
FBQ1:
When a wave travels through a medium, the resistance to wave motion in a medium is called \hat{A}
Answer: impedance
FBQ2: What is the distance between two successive adjacent displacements of particles vibrating in a phase? Answer: wavelength
FBQ3: A particle executing a vibratory motion while passing through the mean position has maximum energy and minimum energy Answer: Kinetic, potential
FBQ4: In a, the magnitude of restoring force is linearly proportional to the displacement. Hint (Hookes law, Simple Harmonic Motion) Answer: spring-mass system
FBQ5: What is the phase angle of this equation Answer: (W0t + \ddot{l} †)
FBQ6: The restoring force is always directed towards theof an oscillating body. Answer: equilibrium position
FBQ7: is a type of periodic motion where the restoring force is proportional to the displacement. Answer: Harmonic vibration
FBQ8: In the case of simple harmonic motion (SHM), if the particle is at the mean position, then the particle is in Answer: Stable equilibrium
FBQ9: The quantity k/m of the differential equation of a spring-mass system has a dimension of Answer: T-2
FBQ10: The k/m in the above equation is replaced byangular frequency of the oscillatory motion, because Answer: they have same unit
FBQ11: When a system is said to be heavily damped, the motion of the system is said to be Answer: Dead beat
FBQ12: When b <wo, a="" answer:="" as="" case="" damping.="" it="" of="" refer="" td="" to="" we="" weak<=""></wo,>
FBQ13: the amplitude of this equation is Answer: m

interface where the two media meet Answer: Boundary
FBQ29: When Z2>Z1, the second string (medium) is denser, R12 is still, implying a phase change of π on reflection. Answer: Negative
FBQ30: When Z1 equals to Z2, it means that the amplitude of a transmitted wave is equal to the amplitude of the wave. Answer: incident
FBQ31: Stationary waves result because of the superposition of two waves of same frequency, and travelling in opposite directions and confined between two points. Answer: Amplitude and wavelength
FBQ32: The waves produced by a motor boat sailing in water are Answer: Transverse waves
FBQ33:is the superposition of many waves of same amplitude and frequency, but differing slightly in phase. Answer: Diffraction
FBQ34: What is the wave in which the motion of the particles of the medium perpendicular to the direction of propagation of the wave called? Answer: Electromagnetic
FBQ35: What is the spring factor of an LC oscillating circuit? Answer: 1/C
MCQ1: sound wave is a typical examples of a Answer: longitudinal wave
MCQ2: Which of the following is not a property of a longitudinal wave? Answer: Polarisation
MCQ3: The frequency of wave is 0.002 Hz. Its time period is Answer: 500s
MCQ4: A pendulum suspended from the roof of a train has a period T (When the train is at rest). When the train is accelerating with a uniform acceleration †a', the time period of the pendulum will Answer: Decrease
MCQ5: In simple harmonic motion, velocity at equilibrium position is Answer: Maximum
MCQ6: Over-damping results to Answer: slower return to equilibrium

Answer: Frictional force

MCQ20: The time period of a pendulum on Earth is 1.0 s. What would be the period of a pendulum of the same length on a planet with half the density but twice the radius of

Earth? Answer: 1.0s

MCQ21: Two sound waves have intensities 0.4 and 10W/m2, respectively. How many

decibels is one louder than the other?

Answer: 14 Db

MCQ22: A simple pendulum has a period of 2 s and an amplitude of 50. After 20 complete oscillations, its amplitude is reduced to 40. Find the damping constant and the time constant.

Answer: 179.5s-1

MCQ23: The quality factor of a sonometer wire is 4,000. The wire vibrates at a frequency of 300 Hz. Find the time in which the amplitude decreases to half of its original value.

Answer: 2.94s

MCQ24: What is the ratio of the wavelength to the period of a wave?

Answer: velocity

MCQ25: A box of mass 0.2 kg is attached to one end of a spring whose other end is fixed to a rigid support. When a mass of 0.8 kg is placed inside the box, the system performs 4 oscillations per second and the amplitude falls from 2 cm to 1 cm in 30 sec. Calculate the relaxation time.

Answer: 43.5s

MCQ26: A box of mass 0.2 kg is attached to one end of a spring whose other end is fixed to a rigid support. When a mass of 0.8 kg is placed inside the box, the system performs 4 oscillations per second and the amplitude falls from 2 cm to 1 cm in 30 sec. Calculate the quality factor.

Answer: 250

MCQ27: The quality factor of a tuning fork of frequency 512Hz is 610⁴. Calculate the time in which its energy is reduced to e-1 of its energy in the absence of damping.

Answer: 18.7s

MCQ28: The quality factor of a tuning fork of frequency 512Hz is 610⁴. How many oscillations will the tuning fork make in this time?

Answer: 95.7102

MCQ29: As amplitude of resonant vibrations decreases, degree of damping ______.

Answer: Decreases

MCQ30: An electric bell has a frequency 100Hz. If its time constant is 2s, determine the Q factor for the bell.

Answer: 1256 MCQ31: The dot or scalar product of a force and a displacement vectors defines Answer: Work MCQ32: In cars, springs are damped by _____. Answer: Shock absorbers MCQ33: (i) Substitute it in the equations of motion and compare the ratios of normal mode amplitudes (ii) Solve the resultant equation. (iii) Write down the equation of motion of coupled masses (iv) Assume a normal mode solution. Arrange these according to the general procedure for calculating normal mode frequencies. Answer: iii,iv,i,ii MCQ34: In an LC oscillating circuit, the spring factor is _____. Answer: 1/C MCQ35: What is a single, isolated disturbance that propagates through space with time, carrying energy and momentum called? Answer: pulse