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MODULE 1 Limit and Continuity of Functions of Several Variables 

 Unit 1: Real Functions 

 Unit 2: Limit of Function of Several Variables. 

             Unit 3: Continuity of Function of Several Variables. 

 

UNIT 1  REAL  FUNCTION 
  

CONTENTS 

1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 domain 
3.2 real function 
3.3 value of functions 
3.4 types of graph 
3.5 types of function 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Readings 
 
   INTRODUCTION 

A real-valued function, f, of x, y, z, ... is a rule for manufacturing a new number, written f(x, 
y, z, ...), from the values of a sequence of independent variables (x, y, z, ...).  

The function f is called a real-valued function of two variables if there are two independent 
variables, a real-valued function of three variables if there are three independent variables, 
and so on.  

As with functions of one variable, functions of several variables can be represented 
numerically (using a table of values), algebraically (using a formula), and sometimes 
graphically (using a graph).  

 

Examples  

 

1. f(x, y) = x  y  Function of two variables  

 
f(1, 2) = 1  2 = 1 Substitute 1 for x and 2 for y  
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f(2, 1) = 2  (1) = 3 Substitute 2 for x and 1 for y  

 
f(y, x) = y  x  Substitute y for x and x for y  

2. h(x, y, z) = x + y + xz  Function of three variables  

 
h(2, 2, 2) = 2 + 2 + 2(2) = Substitute 2 for x, 2 for y, and 2 for z. 

 
OBJECTIVES 
At the end of this unit, you should be able to know: 

• domain 
• real function 
• value of functions 
• types of graph 
• types of function 

 
MAIN CONTENT 

f is a function from set A to a set B if each element x in A can be associated with a unique 
element in B. 

 

The unique element B which f associates with x in A denoted by f (x). 

 

Domain 

 
 

In the above definition of the function, set A is called domain. 

Co-domain 
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In the above definition of the function, set B is called co-domain. 

Real Functions 
A real valued function f : A to B or simply a real function 'f ' is a rule which associates to 
each possible real number x A, a unique real number f(x) B, when A and B are subsets 
of R, the set of real numbers. 

In other words, functions whose domain and co-domain are subsets of R, the set of real 
numbers, are called real valued functions. 

Value of a Function 

If 'f ' is a function and x is an element in the domain of f, then image 

f(x) of x under f is called the value of 'f ' at x.  

 

 

 

Types of Functions and their Graphs 

Constant Function 

A function f : A ® B Such that A, B Ì R, is said to be a constant function if there exist K Î 
B such that f(x) = k. 

Domain = A 

Range = {k} 

The graph of this function is a line or line segment parallel to x-axis. Note that, if k>0, the 
graph B is above X-axis. If k<0, the graph is below the x-axis. If k = 0, the graph is x-axis 
itself. 
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Identity Function 

A function f : R® R is said to be an identity function if for all x Î R, f(x) = x. 

Domain = R 

Range = R 

 

Polynomial Function 

A function f : R® R is said to be a polynomial function if for each x Î R, f(x) is a 
polynomial in x. 



10 

 

f(x) = x3 + x2 + x  

 

 

Modulus Function 

f : R ® R such that f(x) = |x|, is called the modulus function or 
absolute value function. 

Domain = R 

 

 

Square Root Function 

Since square root of a negative number is not real, we define a function f : R+ ® R such that 
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Greatest Integer Function or Step Function (floor Function) 

f (x) = [x] = greatest integer less than or equal to x 

[x] = n, where n is an integer such that  

Smallest Integer Function (ceiling Function) 

For a real number x, we denote by [x], the smallest integer greater than or equal to x. For 
example, [5 . 2] = 6, [-5 . 2] = -5, etc. The function f:R R defined by 

f(x) = [x], x R 

is called the smallest integer function or the ceiling function. 

Domain: R 

Range : Z 
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Exponential Function 

The exponential function is defined as f(x) = ex. Its graph is 

Logarithmic Function 

Logarithmic function is f (x) = log x. Its graph is 
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Trigonometric Functions 

 
Trigonometric functions are sinx, cosx, tanx, etc. The graph of these functions have been 
done in class XI. 

Inverse Functions 

Inverse functions are sin-1x, cos-1x, tan-1x etc. The graph of these functions have been done in 
class XI. 

 

 

 

 

 

Signum Functions 
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Odd Function 

A function f : A B is said to be an odd function if 

f(x) = - f(-x) for all x A  

The domain and range of f depends on the definition of the function. 

Examples of odd function are  

y = sinx, y = x3, y = tanx 

 

Even Function 

A function f : A B is said to be an even function if 

f(x) = f(-x) for all x A.  

The domain and range of f depends on the definition of the function. 

Examples of even function are  

y = cosx, y = x2, y = secx 
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A polynomial with only even powers of x is an even function.  

Reciprocal Function 
 

 

 

CONCLUSION 

In this unit, you have defined domain and types of domain. You have known real 
functions and have also learnt value of functions. You have also known types of graph 
and type of function. 

