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FUNCTIONS OF COMPLEX VARIABLES
MODULE 1

Unit1 Complex Variables
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1.0 INTRODUCTION

Complex numbecan be defineds an expression of the form

are real numbers ands a “number" such tt

of =

, where

. The numbera is called the real pa

i(e. a = Re) and bis the imaginary part (or imaginary coefficient)

z(b=1Im2z).

The set of all complex numbers is deild €. We denoteC *=C -0.

2.0

OBJECTIVES

1 To know complex variable and its proper

2 To know operationsf comple: variable and when applicable

3 To know complex variable as a funct

4 To knowtheorems on limits cfunctions



3.0 MAIN CONTENT

3.1 Definition: A complex number is an expression of the fc , Where
are real numbers ands a " ‘number" such tf . The numbera is called the real pa

of = (Ii.e.a=Re z)andis the imaginary part (or imaginary coefficient)z ( b = Im z).
The set of all complex numbers is denc C. We denoteC *=C - 0.

Properties:

1. Equality:
2. If

3. If , zis called pure imaginan

Example

«  2zis pure imaginary.

« drisreal.
Definition (Operations) Let and

1. Addition:
2. Multiplication:

These operations have the same algebraic propagtitgs corresponding operation: &
(associativity, commutativity, etc.; please prove Thus, the classical formulas (suct
Newton's binomial) are also true .

Wr,22 EC, (21 4+ 22)° = 27 + 2mzn + 23

Wz1,22 €EC, (21— 22)° = 2] — 2=22 + 23

V21,23 € C, (21— 23)(21 + 22) = 27 — =3



S
Yz, EC,Vn €N, (21 +22)" = 3 (::) 2Tk
k=0

n—1
V21,2 €EC,¥n €N, 27 — 25 = 5 2P 1 7kE
k=0

Example

(24 3)+ (44 72) =6+10:
(Q+3)(4+7)=(2.4—3-7)+4(2.7+3 . 4) = 13 =26
(2+3:)2=2"42-2.3¢+(31)* =44+6:—9=—-5+6¢

(65— 2P =5"—3.5% 21435 (26)°— (24)° =125 — 150¢ — 60 + 8 = 65 — 1424

Pri=2 P =P +iz+P=(z—2)(z7 +iz—1)

3.2 THEOREMS ON LIMITS OF FUNCTIONS

1. exists, then it is uniqu

2. and , then

3.

4. —_— -

Definition: We mean given : such that if
where is the domain of then -

In some applications, € S

CONTINUITY - - -




SEQUENCE

If n=11S an infinite sequence of complex numbers, thersay

Thatis, n=;convergesto W if give , 3 N such that 1= N, then -
3.3 CAUCHY SEQUENCE
A sequence { } is Cauchy if givel £>0,3 N such that m, such tha

Example: Every convergent sequence is Cauchy seqt

By - , we mean a approaches infinity, if for any , M >0 such that

we mean for any N>

NOTE:
1.
2. iS never zero.
3. If X is real, for x >C
for x<C

4. =
Proposition: Given that are two complex variables, then

and
Proof. Denote and , where are real numbers. Th

71+ 23 = (21 + z2) + 2(y1 + ¥2)

Thus:

2tz = {Il —+ Ig) —|—'E:|:'y':|_ —|—'y2)

= [Il + Iz} - 'E:['Hl +'y3)



= (z1— 1)+ (22 — 232)

Similarly,

7127 = (T1Z2 — Y1) + 1(Z1¥2 + Tov1)
, thus:

= (z1Z2 — 1y2) +2(T1y2 + T2 )

= (122 — n1y2) — (T1y2 + T2

= (z1— w1 )(z2 — w2).

Definition: (Inverse of a compley If z = 0, then it has a complex inver =~*. Let

, wherea andkare real numbers; then we ha
a . b

_1= _

2+ 24 B

z

Proof. -—

Multiply both numerator and denumerator

_ a—b
" (a+1ib)(a — ib)
_a—zb
a4 pl
a . b

2z .
a2+ b2 a? 4+ b2

Theorem: Let . There exists a real numb fsuch that
Proof. Denote , Wwhere and are real numbers. Then if, and only if,

, .e. the image c zin the complex plane is a point on the -circle. For each



point on the unitircle, there exist a real numk such that the coordinates of this point

Definition: The number is called an argument: and is denoted

Note that this argument is defined up to an adualti
Example :
T . 0w 1 3 T
=cos 5 —I-a'amg = arg (ﬁ—l-aT) =3 4+ 2kn, ke E.

z :culag+'i'ajng:>- axg[i)zg—l—gk:lr,k (=

In Figure below, a value of the argument of the pl@x number corresponding to a poin

diplayed in green.

