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INTRODUCTION

A real-valued function, f, of x, y, z, is a rule for manufacturing a new number, writteq f
Yy, Z, ...), from the values of a sequence of inddpet variables (x, y, z, ...).

The function f is called a real-valued functiontwb variables if there are two independent
variables, a real-valued function of three variabt¢here are three independent variables,
and so on.

As with functions of one variable, functions of eead variables can be represented
numerically (using a table of values), algebraicélising a formula), and sometimes
graphically (using a graph).

Examples
1.f(x,y) =X y Function of two variables
f(1,2)=12=1 Substitute 1 for x and 2 for y



f2,1)=2(1)=3 Substitute 2 for x andl for y
fly,X) =y X Substitute y for x and x for y

2.h(X,y,2) =X +Yy+xz Function of three variables

h(2,2,2) =2 +2 + 22) _ Substitute 2 for x, 2 for y, ar@ifor z.

OBJECTIVES
At the end of this unit, you should be able to know

e domain

* real function

e value of functions

* types of graph

* types of function
MAIN CONTENT

fis a function from set A to a set B if each el@tein A can be associated with a unique
element in B.

Usually written as £ A =B

The unique element B which f associates with x idedoted by f (x).

A— § —> B

Domain

In the above definition of the function, set A &led domain.

Co-domain



In the above definition of the function, set B &led co-domain.

Real Functions

A real valued function f : A to B or simply a rdahction 'f ' is a rule which associates to
each possible real numbesx A, a unique real nurifke=B, when A and B are subsets
of R, the set of real numbers.

In other words, functions whose domain and co-dam&g subsets of R, the set of real
numbers, are called real valued functions.

Value of a Function

If 'f " is a function and x is an element in therdon of f, then image

f(x) of x under f is called the value of 'f ' at x.

Types of Functions and their Graphs
Constant Function

A function f : A ® B Such that A, B I R, is said b® a constant function if there exist K 1
B such that f(x) = k.

Domain = A
Range = {k}
The graph of this function is a line or line segtegrallel to x-axis. Note that, if k>0, the

graph B is above X-axis. If k<0, the graph is betbe x-axis. If k = 0, the graph is x-axis
itself.



F

fix) =k

¥

Identity Function

A function f : R® R is said to be an identity fuiwet if for all x TR, f(x) = x.

Domain =R
Range = R
AY
e
‘\"j'\'?
¥
2] >

Polynomial Function

A function f : R® R is said to be a polynomial faion if for each x TR, f(x) is a
polynomial in X.



f(x) = + ¢ + X
glx)=x% + 3x% + 23 + 5 are examples of polynomial functions.
H(x) = 3x2 + 2 iz not a polynomial function.

X

Modulus Function

¥ o ox20
fix) =
f: R ® R such that f(x) = |x,. Txoxs is called the magkifunction or
absolute value function.
Domain =R
w20
=3 =
e {12
AY
fiX) = x f(X) = x
X
5 >

Square Root Function

Since square root of a negative number is not veallefine a function f : R® R such that
f(x) = %

Domain of f=R7 (set of all non-negative
real numbers)

10



FRange =R° (set of all non-negative
real numbers)

&Y

2 y =%

¥

Greatest Integer Function or Step Function (floor Finction)
f (X) = [X] = greatest integer less than or eqoak t
[X] = n, where nis an integer such tin = <n+1
Smallest Integer Function (ceiling Function)

For a real number x, we denote by [x], the smaltgsger greater than or equal to x. For
example, [5. 2] =6, [-5. 2] = -5, etc. The funatf:R — R defined by

f(x) = [x], x=R
is called the smallest integer function or theiogifunction.
Domain: R

Range : Z

11
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Exponential Function

The exponential function is defined as f(x)*=les graph is

Logarithmic Function

Logarithmic function is f (x) = log x. Its graph is

12
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Trigonometric Functions

Trigonometric functions are sinx, cosx, tanx, @tee graph of these functions have been
done in class XI.

Inverse Functions

Inverse functions are sim, cos'x, tari’x etc. The graph of these functions have been tione
class XI.

Signum Functions

M . x=0
®

F(x) = 4
o, ==0

13



1 ¥ om0

e, fx)=|0 =0
-1 x=«0
&Y
1 =
R
O Ll

M
-y

Odd Function

A function f: A— B is said to be an odd function if

f(x) = - f(-x) for all xe A

The domain and range of f depends on the defindfche function.
Examples of odd function are

y = sinx, y = X, y = tanx

Even Function

A function f : A— B is said to be an even function if

f(x) = f(-x) for all xe A.

The domain and range of f depends on the defindgfche function.
Examples of even function are

y = COSX, Y = X, Y = secx

14



A polynomial with only even powers of x is an evanction.

Reciprocal Function

f(x) =

W

W [

&Y

¥

CONCLUSION

In this unit, you have defined domain and typesdofnain. You have known real
functions and have also learnt value of functiofsu have also known types of graph
and type of function.

SUMMARY
In this unit, you have studied :

TUTOR —

domain

real function
value of functions
types of graph
types of function

MARKED ASSIGNMENT

1. Function f is defined by f(x) = - 2%+ 6 x - 3 . find f(- 2).

2. Function h is defined by h(x) = 3% 7 x - 5 . find h(x - 2).

3. Functions f and g are defined by f(x) =- 7 x 1ala@(x) = 10 x - 12 . find (f + g)(X)

15



4. Functions f and g are defined by f(x) = 1/x + 3x @(x) = -1/x + 6x - 4 . find (f +
g)(X) and its domain

5.Functions f and g are defined by f(x) =2 x + 1 and g(x) = (x - 1)(x + 3) . find (f/
g)(x) and its domain.

REFERENCES

Boas, Ralph P., Jr.: "A primer of real functionhe Carus Mathematical Monographs, No.
13; Published by The Mathematical Association ofeticra, and distributed by John Wiley
and Sons, Inc.; New York 1960 189 pp. MR22#9550

Smith, Kennan T.: "Primer of modern analysis”, Setedition. Undergraduate Texts in
Mathematics. Springer-Verlag, New York-Berlin, 19836 pp. ISBN 0-387-90797-1
MR84m:26002

Krantz, Steven G.; Parks, Harold R.: "A primer edlranalytic functions”, Basler Lehrblcher
[Basel Textbooks], 4; Birkhauser Verlag, Basel, 29884 pp. ISBN 3-7643-2768-5
MR93j:26013

UNIT 2: Limit of Function of Several Variables

CONTENTS
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1.0 INTRODUCTION

Let f be a function of two variables defined oniskdwith center (a,b), except possibly at
(a,b). Then we say that thmit of f(x,y) as (x,y) approaches (a,b)s L and we write

(xy) - (ab)fxy) = L

If for every numbek > 0 there is a corresponding number 0 such that

[F(x,y) - LO<¢& whenever 0 </(x—a)? +(y-b)? <3

Other notations for the limit are

16



Ixiglf(x,y):L and f(x,y)-» Las (x,y)- (a,b)

y-b

Since [f(x,y) - LO is the distance between the numbers f(x,y) and bhd

\/(x—a)z +(y-b)? is the distance between the point (x,y) and thetpi,b), Definition
12.5 says that the distance between f(x,y) andnLbeamade arbitrarily small by making 1
distance from (x,y) to (a,b) sufficiently small (ot 0). Figure 12.15 illustrates [Lnition
12.5 by means of an arrow diagram. If any smaériral (L - €, L +€) is given around L
then we can find a diskgvith center (a,b) and radiid > 0 such that f maps all the points
Ds [except possibly (a,b)] into the interval - €, L +€).