 
 
SUMMARY 
In this unit, you have studied : 

• domain 
• real function 
• value of functions 
• types of graph 
• types of function 

 
TUTOR – MARKED ASSIGNMENT 

1. Function f is defined by f(x) = - 2 x 2 + 6 x - 3 . find f(- 2). 

2. Function h is defined by h(x) = 3 x 2 - 7 x - 5 . find h(x - 2). 

3. Functions f and g are defined by f(x) = - 7 x - 5 and g(x) = 10 x - 12 . find (f + g)(x) 
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4. Functions f and g are defined by f(x) = 1/x + 3x and g(x) = -1/x + 6x - 4 . find (f + 
g)(x) and its domain 

      5.Functions f and g are defined by f(x) = x 2 -2 x + 1 and g(x) = (x - 1)(x + 3) . find (f / 
g)(x) and its domain. 

REFERENCES 

Boas, Ralph P., Jr.: "A primer of real functions", The Carus Mathematical Monographs, No. 
13; Published by The Mathematical Association of America, and distributed by John Wiley 
and Sons, Inc.; New York 1960 189 pp. MR22#9550  
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Mathematics. Springer-Verlag, New York-Berlin, 1983. 446 pp. ISBN 0-387-90797-1 
MR84m:26002  

Krantz, Steven G.; Parks, Harold R.: "A primer of real analytic functions", Basler Lehrbücher 
[Basel Textbooks], 4; Birkhäuser Verlag, Basel, 1992. 184 pp. ISBN 3-7643-2768-5 
MR93j:26013 

 

UNIT 2: Limit of Function of Several Variables 

 

CONTENTS 

1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1: Definition 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Readings 
 

1.0: INTRODUCTION 

Let f be a function of two variables defined on a disk with center (a,b), except possibly at 
(a,b).  Then we say that the limit of f(x,y) as (x,y) approaches (a,b) is L and we write 

lim

),(),( bayx → f(x,y) = L 

If for every number ε > 0 there is a corresponding number δ > 0 such that  

f(x,y) - L < ε  whenever  0 < 22 )()( byax −+− < δ 

Other notations for the limit are 



 

by
ax

→
→

lim f(x,y) = L  and   f(x,y) →  

Since f(x,y) - L is the distance between the numbers f(x,y) and L, and 
22 )()( byax −+−  is the distance between the point (x,y) and the point (a,b), Definition 

12.5 says that the distance between f(x,y) and L can be made arbitrarily small by making the 
distance from (x,y) to (a,b) sufficiently small (but not 0).  Figure 12.15 illustrates Def
12.5 by means of an arrow diagram.  If any small interval (L 
then we can find a disk Dδ with center (a,b) and radius 
Dδ [except possibly (a,b)] into the interval (L 

 

2.0: OBJECTIVES 

At  this unit, you should be able to know the definition of terms.

 

3.0: MAIN CONTENTS  

Consider the function f(x,y) = 

y2 ≤ 9} shown in Figure 12.14(a) and whose graph is the hemisphere shown in Figure 
12.14(b) 

If the point (x,y) is close to the origin, then x and y are both close to 0, and so f(x,y) is close 
to 3.  In fact, if (x,y) lies in a small open disk x

f(x,y) = )(9 22 yx +−  > 9

Figure 12.14 

Thus we can make the values of f(x,y) as close to 3 as we like by taking (x,y) in a small 
enough disk with centre (0,0).  We describe this situation by using the notation

lim

),(),( bayx →  )(9 22 yx +−

In general, the notation 
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  L as (x,y) →  (a,b) 

is the distance between the numbers f(x,y) and L, and 

is the distance between the point (x,y) and the point (a,b), Definition 

12.5 says that the distance between f(x,y) and L can be made arbitrarily small by making the 
distance from (x,y) to (a,b) sufficiently small (but not 0).  Figure 12.15 illustrates Def
12.5 by means of an arrow diagram.  If any small interval (L - ε, L +ε) is given around L, 

with center (a,b) and radius δ > 0 such that f maps all the points in 
[except possibly (a,b)] into the interval (L - ε, L + ε). 

At  this unit, you should be able to know the definition of terms. 

 

Consider the function f(x,y) = 229 yx −−  whose domain is the closed disk D = {(x,y)

9} shown in Figure 12.14(a) and whose graph is the hemisphere shown in Figure 

If the point (x,y) is close to the origin, then x and y are both close to 0, and so f(x,y) is close 
to 3.  In fact, if (x,y) lies in a small open disk x2 + y2 < δ2, then  

29 δ−  

 

Thus we can make the values of f(x,y) as close to 3 as we like by taking (x,y) in a small 
enough disk with centre (0,0).  We describe this situation by using the notation

)  = 3 

is the distance between the numbers f(x,y) and L, and 

is the distance between the point (x,y) and the point (a,b), Definition 

12.5 says that the distance between f(x,y) and L can be made arbitrarily small by making the 
distance from (x,y) to (a,b) sufficiently small (but not 0).  Figure 12.15 illustrates Definition 

) is given around L, 
> 0 such that f maps all the points in 

whose domain is the closed disk D = {(x,y)x2 + 

9} shown in Figure 12.14(a) and whose graph is the hemisphere shown in Figure 

If the point (x,y) is close to the origin, then x and y are both close to 0, and so f(x,y) is close 

Thus we can make the values of f(x,y) as close to 3 as we like by taking (x,y) in a small 
enough disk with centre (0,0).  We describe this situation by using the notation 



18 

 

lim

),(),( bayx → f(x,y) = L 

Means that the values of f(x,y) can be made as close as we wish to the number L by taking 
the point (x,y) close enough to the point (a,b).  A more precise definition follows. 