The unit circle in Caucl-Argand plane.

Example I

Solution: Using the binomial formule

we obtain



= x* + 4ix*y — 6x%y? — 4ixy3 + y*
= x* —6x2y? + y* + i(4x*y — 4xy3)
=u(x,y) + iv(x,y)

so thatu(x,y) = x* —6x2y? + y*and v(x,y) = (4x*y — 4xy?3)

Example 2 Express the functionf(z) = ZRe(z) + z% + Im(z) in the form f(z) in the
form f(z) =u(x,y) + iv(x,y).

Solution. Using the elementary properties of ca@rpiumbers, it follows that

f@=&—iy)x+@x+iy)>+y=02x*—y*+y) +i(xy)

sothatu(x,y) = 2x%2 —y?+yandv(x,y) = xy.

Examples 1 and 2 show how to find u(x,y) andy(when a rule for computing f is given.
Conversely, if u(x,y) and v(x,y) are two real-vadueinctions of the real
variables x and y, they determine a complex-vafuedtionf(z) = u(x,y) + iv(x,y)

We can use the formulas

X = %Zand y = % to find a formula for f involving the variablesand z

Example 3 Expressf(z) = 4x? + i4y? by a formula involving the variablesand z.

Solution. Calculation reveals that

. z+7)* z—772
fe) = 4{—2 } Tl chnkiy

= 7%+ 2zZ+ 7% — i(z*> — 2zZ + Z?)

=1-Dz2+Q2+2i)zz+ (1 —1i)z?



3.4 GEOMETRIC INTERPRETATION OF A COM PLEX FUNCTION

If D is the domain of real-valued functionéx, y) and v(x, y), the equations

u =u(x,y) andv = v(x,y)

describe a transformation (or mapping) from Dhia xy plane into the uv plane, also called

the w plane. Therefore, we can also consider thetion

W =f(z) =ulxy)+iv(x,y)

to be a transformation (or mapping) from the séh he z plane onto the range R in the w
plane. This idea was illustrated in Figure 2.1thie following paragraphs we present some
additional key ideas. They are staples for any kinfiinction, and you should memorize all
the terms in bold.

If A is a subset of the domainof f, the seB = {W = f(z) : z € A} is called the image
of the se#4, and f is said to mapl onto B. The image of a single point is a single point a
the image of the entire domaid, is the rangeR. The mappingW = f(z) is said to be
from A into S if the image ofl is contained ir$. Mathematicians use the notatipmd — S
to indicate that a function mag@sinto S. Figure below illustrates a function f whose
domain isD and whose range . The shaded areas depict that the function maps

A onto B. The function also mapsinto R, and, of course, aps D onto R.

Domain
D Range

Figure W = f(z) mapsA ontoB. W = f(z) mapsAintoR.



The inverse image of a point w is the setligb@ints z in D such tha = f(z). The
inverse image of a point may be one point, seyaoaits, or nothing at all. If the last case

occurs then the point is not in the range df.

Example 4 Expressf(z) = z° + 4z% — 6 in polar form.

Solution. We obtain
f(2) = f(re®®) = (re®)® + 4(re®)? — 6 = ce'? + 4r2e?% — 6

= r5c0s50 + r2cos20 — 6 +i(r°sin50 + 4 r?sin 20)
=U(r,0)+ iV(r,0)

So thatU (r,0) = r>cos560 + r?cos20 — 6 and V(r,0) = r°sin56 + 4 r?sin 26

Example 5 The ellipse centered at the origin with a hortabmajor axis of 4 units and

vertical minor axis of 2 units can be representgthle parametric equation

s(t) = 2cost+ isint = (2cost,sint),for 0 <t <2m
Suppose we wanted to rotate the ellipse by an aliéfleadians and shift the center of the

ellipse 2 units to the right and 1 unit up. Usimgnplex arithmetic, we can easily generate a

parametric equation(t) that does so:
in /s T
r(t) = s(t)ee + (2+i)=(2cost+ isint) (cos— + sin—) + (2+10)