2.0: OBJECTIVES

At this unit, you should be able to know the digfam of terms

3.0:  MAIN CONTENTS

Consider the function f(x,y) 49— x? - y?> whose domain is the closed disk D = {(*(x® +
y? < 9} shown in Figure 12.14(a) and whose graph is likenisphere shown in Figu
12.14(b)

If the point (x,y) is close to the origin, then mday are both close to 0, and so f(x,y) is cl
to 3. In fact, if (x,y) lies in a small open dis® + y* < &, then

f(x.y) = 9-(x* +y?) >9-5"

Figure 12.14

(a) Domain of f (b) Graph of f

Thus we can make the values of f(x,y) as close & 3ve like by taking (x,y) in a smi
enough disk with centre (0,0). We describe thisasion by using the notati

(xY) » (ab) \J9-(€ +y?) =3

In general, the notation

17



(xy) ~ (ab)fxy) = L

Means that the values of f(x,y) can be made aedgswe wish to the number L by taking
the point (x,y) close enough to the point (a,b)mére precise definition follows.

12.5 Definition

Let f be a function of two variables defined onigkdwith centre (a,b), except possibly at
(a,b). Then we say that thmit of f(x,y) as (x,y) approaches (a,b)s L and we write

(xy) ~ (ab)fxy) = L

If for every numbek > O there is a corresponding number 0 such that

[F(x,y) - LO<¢& whenever 0 </(x—a)? +(y-b)? <3
Other notations for the limit are

IXiErLf(x,y) =L and f(x,y)-» Las(x,y)- (a,b)

y-b

Since [f(x,y) - LO is the distance between the numbers f(x,y) and and
\/(x—a)2 +(y-b)? is the distance between the point (x,y) and thiatp@,b), Definition
12.5 says that the distance between f(x,y) andnLbeamade arbitrarily small by making the
distance from (x,y) to (a,b) sufficiently small ¢(baot 0). Figure 12.15 illustrates Definition
12.5 by means of an arrow diagram. If any smaériral (L -€, L +€) is given around L,
then we can find a diskgvith center (a,b) and radids> 0 such that f maps all the points in
Ds [except possibly (a,b)] into the interval (k,-L + ¢€).

Another illustration of Definition 12.5 is given iRigure 12.16 where the surface S is the
graph of f. Ife > 0 is given, we can find > 0 such that if (x,y) is restricted to lie in tdisk

Ds and (x,y)# (a,b), then the corresponding part of S lies behwke horizontal planes z = L
-gand z =L +&. For functions of a single variable, when wexl@ipproach a, there are only
two possible directions of approach, from the aftright. Recall from Chapter 2 that if
limy_ o — f(X) £ limy_ 5 + f(X), then lim_ 5 f(x) does not exist.

For functions of two variables the situation is astsimple because we can let (x,y) approach
(a,b) from an infinite number of directions in amanner whatsoever (see Figure 12.7).

Definition 12.5 refers only to thdistancebetween (x,y) and (a,b). It does not refer to the
direction of approach. Therefore if the limit @gisthen f(x,y) must approach the same limit

18



no matter how (x,y) approaches (a,b). Thus if we find two different paths of approa
along which f(x,y) has different limits, then itlfmws that lim) . a,0) f(X,y) does not exis

Figure 12.15

Figure 12.16

19



Figure 12.17

A/\/

/7\

|

/ 0 / a \ X

If f(x,y) - Lias (x,y)— (a,b) along a path,, and f(x,y) - L2 as (x,y)- (a,b) along a path
C,, where I3 # L, then Iimx,y)a(a,b) f(x,y)

Example 1

2 2

: : X" =

Find lim 3 y2
xy)- (00 X +y

if it exists

Solution

Let f(x,y) = (¢ — V?)/(x* + Y?). First let us approach (0,0) along tt-axis. Theny = 0 give
f(x,0) = Xé/x? = 1 for all x£ 0, sc

f(x,y) - 1 as (x,y)- (0,0) along the -axis
We now approach along th-axis by putting x = 0. Then (0,y) =%y? = -1 for all yz 0, so
f(x,y) - 1 as (x,y)- (0,0) along the -axis (see Figure 12.18.) Since f has two diffe

limits along two different lines, the given limibds not exis

Figure 12.18

20



Figure 12.19

Example 2

If f(x,y) = Xy/(x2 + y), does liny). 0.0 f(X,y) exist?

21



Solution

If y = 0, then f(x,0) = 0/x= 0. Therefore
f(x,y) - 0 as (x,y)- (0,0) along the x-axis
If x = 0, then f(0,y) = 0/9= 0, so

f(x,y) - 0 as (x,y)- (0,0) along the y-axis

Although we have obtained identical limits along tixes, that does not show that the given
limit is 0. Let us now approach (0,0) along anothree, say y = x. For all ¥ 0.

x? 1
f = ==
0u) x2+x2 2
Therefore f(x,y)- % as (x,y)- (0,0) along y = x

(See Figure 12.19.) Since we obtained differenttéiralong different paths, the given limit
does not exist.

Example 3

2

Xy
X2 +

If f(x,y) = does lim )f(x,y) exist?

y* (xy)~ (00
Solution

With the solution of Example 2 in mind, let us toysave time by letting (x,y} (0,0) along
any line through the origin. Then y = mx, wheresrnthe slope, and if m 0,

x(mY?> m?x®  _ m’x
2+(mx)4 x2 +m4x4 1+m4x2

f(x,y) = f(x,mx) = <

So f(x,y) -» 0 as (x,y)- (0,0) along y = mx

Thus f has the same limiting value along every lim®ugh the origin. But that does not
show that the given limit is 0, for if we now letY) — (0,0) along the parabola x £ we
have

2 \,2 4

yhy: _y
(y)2+y* 2y

N

f(x,y) = f(y2y) =

so f(x,y) - % as (x,y)- (0,0) alongx =%

Since different paths lead to different limitingwes, the given limit does not exist.

Example 4

22



2
. . X
Find lim 3 Y
(xy)-(00) X~ + Yy

5 If it exists

Solution

As in Example 3, one can show that the limit alamy line through the origin is 0. T¥
does not prove that the given limit is 0, but tineits along the parabolas y * and x =
also turn out to be 0, so we begin to suspecitttigalimit does exis

Lete > 0. We want to find > 0 such the

2
Ty —O( <gwhenever 0 </x* +y* <&

X2+y2

3x°
That is, bl <gwhenever 0 <\/x*+y* <&

X2+y2
But x* < x* + y? since ¥ = 0, sc

2
3X |y| 53|y|=3’y2 <3/x2 +y?

X2+y2

Thus if we choosé = €/3 and let 0 <4/x* + y* < 3, then

2
3X°y —O( <3YX+y? <36=3(§J =€

X2+y2

Hence, by Definition 12.5.