12.5 Definition  

Let f be a function of two variables defined on a disk with centre (a,b), except possibly at 
(a,b).  Then we say that the limit of f(x,y) as (x,y) approaches (a,b) is L and we write 

 

lim

),(),( bayx → f(x,y) = L 

 

If for every number ε > 0 there is a corresponding number δ > 0 such that  

f(x,y) - L < ε  whenever  0 < 22 )()( byax −+− < δ 

Other notations for the limit are 

by
ax

→
→

lim f(x,y) = L  and   f(x,y) →  L as (x,y) →  (a,b) 

Since f(x,y) - L is the distance between the numbers f(x,y) and L, and 
22 )()( byax −+−  is the distance between the point (x,y) and the point (a,b), Definition 

12.5 says that the distance between f(x,y) and L can be made arbitrarily small by making the 
distance from (x,y) to (a,b) sufficiently small (but not 0).  Figure 12.15 illustrates Definition 
12.5 by means of an arrow diagram.  If any small interval (L - ε, L +ε) is given around L, 
then we can find a disk Dδ with center (a,b) and radius δ > 0 such that f maps all the points in 
Dδ [except possibly (a,b)] into the interval (L - ε, L + ε). 

 

Another illustration of Definition 12.5 is given in Figure 12.16 where the surface S is the 
graph of f.  If ε > 0 is given, we can find δ > 0 such that if (x,y) is restricted to lie in the disk 
Dδ and (x,y) ≠ (a,b), then the corresponding part of S lies between the horizontal planes z = L 
- ε and z = L +  ε.  For functions of a single variable, when we let x approach a, there are only 
two possible directions of approach, from the left or right.  Recall from Chapter 2 that if 
limx→a – f(x) ≠ limx→a + f(x), then limx→a f(x) does not exist.  

 

For functions of two variables the situation is not as simple because we can let (x,y) approach 
(a,b) from an infinite number of directions in any manner whatsoever (see Figure 12.7). 

 

Definition 12.5 refers only to the distance between (x,y) and (a,b).  It does not refer to the 
direction of approach.  Therefore if the limit exists, then f(x,y) must approach the same limit 



 

no matter how (x,y) approaches (a,b).  Thus if we can find two different paths of approach 
along which f(x,y) has different limits, then it follows that lim

 

Figure 12.15 

 

 

 

 

 

 

 

Figure 12.16 
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no matter how (x,y) approaches (a,b).  Thus if we can find two different paths of approach 
along which f(x,y) has different limits, then it follows that lim(x,y)→(a,b) f(x,y) does not exist.

 

no matter how (x,y) approaches (a,b).  Thus if we can find two different paths of approach 
f(x,y) does not exist. 

 

L-∈ L L + ∈ 



 

 

Figure 12.17 

 

If f(x,y) → L1 as (x,y) → (a,b) along a path C
C2, where L1 ≠ L2, then lim(x,y)

 

Example 1 

 

Find 
)0,0(),(

lim
→yx

 22

22

yx

yx

+
−

 if it exists.

 

Solution 

Let f(x,y) = (x2 – y2)/(x2 + y2).  First let us approach (0,0) along the x
f(x,0) = x2/x2 = 1 for all x ≠ 0, so

f(x,y) → 1 as (x,y) → (0,0) along the x

We now approach along the y

f(x,y) → 1 as (x,y) → (0,0) along the y
limits along two different lines, the given limit does not exist.

 
Figure 12.18 

 

20 

 

(a,b) along a path C1, and f(x,y) → L2 as (x,y) →
(x,y)→(a,b) f(x,y) 

if it exists. 

).  First let us approach (0,0) along the x-axis.  Then y = 0 gives 
0, so 

(0,0) along the x-axis 

We now approach along the y-axis by putting x = 0.  Then f(0,y) = -y2/y2 = 

(0,0) along the y-axis (see Figure 12.18.)  Since f has two different 
limits along two different lines, the given limit does not exist. 

→ (a,b) along a path 

axis.  Then y = 0 gives 

= -1 for all y ≠ 0, so 

axis (see Figure 12.18.)  Since f has two different 



 

 

 

 

 

 

 

Figure 12.19 

 

 

Example 2 

If f(x,y) = xy/(x2 + y2), does lim

21 

 

 

), does lim(x,y)→(0,0) f(x,y) exist? 
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Solution 

If y = 0, then f(x,0) = 0/x2 = 0. Therefore  

f(x,y) → 0 as (x,y) → (0,0) along the x-axis 

If x = 0, then f(0,y) = 0/y2 = 0, so 

f(x,y) → 0 as (x,y) → (0,0) along the y-axis 

Although we have obtained identical limits along the axes, that does not show that the given 
limit is 0.  Let us now approach (0,0) along another line, say y = x. For all x ≠ 0. 

f(x,y) =  
22

2

xx

x

+
 = 

2

1
 

Therefore f(x,y) → 
2

1
 as (x,y) → (0,0) along y = x 

 

(See Figure 12.19.) Since we obtained different limits along different paths, the given limit 
does not exist. 