6 6

= (2 cost cosz— sintsinz) +i(2 cost sinz+ sintcosz) + (2+4+10)
6 6 6 6
1 V3
=<\/§cost——sint+ 2>+i(cost+—sint+ 1)

2 2

1 V3
= (\/§Cost—§sint+ 2,cost+7sint+ 1)

for 0 <t < 2m, Figures below show parametric plots of thespsiis



¥

1.5
| \ N
. . . . ) . = a_5
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Figure (a)Plotof the original ellips (b) Plot of the rotated ellip:
S(tl=Z2cost+izint r(t) =8 et ™ 2 d)
Example 6 Show that the image of the right half pl under the linear
transformation is the half plane

Solution: The inverse transformation is given

which we write as

Substituting into gives——

which  simplifies

Figure 2.11 illustrates the mappi

[ S R R

Figure 2: The the linear transformati



4.0 CONCLUSION

In conclusion Examples 1 and 2 above show how to find u(@ng v(x,y) when a

rule for computing f is given. Conversely, if u(xand v(x,y) are two real-valued functions
of the real variables x and y, they determine aglerivalued functiorf (z) = u(x,y) +

iv(x,y) We can use the formulas

X = %Zand y = % to find a formula for f involving the variablesand z

5.0 SUMMARY

If D is the domain of real-valued functionéx, y) and v(x, y), the equations

u =u(x,y) andv = v(x,y)

describe a transformation (or mapping) from Dhia xy plane into the uv plane, also called

the w plane. Therefore, we can also consider thetion

W =f(z) =ulx,y) +iv(x,y)

to be a transformation (or mapping) from the séh he z plane onto the range R in the w
plane. They are staples for any kind of functiord gou should memorize all the terms in
bold.

6.0 TMA

1 Expressf(z) = 3x2 +iy? by a formula involving the variablesand z.

2 Expresg(z) = z* + 2z2 — 1 in polar form.

3 Write f(z) = z*inthe form f(z) = u(x,y) + iv(x,y)
4  Prove that cosz,sinz,coshz, and sinhzare entire functions.

5 Whatis the idea that led to the Cauchy-Riemann equations?



6 State the Cauchy-Riemann equations from memory.

7 What is an analytic function? Can a function be differentiable at a
point z, without being analytic at z,.
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1.0 INTRODUCTION

A functionf(z) is analytic at a point, if its derivativef'(z) exists not only at

z, but at every pointin a neighborhood of,.

One can show that {z) is analytic the partial derivatives ofandv of all orders exist and

are continuous functions &fandy.

Thus we have

0’u  0%v d0%v ddv 0 0u_

oxZ dxdy - dyodx - dyox  dydy

0% 0% _

d0x? 6_)/2_0

That is

Thus bothu(x,y) andv(x,y) satisfy Laplace's equation.

2.0 OBJECTIVES

0%u

0y?



1 To know about analytic functions
2 To know about complex integral

3 To treat theorems and some related examples

3.0 MAIN CONTENT

An analytic function is an infinitely differentiadlfunctionsuch that the Taylor serias any

pointXg in its domain

o0 1) To
T(a)= 3 L0 g

!
s nl

converges to i§ for x in a neighbourhood of. The set of all real analytic functions on a
given seD is often denoted bg”(D).

A function f defined on some subset of the red ifnsaid to be real analytic at a poirift

there is a neighbourhodal of x on which f is real analytic.

If a complex analytic function is defined in an ag®ll around a poinky, its power series
expansion axp is convergent in the whole ball. This statementéal analytic functions

(with open ball meaning an open interaélhe real line rather than an open dikhe

complex plane) is not true in general; the funcbéthe example above gives an example for
Xo = 0 and a ball of radius exceeding 1, since theepseries 1 x* + x* —>C... diverges for

x| > 1.

Any real analytic function on some open setthe real line can be extended to a complex
analytic function on some open set of the complar@ However, not every real analytic
function defined on the whole real line can be edé&zl to a complex function defined on the

whole complex plane.