3x%y
m 2 2
(xy)- 00 X" +Yy

=0

4.0:. CONCLUSION
In this unit, you have known several definitionsldrave worked various examp
5.0 SUMMARY

In thisunit, you have studied the definition of terms &age solved various exampl
6.0:. TUTOR-MARKED- ASSIGNMENT

1. Find thdimit

x4 2y-3

lim :
= x—1

23



2. Find the limit

3. Calculate the limit

4 .Calculate the limit

5. Find the limit

lim
x =9 x_g
6.Find the limit
I sint—1¢
1IT1
=0 tant
7.Find the limit
) 3x
lim

7.0. REFERENCES/FURTHER READING
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1.0: INTRODUCTION

Just as for functions of one variable, the calonhaof limits can be greatly simplified by the
use of properties of limits and by the use of quunty.

The properties of limits listed in Tables 2.14 &5 can be extended to functions of two
variables. The limit of a sum is the sum of tmeits, and so on.

Recall that evaluating limits afontinuousfunctions of a single variable is easy. It can be
accomplished by direct substitution because thmidef property of a continuous function is

limy_, — f(X) = f(a). Continuous functions of two variabl are also defined by the direct
substitution property.

Definition
Let f be a function of two variables defined on iakdwith center (a,b). Then f is called
continuous at(a,b) if( I;rr} ) f(x,y) = f(a,b)
X,¥)-(a,
2.0:. OBJECTIVE
At this unit, you should be able to know the digiom of terms
3.0: MAIN CONTENTS
Let f be a function of two variables defined on iakdwith center (a,b). Then f is called
continuous at(a,b) if( I;rr} ) f(x,y) = f(a,b)
X,Y)-(a,

If the domain of f is a set @ R? then Definition 12.6 defines the continuity off an
interior point (a,b) of D, that is, a point that is containedairdisk 3 [ D [seek Figure
12.20(a)]. But D may also containb@undary point, that is, a point (a,b) such that every
disk with center (a,b) contains points in D anaadsints not in D [see Figure 12.20(b)].

If (a,b) is a boundary of D, then Definition 12s5modified so that the last line reads

| (x,y) —L| <& whenever (x,yJID and 0 <y/(x-a)? +(y-b)? < &

With this convention, Definition 12.6 also applighen f is defined at a boundary point (a,b)
of D.

26



Finally, we say f izontinuous or D if f is continuous at every point (a,b) in

The intuitive meaning of continuity is tt if the point (x,y) changes by a small amount, t
the value of f(x,y) changes by a small amount. sTheans that a surface that is the grar
a continuous function has no holes or bre

Using the properties of limits, you can see thamsudiffereices, products, ar-quotients of
continuous functions are continuous on their domaibet us use this fact to give examg
of continuous functions.

A polynomial function of two variables (or polynomial, for short) is a sum of terms of
form cX"y", where c is a constant and m and n are-negative integers. rational function
is a ratio of polynomials. For instan

f(x,y) = x*+ 5%y% + 6xy* — 7y + €
is a polynomial, whereas

2xy+1
X2 + y2

g(x.y) =

is a rational function.

Figure 12.20

) Interior points of ID

Boundary points of ID

27



From Definition it can be shown that

im x=a im y=b lim <c=c
(xy)~ (ab) (x.y)~ (ab) (x¥)~ (ab)

These limits show that the functions f(x,y) = xxg§ =y, and h(x,y) = ¢ are continuous.
Since any polynomial can be built up out of theerfunctions f, g and h by multiplication
and addition, it follows that all polynomials arentinuous on R2. Likewise, any rational
function is continuous on its domain since it guatient of continuous functions.

Example 5

Evaluate lim Py = X%y + 3x + 2y).

Xy)- (12)
Solution

Since f(x,y) = Xy* = x%y? + 3x + 2y is a polynomial, it is continuous evehere, so the limit
can be found by direct substitution:

im (AP -y +3x+2y) =121 2%+31+22=11

(xy)- (12)

Example 6

Where is the function

x* +y? :
f(x,y) = Xt y? Continuous?

Solution

The function f is discontinuous at (0,0) becausis ot defined there. Since f is a rational
function it is continuous on its domain D = {(x[¥X,y) # (0,0}.

Example 7

Let

28



2 2 If(x,y) # (0,0)

g(xy) =

X2+y2

0

Here g is defined at (0,0) but g is still discontins at 0 because

Limx)_(0,009(X,y) does not exist (see Example 1).

Example 8
Let

3X2 |f(X;Y) % (OIO)
f(xy) =

X“+y

0

We know f is continuous for (x,y8 (0,0) since it is equal to a rational functionrthe Also,
from Example 4, we have

2
im fxy) = lim Y

——— = 0=10,0
(x.y)-(ab) xy)-(ab) X%+ y? 0.0)

Therefore f is continuous at (0,0), and so it istdmious on R

Example 9
Let

3x? If(x,y) # (0,0)
hxy) = {2

X“+y

17

Again from Example 4, we have

My _

5 =

lim  g(x,y)= lim 0# 17 = g(0,0)

(xy)~ (ab) (xy)-(ab) X% +y

And so g is discontinuous at (0,0). But g is combus on the set S = {(xMjx,y) # (0,0}
since it is equal to a rational function on S.

Composition is another way of combining two contins functions to get at third. The proof
of the following theorem is similar to that of Them 2.27.

29



Theorem

If f is continuous at (a,b) and g is a functionaosingle variable that is continuous at f(a,),
then the composite function h =ogf defined by h(x,y) = g(f(x,y)) is continuous at ).

Example 10

On what set is the function h(x,y) = IA(x y* — 1) continuous?
Solution

Let f(x,y) =xX +y*— 1 and g(t) = In t. Then

g(f(x,y)) = In(¢ + y* — 1) = h(x.y)

So h =go f. Now fis continuous everywhere since it iscdypomial and g is continuous on
its domain {It > 0}. Thus, by Theorem 12.7, h is continuousterdomain

D = {(x.y)IX* + ¥ = 1> 0} = {(x,y)x* + ¥ > 1}
Which consists of all points outside the circfetxy? = 1.

Everything in this section can be extended to fionst of three or more variables. The

distance between two points (x,y,z) and (a,b,d}’iis \/(x—a)z +(y-b)?+(z-c)?, so the
definitions of limit and continuity of a functiorf three variables are as follows.

Definition
Let: DOR® - R.

€)) lim f(x,y,z) =L

(xy,2)- (ab,c)

Means that for every number 0O there is a corresponding number 0 such that

of(x,y,z) - LO <& whenever (x,y,z)] D and

0<y(x-a)?+(y-b)?+(z-0)* <3

(b) fiscontinuousat (a,b,c) if

30



lim f(x,y,z) = f(a,b,c)

(xy,2)- (ab,c)

If we use the vector notation introduced at the eh8ection 12.1, then the definitions of a
limit for functions of two or three variables cae lritten in a single compact form as
follows.

