0000000

30, 40
0.0000000

40, 50
0.0000000

50, 40
0.0000000

MCQ18
The geometric mean of $6,8,10$ and 16 is
9.36
1.0000000
11.23
0.0000000
8.11
0.0000000
10.23
0.0000000

MCQ19
The harmonic mean of $6,7,8$ and 9 is
8.32
0.0000000
6.89

## Click to download more NOUN PQ from NounGeeks.com

7.33
1.0000000
9.61
0.0000000

MCQ20
Given that the mean of a distribution is 160, the mode is 150 and the standard deviation is 25 . Find the coefficient of skewness

## 3.5

0.0000000
1.5
0.0000000
0.6
0.0000000
0.4
1.0000000

MCQ21
A set of sales from an outlet produced the following: 16, 14, 18, 10, 12 compute the variance

9
0.0000000

10
0.0000000

8
1.0000000

12
0.0000000

MCQ22
The coefficient of variation for data set whose mean is 10 and variance 100 is
100\%
1.0000000

80\%
0.0000000

95\%

# Click to download more NOUN PQ from NounGeeks.com 

0.0000000

75\%
0.0000000

MCQ23
For a symmetric distribution
The mean, median and the mode are equal
1.0000000

The mean, median are equal
0.0000000

The mean, mode are equal
0.0000000

The mean, median and the mode are different
0.0000000

MCQ24
Which statistics is found by summing all the values and dividing by the number of observations?

The median
0.0000000

The arithmetic mean
1.0000000

The mode
0.0000000

None of the options
0.0000000

MCQ25
How would you describe the skewness of a distribution whose mean is smaller than the median?

Negatively skewed
1.0000000

Positively skewed
0.0000000
normal
0.0000000

None of the options

## Click to download more NOUN PQ from NounGeeks.com

0.0000000

MCQ26
What level of measurement is required for the median?
nominal
0.0000000
ordinal
1.0000000
discrete
0.0000000
continuous
0.0000000

MCQ27
The Nigeria Stock Exchange (NSE) index increased from 961 in 1980 to over 9,500 in 2003. The annual rate of increase is best described by the

Geometric mean
1.0000000

Harmonic mean
0.0000000

Arithmetic mean
0.0000000

Standard variation
0.0000000

MCQ28
What is the shape of a frequency distribution with an arithmetic mean of 12,000 pounds, a median of 12,000 pounds, and a mode of 12,000 pounds?
symmetric
1.0000000
asymmetric
0.0000000

Beta
0.0000000
alpha
0.0000000

## Click to download more NOUN PQ from NounGeeks.com

## MCQ29

Given that the mean of a distribution is 60, the mode is 50 and the standard deviation is 25. Find the coefficient of skewness:
0.6
0.0000000
0.9
0.0000000
0.7
0.0000000
0.4
1.0000000

MCQ30
A set of experimental animals was fed in a special diet for one week and produced the following gains in weight: $6,4,8,10,12$ compute the variance:

8
1.0000000

10
0.0000000

9
0.0000000

7
0.0000000

MCQ31
The coefficient of variation for data set whose mean is 16 and variance 10 is
19.8
1.0000000
12.7
0.0000000
10.8
0.0000000
14.7
0.0000000

MCQ32
Given the mean $=60$ and variance is 625 , find the coefficient of variation

## Click to download more NOUN PQ from NounGeeks.com

63.9\%
0.0000000
55.7\%
0.0000000
41.7\%
1.0000000
72.1\%
0.0000000

MCQ33
Suppose $A$ and $B$ are independent events with $P A=0.2, P B=0.6$..What is $P A B=$ ?
0.4
0.0000000
0.2
1.0000000
0.7
0.0000000
0.1
0.0000000

MCQ34
In a shipping organization, it is observed that the total number of items imported is 400 units. If you are to categorise these items into types of commodity with the aid of a pie chart, what angle would 160 units of chemical take?

144 degree
1.0000000

152 degree
0.0000000

98 degree
0.0000000

108 degree
0.0000000

MCQ35
The data collected by questionnaires are usually classified as what type of data?
Secondary data

# Click to download more NOUN PQ from NounGeeks.com 

0.0000000
direct
0.0000000 indirect
0.0000000

Primary data
1.0000000