Theorem: If the derivative of(z) exists at a poir, then the partial derivatives afandv

exist at that point and obey the following condito



du OJdv ou v
i @ and - X
This above equationdre calledCauchy Riemann equations
Let u andv be real and single valued functionsxafndy are calledvhich, together with

their partial derivatives of the first order, amntinuous at a point. If those partial derivatives
satisfy the Cauchy-Riemann conditions at that poingn the derivative dfexists at that

point.

3.1 Cauchy Riemanmation:

A necessary condition th#f = f(z) = u(x,y) + v(x,y) be analytic in regioR is thatu
andv satisfy Cauchy Riemann equations.

du 0Jv dau_ v
6x_6yan dy  0Ox

Usuallyu(x,y) andv(x,y) are called conjugate functions.

3.2 ANALYT FUNCTIONS

A functionf(z) is analytic at a point, if its derivativef'(z) exists not only at

z, but at every pointin a neighborhood of;,.

One can show that {z) is analytic the partial derivatives ofandv of all orders exist and

are continuous functions &fandy.

Thus we have
0°u  0%v d0%v ddv 9 0u_ 0%u

0x? =6x6y= 6y6x= dydx  dydy = 0y?

0% 0% _

d0x? 6_)/2_0

That is

Thus bothu(x,y) andv(x,y) satisfy Laplace's equation.



Z

. . de?
Example: Show thaif (z): - C defined by f(z) = eZis analytic inC and thaté = e”*.

Solution Letz = x + iy.
Bu definition f(z) = e? = e**% = e*e” = e* (cosy + isiny)
So,u(x,y) = e*cosyand v(x,y) = e*siny

To showf is analytic, we veriffCauchy Riemann equatians

ou v
a_e cosy , a—e siny
ou x s dv x
Ez —e SIHYJ @ze Cosy
ou ov ou av -
So’a = 3 and % = —3, are satisfied.

d
Hence,f(z) = eZis analytic.To showé = e?, f(2) =u(x,y) +iv(x,y) = e*cosy +

ie*siny
. d du . 0v . . . )
Slncea—]; e + la = e*cosy +ie¥siny =e*(cosy+isiny) = e¥e” = eX¥*V = e*

V4
zZ

= e”.
dz

Hence



3.3 COMPLEX INTEGRAL

Definition (Definite Integral of a Complex Integrand): Let f(t) = u(t) + iv(t) where

u(t) and v(t) are real-valued functions of the neaiable t fora <t < b . Then

[ fmdt = [ (u® +iv@®) )de = [Ju@®dt+ i [, v()dt. (A)

We generally evaluate integrals of this tygdibding the anti derivatives of u(t) and v(t)
and evaluating the definite integrals on the rigjde of Equation above. That is, if
Ul(t) = u(t) andVI(t) = v(t), we have

[ f®dt = [ u®dt+ i [ v(t)dt = Ub) — U(a) +i(V(b) — V(). (B)

Example: Show thatfol(t —1)3dt = —% .
Solution: We write the integrand in terms of its real améginary parts,
e.f()= (t—1)3= t3 -3t +i(-3t>+1)

Here, u(t) = t3 — 3t and v(t) = —3t%? + 1. The integrals of u(t) and v(t) are

1 1 4 3e2d 5
fOu(t)dt:fO(tg_?)t )3dt: l:__ _ _5

2 1g 4

and
Jyv@®dt = [[(=3t2 +1)*de = [-t* +¢]§ =0

Hence, by Definition (A),

1 3 4. (1 | 5 . _ 5
fo(t—l) dt = fo u(t)dt + Lfo v(t)dt = -2+ 0i=—1

Example: Show thatfo2 et*itdt = E(ez - 1) + E(ez + 1) :

Solution. We use the method suggested by Defmst{@) and (B) above



A

3

T

2 ) 2 ) 2
j ettitgs = f eteltdt = j et(cost + isint)dt
0 0 0

A

t 7 2 t o3
= etcostdt +1i etsintdt
0 0

|

We can evaluate each of the integralsntegration by parts. For example,
s s
- n

Z ¢ tein ) 2 Z ot
e‘costdt = (e"sint),_y — | e’sintdt

J‘z
0 0

19

E . n O . 2 t .
= (ez smz— e smO)— e'sintdt
0

T

bis 2
= (32.1—1.0)—f etsintdt
0

- T
z t t=3 t
=e2— (e'.—cost),_g+ | e".—costdt
0

T
T =

z t t=3 z ¢
=e2+ (e‘cost),_5— | e‘costdt
0

T

T T 2
=eZ + (e2.0—1.1)—f et costdt
0

T

T 2
=e2 — 1—] etcostdt
0

Adding fget cost dt to both sides of this equation and then dividgg gives

fget costdt = %(eg — 1) . Likewise, fgetsintdt = é(eg + 1) .