If : D OR" — R, then limy_, f(x) = L means that for every number> 0O there is a
corresponding numbeér> 0 such that

Of(x) - LO<e whenever 0€x—4d <3

Notice that if n = 1, thex = x anda = a, and (12.9) is just the definition of a linhar
functions of a single variable. If n = 2, then x(xy), a = (a,b), and[Xx — a1 =
\/(x—a)2 +(y-b)?, so (12.9) becomes Definition 12.5. If n = 3,nthe= (x,y,z),a =

(a,b,c), and (12.9) becomes part (a) of Definitidh8. In each case the definition of
continuity can be written as

legl f(x) = f(a)

4.0: CONCLUSION
In this unit, you have known several definitionsl drave worked various examples.
5.0. SUMMARY

In this unit, you have studied the definition ofs and have solved various examplebe T

following limits lim x=a, lim y=band lim c=c
(xy) - (ab) (xy) - (ab) (xy) - (ab)

Show that the functions f(x,y) = X, g(x,y) = y,dah(x,y) = ¢ are continuous. Obviously any
polynomial can be built up out of the simple funos f, g and h by multiplication and
addition, it follows that all polynomials are camibus on R2. Likewise, any rational
function is continuous on its domain since it uatient of continuous functions.

6.0:. TMA

In Exercises 1 — 3 determine the largest set ogtwifie given function is continuous

X2+y2 +1

1. Fy)=
(x.y) ry? -1

31



X6 +X3y3 + y6
3 3

2. F(x,y) = oty

3. G(X,y) =X+ Yy —{X-Yy

4, For what values of the number r is the function
f(x,y,z) = (x+y+2)" If(x,y,2) # (0,0,0)
X2 + y2 + Z2
0

continuous on R
5. If ¢ O V,, show that the function f:'R- R given by f§) = c.x is continuous on R
6.0 TUTOR — MARKED ASSIGNMENT
1.Show that function f defined below is not contine at x = - 2.
fx)=1/(x+2)
2. Show that function f is continuous for all vadugf x in R.
f(x) =1/ (x*+ 6)
3. Show that function f is continuous for all vadugf x in R.
fx)=1x-5]|
4. Find the values of x at which function f is distinuous.
f(x) = (x-2) /[ (2 X+ 2x - 4)(X* + 5) ]

5. Evaluate the limit
liMyx_, a SIN (2X + 5)

6.Show that any function of the forn”€ is continous everywhere, a and b real numbers.

7.0:  REFERENCES / FURTHER READING
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MODULE 2 PARTIAL DERIVATIVES OF FUNCTION OF SEVERAL
VARIABLES

-Unit 1: Derivative
-Unit 2: Partial derivative.
-Unit 3: Application of Partial derivative.

UNIT 1: DERIVATIVE
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1  The derivative of a function
3.2 Higher derivative
3.3 Computing derivative
3.4  Derivative of higher dimension
3.0Conclusion
4.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In calculus, a derivative is a measure of how tinecfion changes as the input changes.
Loosely speaking, a derivative can be thought of mouch one quantity is changing in
response to changes in some other quantity. Fongea the derivative of the position of a
moving object with respect to time, is the objestantaneous velocity.
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The derivative of a function at a given chosen tnpwalue describe the best line
approximation of the functic near that input value. For a real valued functiba single rea
variable. The derivative at a point equals the slop the tangent line to the graph of
function at that point. In higher dimension, theidkive of a function at a point is line
transformation called the linearization. A closeBlated notion is the differential of
function. The process of finding a derivative ifatentiation. The reverse is Integrati

The derivative of a functiorepresents an infinitesimal change in function with respect t
one of its variables,

The "simple" derivative of a functic.fwith respect to a variablas denoted eithe /* (x)or
df/dx
2.0 OBJECTIVE

In this Unit, you should be able
* Know the derivative of a functic
* Identify higher derivativ
» solve problems by Computing derivai
» identify derivative of higher dimensi

3.0 MAIN CONTENT

3.1 The Derivative of a Functiol

Let f be a function that has a derivative at every pa in the domain of. Because every
pointa has a derivative, there is a function that sendgpthinta to the derivative of ata.
This function is writterf’(x) and is called thderivative functioror thederivative of f. The
derivative off collects all the derivativeof f at all the points in the domain f.

Sometimesf has a derivative at most, but not all, points sfdbmain. The function who:
value ata equalsf'(a) wheneveif'(a) is defined and elsewhere is undefined is also d¢dhe
derivative off. It is stll a function, but its domain is strictly smalldgran the domain cf.

Using this idea, differentiation becomes a functdfiunctions: The derivative is an opera
whose domain is the set of all functions that haeevatives at every point of thedomain
and whose range is a set of functions. If we detlite operator byD, thenD(f) is the
functionf'(x). SinceD(f) is a function, it can be evaluated at a pa. By the definition o
the derivative functiorD(f)(a) =f'(a).

For comparison, conder the doubling functiof(x) =2x; f is a realvalued function of a re:
number, meaning that it takes numbers as inputhaschumbers as outpt
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12,
24,
3 — 6.

The operatoD, however, is not defined on individual numbersisitonly defined ot
functions:

Dz 1)=(z+ 0),
Dz x)=(x— 1),
Dz —2*)=(z— 2-2).
Because the output D is a function, the output @ can be evaluated at a point. |

instance, whel is applied to the squaring functi

2
T,

D outputs the doubling functic

T — 2T,

which we named(x). This output function can then be evaluated tbf(1) = 2, f(2) = 4,
and so on.

3.2 Higher derivative

Let f be a differentiable function, and If’(x) be its derivative. The derivative f'(x) (if it
has one) is writtefi’(x) and is called the second derivatof f. Similarly, the derivative of
secondderivative, if it exists, is writteif”’(x) and is called théhird derivative of f. These
repeated derivatives are calhigher-order derivatives

If x(t) represents the position of an object at tt, then the higheorder derivatives cx have
physical interpretations. The second derivativix is the derivative oX'(t), the velocity, and
by definition this is the object's acceleration.eTthird derivative oix is defined to be th
jerk, and the fourth derivative is defined to be ftunce.

A function f need not have a derivative, for example, if itas continuous. Similarly, even
f does have a derivative, it may not have a secondatiwe. For example, |

+z2, ifx >0

flz) = 2

—x=, if x <0
Calculation shows thdtis a differentiable function whose derivatis

+2zx, ifx =0
—2zr, ifx<0.

fiz) =
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f'(x) is twice the absolute value function, and it does lmave a derivative at zero. Simi
examples show that a function can hk derivatives for any nonegative integek but no(k
+ 1)-order derivative. A function that hak successive deratives is calledk times
differentiable. If in addition thekth derivative is continuous, then the functionagigo be oi
differentiability classC¥. (This is a stronger condition than havk derivatives.) A functior
that has infinitely many derivaies is callednfinitely differentiable .