Example 3 

If f(x,y) = 42

2

yx

xy

+
, does 

)0,0(),(
lim

→yx
f(x,y) exist? 

Solution 

With the solution of Example 2 in mind, let us try to save time by letting (x,y) → (0,0) along 
any line through the origin.  Then y = mx, where m is the slope, and if m ≠ 0, 

f(x,y) = f(x,mx) = 42

2

)(

)(

mxx

mxx

+
 = 

442

32

xmx

xm

+
 = 

24

2

1 xm

xm

+
 

So f(x,y) → 0 as (x,y) → (0,0) along y = mx 

Thus f has the same limiting value along every line through the origin.  But that does not 
show that the given limit is 0, for if we now let (x,y) → (0,0) along the parabola x = y2 we 
have 

f(x,y) = f(y2,y) = 422

22

)(

.

yy

yy

+
 = 4

4

2y

y
 = 

2

1
 

so f(x,y) → 
2

1
 as (x,y) → (0,0) along x = y2 

Since different paths lead to different limiting values, the given limit does not exist. 

Example 4 



 

Find 
)0,0(),(

lim
→yx

 22

23

yx

yx

+
 if it exists.

Solution 

As in Example 3, one can show that the limit along any line through the origin is 0.  This 
does not prove that the given limit is 0, but the limits along the parabolas y = x
also turn out to be 0, so we begin to suspect that the limit does exist.

 

Let ε > 0. We want to find δ > 0 such that

0
3

22

2

−
+ yx

yx
 < ε whenever 0 < 

That is, 22

23

yx

yx

+
 < ε whenever 0 < 

But x2 ≤ x2 + y2 since y2 ≥ 0, so

22

23

yx

yx

+
 ≤ 3 y  = 23 y  ≤ 3

Thus if we choose δ = ε/3 and let 0 < 

0
3

22

2

−
+ yx

yx
 ≤ 3 22 yx +  < 3

Hence, by Definition 12.5. 

)0,0(),(
lim

→yx
 22

23

yx

yx

+
 = 0 

4.0: CONCLUSION 

In this unit, you have known several definitions and have worked various examples.

5.0: SUMMARY 

In this unit, you have studied the definition of terms and have solved various examples .

6.0: TUTOR-MARKED- ASSIGNMENT

1. Find the limit   

23 

if it exists. 

As in Example 3, one can show that the limit along any line through the origin is 0.  This 
does not prove that the given limit is 0, but the limits along the parabolas y = x
also turn out to be 0, so we begin to suspect that the limit does exist. 

> 0 such that 

whenever 0 < 22 yx +  < δ 

whenever 0 < 22 yx +  < δ 

0, so 

22 yx +  

/3 and let 0 < 22 yx + < δ, then 

< 3δ = 3 







3

ε
 = ε 

In this unit, you have known several definitions and have worked various examples.

unit, you have studied the definition of terms and have solved various examples .

ASSIGNMENT 

 

As in Example 3, one can show that the limit along any line through the origin is 0.  This 
does not prove that the given limit is 0, but the limits along the parabolas y = x2 and x = y2 

In this unit, you have known several definitions and have worked various examples. 

unit, you have studied the definition of terms and have solved various examples . 



 

2. Find the limit  

3. Calculate the limit  

4.Calculate the limit  

5. Find the limit  

6.Find the limit  

7.Find the limit  
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1.0: INTRODUCTION 

Just as for functions of one variable, the calculation of limits can be greatly simplified by the 
use of properties of limits and by the use of continuity. 

The properties of limits listed in Tables 2.14 and 2.15 can be extended to functions of two 
variables.  The limit of a sum is the sum of the limits, and so on. 

Recall that evaluating limits of continuous functions of a single variable is easy. It can be 
accomplished by direct substitution because the defining property of a continuous function is 
limx→a – f(x) = f(a). Continuous functions of two variables are also defined by the direct 
substitution property. 

Definition 

Let f be a function of two variables defined on a disk with center (a,b). Then f is called 
continuous at (a,b) if 

),(),(
lim

bayx →
 f(x,y) = f(a,b) 

2.0: OBJECTIVE 

At  this unit, you should be able to know the definition of terms 

3.0 : MAIN CONTENTS 

Let f be a function of two variables defined on a disk with center (a,b). Then f is called 
continuous at (a,b) if 

),(),(
lim

bayx →
 f(x,y) = f(a,b)  

If the domain of f is a set D ⊂ R2, then Definition 12.6 defines the continuity of f at an 
interior point  (a,b) of D, that is, a point that is contained in a disk Dδ ⊂ D [seek Figure 
12.20(a)]. But D may also contain a boundary point, that is, a point (a,b) such that every 
disk with center (a,b) contains points in D and also points not in D [see Figure 12.20(b)]. 