Therefore,foge”“dt = %(eg - 1) + é(eg + 1)



Complex integrals have properties that are sinbdlahose of real integrals. We now trace
through several commonalities. LE(t) = u(t) +iv(t) andg(t) = p(t) +iq(t) be

continuous ona <t < b.

Using Definition (A), we can easily show that tiieigral of their sum is the sum of their
integrals, that is

LF© +g@)de = [ fO)dt + [, g(©)de ©)

If we divide the intervala <t <b into a<t<c andc <t <b and integrat¢(t) over

these subintervals by using (A), then we get

[Lfwde= [Cf@dt+ [ f@adt. (D)
Similarly, if a + if8 denotes a complex constant, then

[ (e +id)f(D)dt = (c +id) [, f(D)dt . (E)
If the limits of integration are reversed, then

[P f©de = — [ f(o)dt . F)

The integral of the product f(t)g(t) becomes
2 F©)g@©dt = [ @) + w@)(p(©) + iq())de

= [ w®p(®) — v(D)q®)dt + i [, @t)q(t) — v()p(t))de (G)

Example: Let us verify property (E). We start by writing

(c+id)f(t) = (c+ id)(u(t) + iv(t))

= cu(t) — dv(t) + i(cv(t) + du(t))

Using Definition (A), we write the left side of Egtion (E) as



f:(c +id)(u(t) + iv(D))dt = ¢ f: u(t)dt —d ff v(t)dt + ic ff v(t)dt + id f: u(t)dt
which is equivalent to

b b b b b
f (c +id)(u(t) + iv(D))dt = cj u(t)dt + idf u(t)dt + icf v(t)dt + idij v(t)dt

a a

b b
=(c+ id)f u(t)dt +i(c+ id)f v(t)dt
b b
=(c+ id)(f u(t)dt + if v(t)dt)

b b
Thereforej (c+id)f(t)dt = (c + id)f f(tdt

It is worthwhile to point out the similarity betese equation (B) and its counterpart in
calculus. Suppose that U and V are differentiabler <t < b andF(t) = U(t) +
iV(t). SinceF!(t) = UI(t) +iVI(t) = u(t) + iv(t) = f(t), equation (B) takes on the

familiar form

2 f(©de = F(O]EZ5 = F(b) — F(a). (H)

whereF!(t) = f(t) . We can view Equation (H) as an extension oftinelamental theorem

of calculus.

[2fi®dt = f(b) - f(a) . 0

Example: Use Equation (H) to show thath?e”“dt = %(eg — 1) + é(eg + 1)

Solution: We seek a function F with the property thaft) = e(**D¢ | We note

thatF(t) = ﬁe(“")t satisfies this requirement, so




1 T 1 1 -z 1
BT A TR IR

1 1 . o
=1+i(l€2—1)=5(1—1)(—1+182)

4.0 CONCLUSION

Conclusively, A functiorii(z) is analytic at a point, if its derivativef'(z) exists not only at

z, but at every pointin a neighborhood of,.
5.0 SUMMARY

A necessary condition th&#t = f(z) = u(x,y) + v(x,y) be analytic in regioR is thatu

andyv satisfy Cauchy Riemann equations.

6.0 TMA
1 Use Equation (H) to evaluate foze”itdt

2 Evaluate fol(t —1)°>dt.
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1.0 INTRODUCTION

Theresidue theorem sometimes calle@auchy's Residue Theorenin complex analysis is
a powerful tool to evaluate line integrals of amialyunctions over closed curves and can
often be used to compute real integrals as wedeitieralizes the Cauchy integral theorem
and Cauchy's integral formula. From a geometrieapective, it is a special case of the

generalized Stokes' theorem.