On the real line, every polynomial function is mifely differentiable. By standal
differentiation rules, if a polynomial of degrn is differentiatech times, then it becomes
constant function. All of its suequent derivatives are identically zero. In patécuthey
exist, so polynomials are smooth functic

The derivatives of a functiof at a pointx provide polynomial approximations to tt
function neax. For example, if is twice differentiable, then

flz+h)~ fx) + f(@)h+ 5" (x)R
in the sense that

i J& R = f2) — fla)h — /(@) _ 0
h—0 hZ2 '

If fis infinitely differentiable, then this is the baging of the Taylor series fif.
Inflection Point

A point where the second derivative of a functidrarmges sign is called einflection
point.At an inflection point, the second derivative mbg zero, as in the case of -
inflection pointx=0 of the functiory=x’, or it may fail to exist, as in the case of thiéeiction
point x=0 of the functiony=x"3. At an inflection point, a function swches from being a

convex function to being a concave function or wieesa

3.3 Computing the derivative

The derivative of a function can, in principle, dmmputed from the definition by consideri
the difference quotient, and computing its limit. gractice, once the derivatives of a f
simple functions are known, the derivatives of othenctions are more easily compui
usingrulesfor obtaining derivatives of more complicated fuons from simpler one
Derivative of Elementary Function

Most dervative computations eventually require taking therivative of some commc

functions. The following incomplete list gives sowfethe most frequently used functions
a single real variable and their derivati

- Derivative power: if
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flz) =",

wherer is any eal number, the
f'(2) =ra"",

wherever this function is defined. For exampld(x) = x*'4 then

/() = (1/4)2~"

and the derivative function is defined only for piee x, not forx = 0. Whenr = 0, this rule
implies thatf'(x) is zero forx # G, which is almost the constanile (stated below

Exponentialandlogarithmfunctions

ddm =
£ L = ln(ﬁ-) L
d 1
—1 = — >0
d 1
]
dr 08a(®) = rIn(a)
Trigonometric Functions
d
ESIH(I) = cos(x).
E cos(x) = —sin(x).
d 1
atan( )= SEGE(I) = m =1 —i—t-ang(:t:).
Inverse Trigonometric Functio
d 1
T arcsin(x) = m
d
— arccos( :
dx (@) = V-2
d ; 1
- arc an(r) = T2

Rules for finding the derivati
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In many cases, complicated limit calculations brecli application o/Newton's differenci
guotient can be avoided using differentiation rul8eme of the most basic rules are

following.

Constant ruleif f(x) is constant, the

=0
Sine rule :
) Il ¥
(ﬂ-f + E‘ﬂ) =af 4 bg for all functionsf andg and all real numbela andb.

Product rule :

(f9) =Ffg+ fdroral functionsf andg.
Quotient rule :

(i)f _f'g—I¢g
g 9*  forall functionsf andg whereg # 0.
Chain rule : Iff(x) = h(g(x)), ther

f'(z) =W (g(z)) - ¢'(z).

Example computation
The derivative of

f(z) = 2" 4+ sin(2?) — In(x)e” + 7

IS
2 I
fllz) = 4z 4 df; ) CGS(IE) - %ez - ln:tdéi ) +0

= 472° + 21 CGS(IE) — lez — In(x)e”.
T

Here the second term was computed using the chlarand third using the product rule. T
known derivatives of the elementary functio?, x*, sin§), In(x) and expx) = &, as well as
the constant 7, were also us¢

3.4 Derivatives in higher dimensins

Derivative of vector valued functior

A vector valued functioy(t) of a real variable sends real numbers to vedétoseme vecto
spaceR". A vectorvalued function can be split up into its coordinfatectionsy(t), y»(t), ...,
yn(t), meaning thay(t) = (ya(t), ..., ya(t)). This includes, for example, parametric curveR?
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or R®. The coordinate functions are real valued funatjoso the above definition
derivative applies to them. The derivativey(t) is defined to be the vector, called thngent
vector, whose coordinates are the derivativesettordinate functions. That

y () = (4(t).. ... y.(1)).

Equivalently,

if the limit exists. The subtraction in the numeras subtraction of vectors, not scalars. If
derivative ofy exists for every value ¢, theny’ is another vector valued functis

If e, ..., & is the standard basis fR", theny(t) can also be written ag(t)e; + ... + yu(t)en.

If we assume that the derivative of a ve-valued function retains the linearity propel
then the derivative of(t) must b

yi(ther +- -+ y,(t)en
because each of the basis vectors is a cor

This generalization is useful, for exampley(t) is the position vectoof a particle at timd;
then the derivativg'(t) is the velocity vector of the particle at tit.

Partial derivative

Suppose that is a function that depends on more than one varidldr instanc
fla,y) =2" +ay+y"

f can be reinterpreted as a family of functions of wariable indexed by the other variak
flz,y) = foly) = 2" + oy + .

In other words, every value x chooses a function, denotigdwhich is a function of one re
number. That is,

T [,
f2(y) =22 + zy + 2

Once a value of is chosen, saa, thenf(x,y) determines a functiofy that sendy to a2 + ay
+ y2:

faly) = a® + ay +y°.
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In this expressiora is aconstan, not avariable sof, is a function of only one real variab
Consequently the definition of the derivative fduaction of one variable appli

faly) = a+2y.

The above procedure can be performed for any choica. Assembling the derivative
together into a function gives a function that digss the variation cf in they direction:

daf

—(x,y) ==+ 2v.

d'y( Y) y
This is the partial derivative (f with respect tg). Hereg is a roundedl called thepartial
derivative symbol To distinguish it from the letted, 0 is sometimes pronounced "de
"del", or "partial” instead of "dee

In general, theartial derivative of a functionf(x,, ..., X,) in the directiorx; at the point&;
..., &) Is defined to be:

of

. flay,...,a;+h oo a,) = flag, ..o a,. .., a6,)
%(ﬂ-lj...,ﬂﬂ) :}LIE}) n .

In the above difference quotient, all the variabdaseptx; are held fixed. That choice
fixed values determines a function of one vari

fu1,...,ag_1,ﬂ5+1,_..,ﬂn (It') = f(ﬂ-l, L PR R LR P ﬂ"ﬂ)

and, by definition,

dfa1,...,ag_1,ag+1,___,an ([I) . 8f
i) =

dz; 8—(1511_,...,{1“).

1

In other wods, the different choices @ index a family of onerariable functions just as
the example above. This expression also showsthieatomputation of partial derivativ
reduces to the computation of ~variable derivatives.

An important example of aihction of several variables is the case of a sealaed functior
f(x1,..%,) on a domain in Euclidean speR" (e.g., onR2 or R3). In this cas¢f has a partial
derivative 0f/ox with respect to each variabx;. At the pointa, these partiaderivatives
define the vector

Vfla) = (%(a},...,%(a}) .

This vector is called the gradient f ata. If f is differentiable at every point in sor
domain, then the gradient is a ve-valued functionVf that takes the poira to the vector
Vi(a). Consequently the gradiedetermines a vector field.
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Generalizations

The concept of a derivative can be extended to nadimgr settings. The common thread is
that the derivative of a function at a point serasslinear approximatiorof the function at
that point.

4.0CONCLUSION

In this unit, you have known the derivative of andtion .Through the derivative of
functions, you have identified higher derivatiamd you have solved problems by
computing derivative through the use of this fumgs. You have also identified
derivative of higher dimension.