If (a,b) is a boundary of D, then Definition 12.5 is modified so that the last line reads 

Lyxf −),(  < ε whenever (x,y) ∈D and 0 < 22 )()( byax −+− <  δ  

With this convention, Definition 12.6 also applies when f is defined at a boundary point (a,b) 
of D. 



 

Finally, we say f is continuous on

The intuitive meaning of continuity is that
the value of f(x,y) changes by a small amount.  This means that a surface that is the graph of 
a continuous function has no holes or breaks.

Using the properties of limits, you can see that sums, differen
continuous functions are continuous on their domains.  Let us use this fact to give examples 
of continuous functions. 

A polynomial function of two variables
form cxmyn, where c is a constant and m and n are non
is a ratio of polynomials. For instance,

f(x,y) =  x4 + 5x3y2 + 6xy4 – 7y + 6

is a polynomial, whereas 

 g(x,y) =  
22

12

yx

xy

+
+

 

is a rational function. 

 

Figure 12.20 
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continuous on D if f is continuous at every point (a,b) in D.

The intuitive meaning of continuity is that if the point (x,y) changes by a small amount, then 
the value of f(x,y) changes by a small amount.  This means that a surface that is the graph of 
a continuous function has no holes or breaks. 

Using the properties of limits, you can see that sums, differences, products, and 
continuous functions are continuous on their domains.  Let us use this fact to give examples 

A polynomial function of two variables (or polynomial, for short) is a sum of terms of the 
, where c is a constant and m and n are non-negative integers. A 

is a ratio of polynomials. For instance, 

7y + 6 

 

D if f is continuous at every point (a,b) in D. 

if the point (x,y) changes by a small amount, then 
the value of f(x,y) changes by a small amount.  This means that a surface that is the graph of 

ces, products, and -quotients of 
continuous functions are continuous on their domains.  Let us use this fact to give examples 

(or polynomial, for short) is a sum of terms of the 
negative integers. A rational function  
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From Definition it can be shown that 

 

),(),(
lim

bayx →
 x = a  

),(),(
lim

bayx →
 y = b 

),(),(
lim

bayx →
 c = c   

 

These limits show that the functions f(x,y) = x, g(x,y) = y, and h(x,y) = c are continuous.  
Since any polynomial can be built up out of the simple functions f, g and h by multiplication 
and addition, it follows that all polynomials are continuous on R2.  Likewise, any rational 
function is continuous on its domain since it is a quotient of continuous functions. 

 

 

Example 5 

 

Evaluate 
)2,1(),(

lim
→yx

 (x2y3 – x3y2 + 3x + 2y). 

Solution 

Since f(x,y) = x2y3 – x3y2  + 3x + 2y is a polynomial, it is continuous everywhere, so the limit 
can be found by direct substitution: 

 

 
)2,1(),(

lim
→yx

 (x2y3 – x3y2 + 3x + 2y) = 12.23 – 13.22 + 3.1 + 2.2 = 11 

 

Example 6 

Where is the function 

f(x,y) =  22

22

yx

yx

+
+

     Continuous? 

Solution 

The function f is discontinuous at (0,0) because it is not defined there. Since f is a rational 
function it is continuous on its domain D = {(x,y)(x,y) ≠ (0,0}. 

Example 7 

Let  
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g(x,y) = 













+
−

0

22

22

yx

yx
    

Here g is defined at (0,0) but g is still discontinuous at 0 because  

Lim(x,y)→(0,0) g(x,y) does not exist (see Example 1). 

 

 

Example 8 

Let  

f(x,y) = 













+
0

3
22

2

yx

yx
    

We know f is continuous for (x,y) ≠ (0,0) since it is equal to a rational function there.  Also, 
from Example 4, we have 

),(),(
lim

bayx →
 f(x,y) = 

),(),(
lim

bayx →
 22

23

yx

yx

+
 =  0 = f(0,0) 

Therefore f is continuous at (0,0), and so it is continuous on R2. 

Example 9 

Let 

h(x,y) = 













+
17

3
22

2

yx

yx
 

Again from Example 4, we have 

),(),(
lim

bayx →
 g(x,y) = 

),(),(
lim

bayx →
 22

23

yx

yx

+
 =  0 ≠ 17 = g(0,0) 

And so g is discontinuous at (0,0).  But g is continuous on the set S = {(x,y)(x,y) ≠ (0,0} 
since it is equal to a rational function on S. 

Composition is another way of combining two continuous functions to get at third.  The proof 
of the following theorem is similar to that of Theorem 2.27. 

If(x,y) ≠ (0,0) 

 

If(x,y) ≠ (0,0) 

 

If(x,y) ≠ (0,0) 
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Theorem  

If f is continuous at (a,b) and g is a function of a single variable that is continuous at f(a,), 
then the composite function h = g o  f defined by h(x,y) = g(f(x,y)) is continuous at (a,b). 