2.0 OBJECTIVES

. to be able to determine and explain Residue;
o to be able to use Residue to evaluate integrals; and
. to show that the Residue integration method can be extended to the case of

several singular points of f(z)inside C

3.0 MAIN CONTENT

Residue theorem SupposeéJ is a simply connected open subset of the comgbaep and

ay,... Ay are finitely many points df andf is a function which is defined and holomorphic on



U \{a,...a,}. If yis arectifiable curve it which bounds they, but does not meet any and

whose start point equals its endpoint, then

j{f(z} dz = 2mi Z I(~, ar)Res( f, az).

k=1

If vy is a_positively orientedordan curvel(y, &) = 1 and so

j{f(:;) dz = Qﬂ'iz Res( f, a).
K k=1

Here, Red( &) denotes the residu# f atay, and If, ax) is the winding number of the curye
about the poingé,. This winding number is an integer which intuitiveneasures how many
times the curvg winds around the poird; it is positive ify moves in a counter clockwise

("mathematically positive") manner arouadand 0 ify doesn't move arourai at all.

The relationship of the residue theorem to Stakesirem is given by the Jordan Curve
Theorem. The general plane cupvmust first be reduced to a set of simple closeuesu
{vi} whose total is equivalent tpfor integration purposes; this reduces the prolitem
finding the integral of dzalong a Jordan curvg with interiorV. The requirement théte
holomorphic onJy =U \ {a} is equivalent to the statement that the extedenivatived(f d2)

= 0 onUo. Thus if two planar regiong andW of U enclose the same subsef {of { a}, the

regionsVAW andWAV lie entirely inUg, and hencﬁ/\wd(fdz) — d(fdz) is well-

fW\V
defined and equal to zero. Consequently, the comdegral off dzalongy;=0V is equal to
the sum of a set of integrals along path®ach enclosing an arbitrarily small region aroand
singlea—the residues df (up to the conventional factorid at {aj}. Summing over ¢;}, we

recover the final expression of the contour integréerms of the winding numbers{i(ay)}.

In order to evaluate real integrals, the resideetdm is used in the following manner: the
integrand is extended to the complex plane ane#isiues are computed (which is usually
easy), and a part of the real axis is extendedctosed curve by attaching a half-circle in the
upper or lower half-plane. The integral over thisve can then be computed using the
residue theorem. Often, the half-circle part ofititegral will tend towards zero as the radius
of the half-circle grows, leaving only the realsypiart of the integral, the one we were

originally interested in.



Example:

The integral

o0 Ezf.’r
dx
.f;ocu Ig + 1

> > 7

The contour C  Fig. 1

arises in_probability theonwhen calculating thcharacteristic functionf the Cauchy

distribution It resists the techniques of elemenicalculusbut can be evaluated |

expressing it as a limit of contour integr

Supposé > 0 and define the contoC that goes along the reale from—-a to a and then
counterclockwis@long a semicircle centered at O fra to —-a. Takea to be greater than

so that the imaginamyniti is enclosed within the curve. The contour integg

Et't:
Lf(z)dz—Lz2+1dz.

Sincee™ is an_entire functiothaving no_singularitieat any point in the complexane), this

function has singularities only where the denonunZ’ + 1 is zero. SincZ + 1 = ¢ +i)(z -
i), that happens only where=i or z= —. Only one of those points is in the region boun
by this contour. Becausg) is

Et't: _E-if,z 1 1
241 2% (3—1’7_3 | i.)

Ezt: Ett:

2i(z—1i) 2i(z+1)



the residueff(z) atz=iis

e—f,

Res,—if(2) = 5

According to the residue theorem, then, we

—t
€ t

/ f(z)dz = 2mi - Res._;f(2) = 2mi— = me”
o 21

The contoulC may be split into a "straight" part and a curved ao the

— —i
.[.st-raight. flz)dz + arc f(z)dz = me

and thus

_/:; f(2)dz = me™" — ch fl(z)dz.