5.0 SUMMARY
In this unit, you have studied the following:

o the derivative of a function
o identify higher derivative
0 solve problems by Computing derivative

o identify derivative of higher dimension
6.0TUTOR MARKED ASSIGNMENT

Find the derivative of F(x,y) = 3sin(3xy)
Find the derivative of F(x,y)=x +In6)(\/y)

Evaluate the derivative F(x,y) Xz +3xy—2tan(y)
ysinx

COSX

Find the derivative of F(x,y)
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1.0 INTRODUCTION

Suppose that is a function of more than one variable. For insé
_ 2 2
z=fla,y)=2"+ay+y.
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T
A graph ofz = X* + xy + y*. For the partial derivative at (1, 1, 3) that lesy constant, the
corresponding tangefibe is parallel to thxzplane.

| | L | |
3 ] o ] ]

A slice of the graph above at 1

The graphof this function defines isurfacein Euclidean spacelo every point on thi
surface, there are an infinite numbertangent lines Partial differentiation is the act
choosing one of these lines and findingslope Usually, the lines of most interest are th
that are parallel to thez-plane, and those that are parallel toyzplane.

To find the slope of the line tangent to the fumctat (1, 1, 3) that is parallel to txzplane,
they variable is treated as constant. The graph andotare are shown on the right. On
graph below it, we see the way the function lookstiee pliney = 1. By finding the
derivativeof the equation while assuming tly is a constant, the slope f at the pointX, v,
2) is found to be:

Uz_g
T

So at (1, 1, 3), by substitution, thepe is 3. Therefore

Jz
— =3
dx
at the point. (1, 1, 3). That is, the partial dative ofz with respect tx at (1, 1, 3) is
2.0: OBJECTIVES
After studying this, you should be able f

+ define Partial derivati\
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» know the geometric interpretation
* identify anti derivative analogue
» solve problems on partial derivative for functidrseveral variables
» identify higher order derivatives
3.0 MAIN CONTENT
Let us consider a function

1) u=~fx,y,z,p0q,...)

of several variables. Such a function can be stuthg holding all variables except one
constant and observing its variation with respectohe single selected variable. If we
consider all the variables except x to be consthat)

- -~

du df(x.y,2,p,q,..)

dx dx

represents the partial derivative of f(x, y, z,gp,... ) with respect to x (the hats indicating
variables held fixed). The variables held fixed deved as parameters.

Definition of Partial derivative.

The partial derivative of a function of two or movariables with respect to one of its
variables is the ordinary derivative of the funotmwith respect to that variable, considering
the other variables as constants.

Example 1.The partial derivative of 3y + 2y with respect to x is 6xy. Its partial derivative
with respect to y is 3x+ 4y.

The partial derivative of a function z = f(x, y,) .with respect to the variable x is commonly
written in any of the following ways:

dz of  df(x.v...) _ _ _ _ _
P . Do f(x,yv....), D.f, folxove), fo filxy..)

- -
ox ox ox

Its derivative with respect to any other varialsievritten in a similar fashion.
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¥

Fig. 1
Geometric interpretation. The geometric interpretation of a partial derivatis the same ¢
that for an ordinary derivative. It represents shape of the tangent to that curve represe
by the function at a particular point P. In theeca$a function of two variable

z=1(x,y)

Fig. 1 shows the interpretation -/ /¥ and ¢/ /@Y /18X cqrresponds to the slope
the tangent to the curve APB at point P (where e A®B is the intersection of the surfe

with a plane through P perpendicular to the y ax@nilarly, 7 /¢ corresponds to the
slope of the tangent to the curve CPD at point Refe curve CPD is the intersection of
surface with a plane through P perpendicular tocthgis)

Examples 2

.

The volume of a cone depends on height and r

The volume V of a conedepends on the coneheighth and itsradiusr according to the
formula

mrih

3

The partial derivative o¥ with respect to is

Vir,h) =

3V_2?T’rh
ar 3 7
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which represents the rate with which a cone's veluwmanges if its radius is vari
and its height is kept constant. The partial deirreawith respect th is

3V_ e
E

which represents the rate with which the volumenges if its height is varied and its rus
is kept constant.

By contrast, theotal derivative of V with respect t@ andh are respective

ay ay
i

-
dV' 2mrh wr*dh
dr _ 3 3 dr

|
#

and

v av

G T
—— o —

dV_?T’rE 2arh dr

in ~ 3 T3 dn

The difference between the total and partial déikeais the elimination of indirec
dependencies between variables in partial deriea

If (for some arbitrary reason) the cone's propodibave to stay the same, and the heigh
radius are in a fixed ratiq

h dh

This gives the total derivative with respecr:

dV B 2mrh e

ir - 3 TF3

Equations involving an unknown function's partiaridatives are callepartial differential
equationsand are common irphysics, engineering, and othecience and applied
disciplines.

Notation

For the following examples, I be a function irx, y andz

First-order partial derivative
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o =

Seconderder partial derivative

ai
f fzz — zzf

Second-ordemixed derivative:

d°f af _
or oy (d) Jay = Oyt

Higher-order partial and mixed derivativ
8:+3+F;f

When dealing with functions of multiple variablesme of these variables may be relate
each other, and it may be necessary to specifyiotkplwhich variables are being he
constant. In fields such asatistical mechani, the partial derivative cf with respect tc,
holdingy andz constant, is often expresse(

af
or )

1

— f{f:jjkl

Anti derivative analogue

There is a concepbr partial derivatives that is analogous anti derivative for regular
derivatives. Given a partial derivative, it alloisr the partial recovery of the origin
function.

0z
. ‘_ = I —|— y n H (1 1
Consider the example @ . The "partial” integral can be taken with resptec
X (treatingy as constant, in a similar manner to partial deiovai

z—f dr = 2° + xy + g(y)

Here, the"constant” of integratic is no longer a constant, but instead a functioalbthe
variables of the original function excex. The reason for this is that all the other vaea
are treated as constant when taking the partiavatere, so any functin which does not
involve x will disappear when taking the partial derivatieed we have to account for ti
when we take the antiderivative. The most generay w represent this is to have -
"constant” represent an unknown function of all dkfeer variables. Thus the setfunctions
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X% + xy + g(y), whereg is any on-argument function, represents the entire set aftfans in
variablesx,y that could have produced tx-partial derivative 2+y.

If all the partial derivatives of a function aredamn (for example, with thgradient), then the
antiderivatives can be matched via the above psoeseconstruct the original function up
a constant

Example 3

For the function
flz,9) =2+ 2% +3*

find the partial derivatives ofwith respect to x and y and compute the rates ahgh of the
function in the x and y directions at the poi-1,2).

Initially we will not specify the values of x andwhen we take the derivatives; we will ji

remember which one we are going to hconstant while taking the derivative. First, holi
fixed and find the partial derivative of f with et to x:

gi(zry} = fz(z,y) = 2z + 322y?

Second, hold x fixed and find the partial derivatof f with respect to )

Now, plug in the values x%-and y=2 into the equations. Vobtain f x-1,2)=10 and f_y(-
1,2)=28.

Partial Derivatives for Functions of Several Variables

We can of course take partial derivatives of fumtdi of more than two variables. If f is
function of n variables x_1, x_2, ..., x_n, theridke the partii derivative of f with respect 1
x_i we hold all variables besides x_i constant take the derivative

Example 4

To find the partial derivative of f with respectttor the functior

flz,y,2,8) =22 +y? + 22 +12 + zyz

we hold x, y, and z constant and take the derieatnth respect to the remaining variabl
The result is

%{—{z,y, z,t) = 0+ 0+ 0 + 2t — 3zyzt*
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Interpretation

o |s the rate at which f changes as x changes, figed (constant)
X
of
__Is the rate at which f changes achanges, for a fixed (constant) x.
oy
Higher Order Partial Derivatives

If f is a function of x, y, and possibly other \atrles, thel

o°f o . of
_isdefined to be [ . }
x> X - oOX
Similarly,

ai o  of
__ isdefinedtob [ . J
e oy - oy
of o . of
__ isdefinedtob _ | _ |
0YyOX oy =~ OX
ai o . of
____ isdefinedtob [ . ]
oxoy oX oy

The above second order partial derivatives can bh&salenoted byyy, fyy, fyy, and §x
respectively.