 

 

Example 10 

On what set is the function h(x,y) = ln(x2 + y2 – 1) continuous? 

Solution 

Let f(x,y) = x2 + y2 – 1 and g(t) = ln t. Then 

g(f(x,y)) = ln(x2 + y2 – 1) = h(x,y) 

So h = g o  f.  Now f is continuous everywhere since it is a polynomial and g is continuous on 
its domain {tt > 0}.  Thus, by Theorem 12.7, h is continuous on its domain 

D = {(x,y)x2 + y2 – 1 > 0} = {(x,y)x2 + y2 > 1} 

Which consists of all points outside the circle x2 + y2 = 1. 

Everything in this section can be extended to functions of three or more variables.  The 

distance between two points (x,y,z) and (a,b,c) in R3 is 222 )()()( czbyax −+−+− , so the 

definitions of limit and continuity of a function of three variables are as follows. 

 

Definition  

Let f: D ⊂ R3 → R. 

(a) 
),,(),,(

lim
cbazyx →

 f(x,y,z) = L 

Means that for every number ε > 0 there is a corresponding number δ > 0 such that 

 

f(x,y,z) - L < ε  whenever (x,y,z) ∈ D and 

 

0 < 222 )()()( czbyax −+−+−  < δ 

 

(b) f is continuous at (a,b,c) if  
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),,(),,(
lim

cbazyx →
 f(x,y,z) =  f(a,b,c) 

 

If we use the vector notation introduced at the end of Section 12.1, then the definitions of a 
limit for functions of two or three variables can be written in a single compact form as 
follows. 

 

If f: D ⊂ Rn → R, then lim x→a f(x) = L means that for every number ε > 0 there is a 
corresponding number δ > 0 such that 

 

 f(x) - L < ε  whenever   0 < x – a < δ 

 

Notice that if n = 1, then x = x and a = a, and (12.9) is just the definition of a limit for 
functions of a single variable.  If n = 2, then x = (x,y), a = (a,b), and x – a = 

22 )()( byax −+− , so (12.9) becomes Definition 12.5.  If n = 3, then x = (x,y,z), a  = 

(a,b,c), and (12.9) becomes part (a) of Definition 12.8.  In each case the definition of 
continuity can be written as  

ax→
lim f(x) = f(a) 

4.0: CONCLUSION 

In this unit, you have known several definitions and have worked various examples. 

5.0: SUMMARY 

In this unit, you have studied the definition of terms and have solved various examples . The 
following limits

),(),(
lim

bayx →
 x = a,

),(),(
lim

bayx →
 y = b and

),(),(
lim

bayx →
 c = c  

 Show that the functions f(x,y) = x, g(x,y) = y, and h(x,y) = c are continuous. Obviously any 
polynomial can be built up out of the simple functions f, g and h by multiplication and 
addition, it follows that all polynomials are continuous on R2.  Likewise, any rational 
function is continuous on its domain since it is a quotient of continuous functions. 

6.0: TMA 

  

In Exercises 1 – 3 determine the largest set on which the given function is continuous 

 

1. F(x,y) = 
1

1
22

22

−+
++

yx

yx
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2. F(x,y) = 33

6336

yx

yyxx

+
++

 

 

3. G(x,y) = yxyx −−+  

 

4. For what values of the number r is the function 

f(x,y,z) = 













++
++

0

)(
222 zyx

zyx r

    

continuous on R3? 

5. If c ∈ Vn, show that the function f: Rn → R given by f(x) = c.x is continuous on Rn. 

6.0      TUTOR – MARKED ASSIGNMENT 

1.Show that function f defined below is not continuous at x = - 2.  

f(x) = 1 / (x + 2) 

2. Show that function f is continuous for all values of x in R.  

f(x) = 1 / ( x 4 + 6)  

3. Show that function f is continuous for all values of x in R.  

f(x) = | x - 5 |  
 

4. Find the values of x at which function f is discontinuous.  

f(x) = (x - 2) / [ (2 x 2 + 2x - 4)(x 4 + 5) ]   
5. Evaluate the limit  

limxx→ a sin (2x + 5) 
 

6.Show that any function of the form e ax + b is continous everywhere, a and b real numbers. 
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If(x,y,z) ≠ (0,0,0) 
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MODULE 2 PARTIAL DERIVATIVES OF FUNCTION OF SEVERAL  
VARIABLES 

 -Unit 1: Derivative 

 -Unit 2:  Partial derivative. 

 -Unit 3: Application of Partial derivative. 

UNIT 1:  DERIVATIVE 

   CONTENTS 
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1.0    INTRODUCTION 

In calculus, a derivative is a measure of how the function changes as the input changes. 
Loosely speaking, a derivative can be thought of how much one quantity is changing in 
response to changes in some other quantity. For example, the derivative of the position of a 
moving object with respect to time, is the object instantaneous velocity. 



 

The derivative of a function at a given chosen input  value describe the best linear 
approximation of the function
variable. The derivative at a point equals the slope of the tangent line to the graph of the 
function at that point. In higher dimension, the derivative of a function at a point is linear 
transformation called the linearization. A closely related notion is the differential of a 
function. The process of finding a derivative is differentiation. The reverse is Integration.