Using estimation# can be shown th

Therefore
If t <O then a similar argument with an i
C' that winds aroundi+ather thari shows
-d d that

The contour ( .Fig. 2



co itz

e t

j > dz = me
—wZ-+1

and finally we have

co itz

€ — el

> dz = me
—wZ-+1

If t = 0 then the integral yields immediately to eletaeyncalculus methods and its valueris

Example
Show that
I:%dnge"s, Ji%dxzo (s>0, k>0)
Solution
In fact, % has only one pole in the upper plane, namely, a simple pole at

z=ik , and from (4) we obtain

eisz eisz e—ks
Res 55~ =15 |
=k k tz |:22:|z=ik |:2Ik j|

Therefore,
- eisz e—ks T
[ ——dx=2i——="€".
=Kk +2z ik Kk
Since € = cossx+isinsx this yields the above results



3.2 Types of Real Improper Integrals

Another kind of improper integral is a definite integral

jABf (Xdx
whose integral becomes infinite at a point ain the interval of integration,
leir(ﬂ f (x)| =00
Then the integral means

“fdx=lim [* f(dx+1lim [© f(xd
JA (X) X_rIEnaIA (X) X+,7IT)L+,; (X) X

where 7and napproaches zero independently and through positive values. It may

happen that neither of these limits exists, if 7,7 — 0 independently,

but

hrrcl)[ [t [ (x)dx}

exists. This is called the Cauchy principal value of the integral. It is written

pV.V. Jff (Xdx



For example,

pv.v.j1 d—;( = Iim[ - dx +J‘12(} =0

-1y r-0| J-1 X3 T X3

the principal value exists although the integral itself has no meaning. The whole
situation is quite similar to that discussed in the second part of the previous section.

To evaluate improper integral whose integrands have poles on the real axis, we use a
part that avoids these singularities by following small semi-circles at the singular
points; the procedure maybe illustrated by the following example.

Example
An Application

Show that

Iwﬂdx:g.

(This is the limit of sine integral Si(x) as X — o)

Solution

(

(sin2) because this function does not behave suitably at
y;

e i . . .

infinity. We consider—, which has a simple pole at z=0, and integrate around

2

a. We do not consider



iz

e . e’ . L ,
the contour in figure below. Since —is analytic inside and on C Cauchy’s
2

integral theorem gives

We prove that the value of the integral over the large semicircle C,approaches

and therefore

R as approaches infinity. Setting z= Re'?.dz=iR€e"?d8,

e’ . . 4
L?d% - ‘ joﬂe'zld61 < ['le|ae (z= Re”)
In the integrant on the right,
eiz — ‘eiR(costine) — ‘eiRcose ‘e—RsinB - e-Rsine

We insert this, sin(z—6)=sind to get an integral from 0to7n/2, and then
@ = 26/n(when0< < 7n/2); to get an integral that we can evaluate:

Fig. 3



Fig. 4

|z /2

dg = J‘ g Rsinfqg = J‘ g Rsn&ld g

J,le

Hence the value of the integral over C approachesas R - o

For the mtegral over small semicircle C,in figure above , we have

=] o e

Z

sz

The first integral on the right equals—7i . The integral of the second integral is
analytic and thus bounded, say, less than some constant M in absolute value
for all z onC, and between C,and the x-axis. Hence by the ML —inequality,
the absolute value of this integral cannot exceed M7r . This approachesr — 0.
Because of part (b), from (7) we thus obtain

L e—izdz: pv.v..[_o;e—:dx+ lim —dz

2 7 r-0JC,



= pv. vj —dx =0
Hence this principal value equals 73 ; its real part is 0 and its imaginary part is

pv.v.waI—)r:de: T (8)

d. Now the integrand in (8) is not singular at x=0. Furthermore, Since for
positive xthe function 1/x decreases, the area under the curve of the
integrand between two consecutive positive zeros decreases in a monotone
fashion, that is, the absolute value of the integrals

m+r SINX
= [ dx n = 0,1 /1D

nrmr X

From a monotone decreasing sequence, 2|,[]1]1]]hnd|n - 0as n - . Since these

integrals have alternating sign (why?), it follows from the Leibniz test that the infinite
seriesl, + 1, + 1, +[M¢onverges. Clearly, the sum of the series is the integral

J‘wd —im jsmx

baOO

which therefore exists. Similarly the integral from 0 to — o exists. Hence we need not
take the principal value in (8), and

de‘

Since the integrand is an even function, the desired result follows.

In part (c) of example 2 we avoided the simple pole by integrating along a small
semicircleC,, and then we let C,shrink to a point. This process suggests the

following.