The last two are calleohixed derivatives and will always be equal to each other wher
the first order partial derivatives are continuc

Some examples of partial derivatives of functiomss@veral variables are shown belc
variable as we did in Calculu
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Example 1 Find all of the firt order partial derivatives for the following furarts

(a)f(x,y):x4+6 y—10

oW = x'y-10y'z’ +43x—7tan(4y)
9 7.4

h(ﬁ“,r) = r?].n(f)+ —— NS

(€) 3

f(.x,y)Zf:os[i]exjy‘”j

X

(d)

Solution

(a)f(xjy):xﬂﬂﬁv{y—lo

Let’s first take the derivative with respectx and remember that as we do so ally’s will
be treated as constanfBhe partial derivative with respectx is,

fix,3)= 4x

Notice that the second and the third term diffaegatto zero in this cas¢ It should be clear
why the third term differentiated to ze It's a constant and we know tl constants always
differentiate to zero.This is also the reason that the second term difteated to zer
Remember that since we are differentiating witlpees tox here we are going to treat y's
as constantsThat means that terms that onnvolve y's will be treated as constants &
hence will differentiate to zel

Now, let’s take the derivative with respecty. In this case we treat adls as constants and
so the first term involves onx's and so will differentiate to zero, just te third term will
Here is the partial derivative with respecy.

3
f.? ('x? y) — \/_
¥
4 44
Ly W= XY 10y z" +43x—7 tan(4y)
With this function we’ve got three first order dexiives to comput Let's do the partia
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derivative with respect tg first. Since we are differentiating with respecix we will treat
all y's and allZs as constant This means that the second and fourth terms wikdintiate
to zero since they only involy's andz's.

This first term contains boix's andy's and so when we differentiate with respecx they
will be thought of as a multiplicative constant asalthe first term will be differentiated ju
as the third term will be differentiate

Here is the partial derivative with respecx.

m_ 2xy + 43
Ox

Let's now differentiate with respect ty. In this case alk's and zZs will be treated a
constants.This means the third term will differentiate to @eince it contains onix’s while
the x's in the first term and thzs in the second term will be treated as multiglica
constants.Here is the derivative with respecty.

ow =3t - 20y33 — 28sec’ (4y)

Qy

Finally, let's get the derivative with respectz. Since only one of the terms involZs this
will be the only noreero term in te derivative. Also, thg's in that term will be treated :
multiplicative constantsHere is the derivative with respectz.

ow
—=-30¥%'z’
oz 4

4
© ﬁz{s,.ﬁ) =g 111(.':."2)+£_3—T st

With this one we’ll not put in the detail of thedi two Before takingthe derivative let’s
rewrite the function a little to help us with thiéferentiation proces

a4
h(s,t)=t 111(32)+9f3— 57

Now, the fact that we're usirs andt here instead of the “standard’andy shouldn’t be a
problem. It will work the same wa' Here are the two deatives for this functiot
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s s s 7
_ 5h_ 6 y 4
h(s5,1) = Pl 7t ln(gr )—27:

Remember how to differentiate natural logaritt

2 1 (x)) - £

dx g(x)

flxy)= cos[i]exzy‘ﬂf
(d) X

Now, we can’t forget the product rule with derivais The product rule will work the san
way here as it does with functions one variable. We will just need to be careful
remember which variable we are differentiating wetbpect tc

Let's start out by differentiating with respect x. In this case both the cosine and
exponential contaim's and so we’ve really got a product of two funoBanvolvingx's and
so we’ll need to product rule this 1 Here is the derivative with respectx.

£ (% ¥) =—5in(i][—i2]ef}’_5f3 + cos(i]e”zf"wg (2xy)

X

4 4 4
:—25111[—}33{23”"5)’3 +2xyc05[—}ex2r5j’3

X

52



Do not forget the chain ruli®r functions of one variabl We will be looking at the chai
rule for some more complicated expressions for inarible functions in a latter secti

However, at this point we're treating all tly's as constants and ghe chain rule wil
continue to work as it did back in Calculu

Also, don’t forget how to differentiate exponentiahctions

%(Ef(x)) _ £ (x)e’™

Now, let’s differentiate with respect y. In this case we don’t have a product rule to wi
about silce the only place that tty shows up is in the exponentialherefore, sincix's are
considered to be constants for this derivative cthe@ne in the front will also be thought of
a multiplicative constantHere is the derivative with respecty.

s )= (211557 L)

X

Example 2 Find all of the first order partial derivatives fibre following functions

D14
i
(@) w4+ Sv
B xsin( y)

© z= \/xz +1n(5x—3y2)
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Solution
Qs
z= ——
(a) '+ Sv

We also can’t forget about the quotient r Since there isn’t too much to this one, we \
simply give the derivatives.

9(1;2 + Sv)— 9u(2u) Oy + 45y

5 =

) (uz +5v)2 (uz Jrﬁv)2
i (0)(11;2 +5v)— u(5) _ —45u
u (uf2 +5v) (zf +5v)

In the case of the derivative with respeciv recall thatu's are constant and so when
differentiate the numerator we will get ze

B xsiﬂ(y)
o g(x,y.2)= ——=

Now, we do need to be careful however to not usegtiotient rule when it doesn’t need
be used.In this case we do have a quotient, however, dimex’'s andy’'s only appear in th
numerator and th#s only appear in the denominator this reallyt a quotient rule problet

Let's do the derivatives with respectx andy first. In both these cases tz's are constants
and so the denominator in this is a constant andesdon’t really need to worry too mu
about it. Here are the derivativeor these two cases.

D

g (¥ xz)= - ;
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Now, in the case of differentiation with respectz we can avoid the quotient rule witr
quick rewrite of the functionHere is the rewrite as well as the derivative wibpect t.

g(xy,z)=xsin(y)z

&z (x:vy:vz) — _ZISiH(_y)Z_E — _2'1’-81—1:(-},)

We went ahead and put the derivative back intd'dhiginal” form just so we could say th
we did. In practice you probably don’t really need to dat:

o= .sz +111(5x—3y2)

In this last part we are just going to do a someaw@ssy chain rule proble However, if
you had a good background Calculus | chain rulehis shouldn’t be all that difficult a
problem. Here are the two derivativi

1 = 0
z, = E(xz +11‘1(53c—3y2 )) : a(xz 4—]11(5x—3y2 ))
]. 2 2 _15 5
:E(x +1n(5x—3y )) 2x+—5x—3y2
5 -
_[XJF 2(5x—35") (7 +In(52-35)) 3
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1

So, there are some examples of partial deriva Hopefully you will agree that as long
we can remember to treat the other varialas constants these work in exactly the s
manner that derivatives of functions of one vagaldb So, if you can do Calculus
derivative you shouldn’t have too much difficultydoing basic partial derivativi

There is one final topic that we n¢ to take a quick look at in this section, impli
differentiation. Before getting into implicit differentiation for ritiple variable function:
let’s first remember how implicit differentiationasks for functions of one variab

ay 4 7
Example 3Find dx for 3y +x =35x

Solution

Remember that the key to this is to always thiny as a function ok, or ¥ =»(*) and so
whenever we differentiate a term involviy's with respect tx we will really need to use tt

dy
chain rule which will mean that we will add o1z to that term.