The derivative of a function represents an infinitesimal change in the 
one of its variables, 

The "simple" derivative of a function 

df/dx 

2.0    OBJECTIVE 

           In this Unit, you should be able to:

• Know the derivative of a function

• Identify   higher derivative

• solve   problems by Computing derivative

• identify   derivative   of higher dimension

3.0     MAIN CONTENT 

 

3.1 The Derivative of a Function

Let ƒ be a function that has a derivative at every point 
point a has a derivative, there is a function that sends the point 
This function is written f′(x) and is called the 
derivative of ƒ collects all the derivatives 

Sometimes ƒ has a derivative at most, but not all, points of its domain. The function whose 
value at a equals f′(a) whenever 
derivative of ƒ. It is still a function, but its domain is strictly smaller than the domain of 

Using this idea, differentiation becomes a function of functions: The derivative is an operator 
whose domain is the set of all functions that have derivatives at every point of their 
and whose range is a set of functions. If we denote this operator by 
function f′(x). Since D(ƒ) is a function, it can be evaluated at a point 
the derivative function, D(ƒ)(a

For comparison, consider the doubling function 
number, meaning that it takes numbers as inputs and has numbers as outputs:
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The derivative of a function at a given chosen input  value describe the best linear 
approximation of the function near that input value. For a real valued function of a single real 
variable. The derivative at a point equals the slope of the tangent line to the graph of the 
function at that point. In higher dimension, the derivative of a function at a point is linear 
transformation called the linearization. A closely related notion is the differential of a 
function. The process of finding a derivative is differentiation. The reverse is Integration.

represents an infinitesimal change in the function with respect to 

The "simple" derivative of a function with respect to a variable is denoted either 

In this Unit, you should be able to: 

Know the derivative of a function 

higher derivative 

solve   problems by Computing derivative 

identify   derivative   of higher dimension 

3.1 The Derivative of a Function 

be a function that has a derivative at every point a in the domain of 
has a derivative, there is a function that sends the point a to the derivative of 

and is called the derivative function or the derivative
collects all the derivatives of ƒ at all the points in the domain of 

has a derivative at most, but not all, points of its domain. The function whose 
whenever f′(a) is defined and elsewhere is undefined is also called the 

ill a function, but its domain is strictly smaller than the domain of 

Using this idea, differentiation becomes a function of functions: The derivative is an operator 
whose domain is the set of all functions that have derivatives at every point of their 
and whose range is a set of functions. If we denote this operator by D

) is a function, it can be evaluated at a point a. By the definition of 
a) = f′(a). 

der the doubling function ƒ(x) =2x; ƒ is a real-valued function of a real 
number, meaning that it takes numbers as inputs and has numbers as outputs:

The derivative of a function at a given chosen input  value describe the best linear 
near that input value. For a real valued function of a single real 

variable. The derivative at a point equals the slope of the tangent line to the graph of the 
function at that point. In higher dimension, the derivative of a function at a point is linear 
transformation called the linearization. A closely related notion is the differential of a 
function. The process of finding a derivative is differentiation. The reverse is Integration. 

function with respect to 

is denoted either or  

in the domain of ƒ. Because every 
to the derivative of ƒ at a. 

derivative of ƒ. The 
at all the points in the domain of ƒ. 

has a derivative at most, but not all, points of its domain. The function whose 
is defined and elsewhere is undefined is also called the 

ill a function, but its domain is strictly smaller than the domain of ƒ. 

Using this idea, differentiation becomes a function of functions: The derivative is an operator 
whose domain is the set of all functions that have derivatives at every point of their domain 

D, then D(ƒ) is the 
. By the definition of 

valued function of a real 
number, meaning that it takes numbers as inputs and has numbers as outputs: 



 

 

The operator D, however, is not defined on individual numbers. It is only defined on 
functions: 

Because the output of 
instance, when D is applied to the squaring function,

 

D outputs the doubling function,

 

which we named ƒ(x). This output function can then be evaluated to get 
and so on. 

3.2   Higher derivative 

Let ƒ be a differentiable function, and let 
has one) is written f′′(x) and is called the second derivative 
second derivative, if it exists, is written 
repeated derivatives are called 

If x(t) represents the position of an object at time 
physical interpretations. The second derivative of 
by definition this is the object's acceleration. The third derivative of 
jerk, and the fourth derivative is defined to be the jo

A function ƒ need not have a derivative, for example, if it is not continuous. Similarly, even if 
ƒ does have a derivative, it may not have a second derivative. For example, let

Calculation shows that ƒ is a differentiable function whose derivative
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, however, is not defined on individual numbers. It is only defined on 

 

Because the output of D is a function, the output of D can be evaluated at a point. For 
is applied to the squaring function, 

outputs the doubling function, 

). This output function can then be evaluated to get 

be a differentiable function, and let f′(x) be its derivative. The derivative of 
and is called the second derivative of f. Similarly, the derivative of a 

derivative, if it exists, is written f′′′(x) and is called the third derivative of 
repeated derivatives are called higher-order derivatives. 