3.4.3 Simple Poles on the Real Axis

If (z) hasasimplepoleat z= aonthereal axis,then

Iing . f(2dz= riResf(2).

Theorem 1Fig. 5

Proof

By the definition of a simple pole the integrand f(z) has at z=athe Laurent series

()=—2+9@d  b=Resf(

where g(z)is analytic on the semicircle of integration
C,:z=a+re’, 0<f=nm

and for all zbetween C,and the x-axis. By integration,

_ (" b1 io
LZ f(z)olz_j0 e d¢9+jczg(z)dz



The first integral on the right equals—b,7i .The second cannot exceed M7t in absolute
value, by the ML-inequality and M7 - Oas r - 0.

We may combine this theorem with (7) or (3) in this section.

Thus,

pv.v| (Qdx= 271y Resf(2) +7iy Resf(2) (9)

(summation over all poles in the upper half-plane in the first sum, and on the x-axis
in the second), valid for rational f(x) = p(x)/q(x) with degree q = degreep+ 2, having

simple poles on the x-axis.

This is the end of unit 1, which added another powerful general integration method
to the methods discussed in the chapter on integration. Remember that our present
residue method is based on Laurent series, which we therefore had to discuss first.

In the next chapter we present a systemic discussion of mapping by analytic
functions (“conformal mapping”) .Conformal mapping will then be applied to
potential theory, our last chapter on complex analysis.

4.0 CONCLUSION

In conclusion, havjng run through this unit we have seen that our simple method
have been extended to the case when the integrand has several isolated singularities
inside the contour. We also proof the Residue theorem.



5.0 SUMMARY

The residue of an analytic function f(z)at a pointz=2z, is the coefficient of

the power in the Laurent series
z-z,

f(z) =a, +a,(z- z,) + [+ b, + b, >+ of f(z)which converges nearz,
z-2z, (z-1)

(except at z,itself). This residue is given by the integral 3.1

1
bl—z—ﬁi f( 2dz (1)

but can be obtained in various other ways, so that one can use (1) for evaluating
integral over closed curves. More generally, the residue theorem (sec.3.2) states that
if f(2)is analytic in a domain D such except at finitely many pointsz,and Cis a

simple close path in D such that no z, lies on Cand the full interior of C belongs to D,

then
1
§c,. f(9dz=—~ Ej:FieZisf(z) (2)

(summation only over those z; that lie inside C).

This integration method is elegant and powerful. Formulas for the residue at poles
are (m=order of the pole)

o1 (d™ _
FSOSf(Z)_(m—1)!|z|~nz]o(dzm‘1[(z z,) f(z)]], m=1200 (3)

Hence for a simple pole (m=1),



Resf(z) =lim(z-z,) f(2) (37)
=z, z- 7

Another formula for the case of a simple pole of f(2) = p(2)/ «2)

Resf(2) =@ (37)
= q(2)

Residue integration involves closed curves, but the real interval of integration
0<8<2nis transformed into the unit circle by setting z=¢€'?, so that by residue

integration we can integrate real integrals of the form (sec. 3.3)

27T
jo F(cosgsin@)dd
where F is a rational function of cosgand siné,such as, for instance,

sin’ @
———— etc
5-4cosd

Another method of integrating real integrals by residues is the use of a closed
contour consisting of an interval—R< X< Rof the real axis and a semicirc|e|z| =R.

From the residue theorem, if we let R — oo, we obtain for rational f (X) = p(x)/q(x) (with
g(x) # 0 andq >degreep+2)

[" f(dx=27 Resf(2) (sec.3.3)
fwcoss>dx: -2y ImRe si f( z)e‘sz]

fwsin sxix= 27y ImRe % fi( z)e‘sz] (sec.3.4)



(sum of all residues at poles in the upper-half plane). In sec.3.4, we also extend this

method to real integrals whose integrands become infinite at some point in the

interval of integration.

6.0 TUTOR-MARKED ASSIGNMENT

v"277
0

7.0

Explain the term residues and how it can be used for evaluating integrals

Find the residues at the singular points of the following functions;

Z

c0s2z e
(a) a (b) tar z (c) m

Evaluate the following integrals where C is the unit circle
(counterclockwise).

dz §C 2 +1

(a) §Ccotzdz (b) jﬁc o

Show that
L =277
v 2—-cosd
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