The first step is to differentiate both sides witspect tcx.

d
12y 21 745 = 5
dx
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dy
The final step is to solve for d@x

dy 5-7x°
dx 12y’

Now, we did this problem because implicit diffeiatibn works in exactly the same man

with functions of multiple variable If we have a function in terms of three variakx, vy,

andz we will assume thatis in fact a function ox andy. In other words,? = z(x.¥). Then
1574

whenever we differentiatés with respect tcx we will use the chain rule and add o ox .
i

Likewise, whenever we differentiaz's with respect toy we will add on ¢ &v.

Let’s take a quick look at a couple of implicitféifentiatior problems.

62 82
Example 4 Find ox and 9 for each of the following functions.

@X¥z' —Sxz=x"+y

(b) x sin(2y-5z) =1+ ycos(6zx)

Solution
@) Xz -Sxz=x"+y

de
Let’s start with finding 3x We first will differentiate both sides with respeotx and
5
remember to add on a &x whenever we differentiatez.

iz tk
P 42 5y -ty =2k _ _

% o Remember that since we are assun? =Z(*.¥) then
any product ok's andz's will be a product and so will need the produdel Now, solve for
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J oz
3xiz? 4 ZxEZ—Z—Syjz— Sxyj - —2x oz
Gx ax ox .

(ijz—SxyS)%: 2x—3x'z' +5y°z

z 2x—3x'z’ +5yiz
& 2x°z—5xy°

24
Now we’ll do the same thing fc & except this time we’ll need to remember to add

oz
6'_}’ whenever we differentiatez

Oz 2

o
2x3za—;—25xy4z—5xy5—:3y

8
(2x32—5xy5)52:3y2+25xy4z

dz 3y*+25xy'z

oy - 2x°z —5xy°

(b) x° sin (2y—5z) =1+ ycos(6zx)

0z
We'll do the same thing for this function as we tghdhe previous pa First let’s find ox

2xsin [Ey —5z)+xgcos{2y—52)(—5;ﬁ] = —ysin[ﬁzxj[62+6x%]
x

i

Don't forget to do the chain rule on each of the trigctions and when we are differentiati
the inside function on the cosine we will need lsbaise the product ru Now let’'s solve

oz

for Ox
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2xsin(2y—5z) -5 %xz cos{ 2y—5z) = —6zysin (6zx) — 63xsin (sz)a—z
Ox ox
stin(Zy — 53) +6.zysin(6zx) = (sz cos (Qy— Sz) — 6 yxsin (62.1‘))%
d 2xsin(2y—5z)+ 6zysin (6zx)

ax  5x° cos(2y—5z)—6yxsin( 6zx)

&z
Now let's take care ofdy This one will be slihtly easier than the first or

x> cos(2y— 52)[2— 52—ZJ = cos(6zx)—ysin(6zx)[6x(;£]

Y v

, 5 Oz B . Oz
2x cos(2y —SZ)—Sx cos(2y—52) oy = cos(6zx) 6xy51n(6zx) oy

(6xysin(6zx)—5x2 cos(2y— 52))2—2 = cos(6zx)—2x>cos (2y—5z)
y

Oz cos(6zx)—2x* cos(2y —5z)

5 a 6xysin(6zx) —5x° cos(2y — SZ)

4.0 CONCLUSION

In this unit, you have defined a Partial derivatbfea function of several variables. You h
used the partial derivative of a function of selevariable to know the geomet:
interpretation of a function and anti derivativeabbgue has been idelied. You have
Solved problems on partial derivative for functioinseveral variables and identified higl
order derivatives.

5.0 SUMMARY

In this unit, you have studied the followil

the definition of Partial derivative of functions several variabl

the geometric interpretation of partial derivatofdunctions of several variabl
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the identification of antiderivative analogue ofrt derivative of functions of several
variable

Solve problems on partial derivative for functidrseveral variables
The identification of higher order derivatives ahttions of several variables
TUTOR MARKED ASSIGNMENT

1.Find the partial derivativeg &nd {, if f(x , y) is given by

fix,y) =Xy +2x+y

2: Find fand { if f(x , y) is given by

f(x , y) = sin(x y) + cos x

3.Find f, and {, if f(x , y) is given by
f(x,y)=x¢&’

4.Find f and { if f(x , y) is given by
f(x,y)=In(X+2y)

5.Find §(2 , 3) andf(2 , 3) if f(x , y) is given by
fx,y)=yx+2y

6.Find partial derivatives fand {, of the following functions

Af(x,y)=xe&"Y

B.f(x,y)=In(2x+yXx)

C.f(x,y)=xsin(x - y)
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Unit 3 APPLICATION OF PARTIAL DERIVATIVE

CONTENT
1.0 INTRODUCTION
2.00BJECTIVES
3.0 MAIN CONTENT

3.1 Apply partial derivative of functions afhseral variable in

Chain rule.
3.2 Apply partial derivative of functions of seakvariable in Curl (Mathematics)
3.3 Apply partial derivative of functions of seakvariable in Derivatives
3.4 Apply partial derivative of functions of seskrvariable in D’ Alamber
operator
3.5 Apply partial derivative of functions of seakvariable in Double integral
3.6 Apply partial derivative of functions of seakvariable in Exterior derivative
3.7 Apply partial derivative of function of sevevariable in Jacobian matrix and

determinant

4.0 CONCLUSION
5.0 SUMMARY

6.0 TUTOR-MARKED ASSIGNMENT
7.0 REFERENCES/FURTHER READINGS

1.0 INTRODUCTION
The partial derivative of f with respect to x is the derivative of f with respect to x, treating
all other variables as constant.

Similarly, thepartial derivative of f with respect to yis the derivative of f with respect to y,
treating all other variables as constant, and stooother variables. The partial derivatives
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are written af/ox, of/dy, and so on. The symbod™is used (instead oid") to remind us
that there is more than one variable, and thatreéalding the other variables fixe

OBJECTIVES
In this Unit, you should be able

Apply partial derivative of functions of severalrizble in Chain rule
Apply partial derivative of functions of severalriable in Curl (Mathematic
Apply partial derivative of functions of severalrizble in Derivative
Apply partial derivative of functions of severalrizble in D’ Alamber operat
Apply patial derivative of functions of several variableouble integr:
Apply partial derivative of functions of severalriable in Exterior derivativ

Apply partial derivative of function of several \alvle in Jacobian matrix and determir
MAIN CONTENT

APPLICATIONS OF PARTIAL DERIVATIVE OF FUNCTIONS IN  SEVERAL
VARIABLE.

Chain rule
Composites of more than two function

The chain rule can be applied to composites of ntbhean two functions. To take tl
derivative of a composite of more than twoctions, notice that the compositef, g, andh
(in that