) represents the position of an object at time t, then the higher-order derivatives of 
physical interpretations. The second derivative of x is the derivative of x′(t
by definition this is the object's acceleration. The third derivative of x is defined to be the 
jerk, and the fourth derivative is defined to be the jounce. 

need not have a derivative, for example, if it is not continuous. Similarly, even if 
does have a derivative, it may not have a second derivative. For example, let

 

is a differentiable function whose derivative is

 

, however, is not defined on individual numbers. It is only defined on 

can be evaluated at a point. For 

). This output function can then be evaluated to get ƒ(1) = 2, ƒ(2) = 4, 

be its derivative. The derivative of f′(x) (if it 
. Similarly, the derivative of a 
third derivative of ƒ. These 

order derivatives of x have 
t), the velocity, and 
is defined to be the 

need not have a derivative, for example, if it is not continuous. Similarly, even if 
does have a derivative, it may not have a second derivative. For example, let 

is 



 

f′(x) is twice the absolute value function, and it does not have a derivative at zero. Similar 
examples show that a function can have 
+ 1)-order derivative. A function that has 
differentiable. If in addition the 
differentiability class Ck. (This is a stronger condition than having 
that has infinitely many derivativ

On the real line, every polynomial function is infinitely differentiable. By standard 
differentiation rules, if a polynomial of degree 
constant function. All of its subs
exist, so polynomials are smooth functions.

The derivatives of a function 
function near x. For example, if 

in the sense that 

If ƒ is infinitely differentiable, then this is the beginning of the Taylor series for 

Inflection Point 

A point where the second derivative of a function changes sign is called an 
point.At an inflection point, the second derivative may be zero, as in the case of the 
inflection point x=0 of the function 
point x=0 of the function y=
convex function to being a concave function or vice versa.

3.3  Computing the derivative

The derivative of a function can, in principle, be computed from the definition by considering 
the difference quotient, and computing its limit. In p
simple functions are known, the derivatives of other functions are more easily computed 
using rules for obtaining derivatives of more complicated functions from simpler ones.

Derivative of Elementary Function

Most derivative computations eventually require taking the derivative of some common 
functions. The following incomplete list gives some of the most frequently used functions of 
a single real variable and their derivatives.

 

• Derivative power: if 
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is twice the absolute value function, and it does not have a derivative at zero. Similar 
examples show that a function can have k derivatives for any non-negative integer 

order derivative. A function that has k successive derivatives is called 
. If in addition the kth derivative is continuous, then the function is said to be of 

. (This is a stronger condition than having k derivatives.) A function 
that has infinitely many derivatives is called infinitely differentiable . 

On the real line, every polynomial function is infinitely differentiable. By standard 
differentiation rules, if a polynomial of degree n is differentiated n times, then it becomes a 
constant function. All of its subsequent derivatives are identically zero. In particular, they 
exist, so polynomials are smooth functions. 

The derivatives of a function ƒ at a point x provide polynomial approximations to that 
. For example, if ƒ is twice differentiable, then 

 

 

is infinitely differentiable, then this is the beginning of the Taylor series for 

A point where the second derivative of a function changes sign is called an 
.At an inflection point, the second derivative may be zero, as in the case of the 

=0 of the function y=x3, or it may fail to exist, as in the case of the inflection 
=x1/3. At an inflection point, a function swit

convex function to being a concave function or vice versa. 

3.3  Computing the derivative 

The derivative of a function can, in principle, be computed from the definition by considering 
the difference quotient, and computing its limit. In practice, once the derivatives of a few 
simple functions are known, the derivatives of other functions are more easily computed 

for obtaining derivatives of more complicated functions from simpler ones.

Derivative of Elementary Function 

ivative computations eventually require taking the derivative of some common 
functions. The following incomplete list gives some of the most frequently used functions of 
a single real variable and their derivatives. 

is twice the absolute value function, and it does not have a derivative at zero. Similar 
negative integer k but no (k 
atives is called k times 

th derivative is continuous, then the function is said to be of 
derivatives.) A function 

On the real line, every polynomial function is infinitely differentiable. By standard 
times, then it becomes a 

equent derivatives are identically zero. In particular, they 

provide polynomial approximations to that 

is infinitely differentiable, then this is the beginning of the Taylor series for ƒ. 

A point where the second derivative of a function changes sign is called an inflection 
.At an inflection point, the second derivative may be zero, as in the case of the 

, or it may fail to exist, as in the case of the inflection 
. At an inflection point, a function switches from being a 

The derivative of a function can, in principle, be computed from the definition by considering 
ractice, once the derivatives of a few 

simple functions are known, the derivatives of other functions are more easily computed 
for obtaining derivatives of more complicated functions from simpler ones. 

ivative computations eventually require taking the derivative of some common 
functions. The following incomplete list gives some of the most frequently used functions of 



 

 

where r is any real number, then

 

wherever this function is defined. For example, if 

and the derivative function is defined only for positive 
implies that f′(x) is zero for x ≠

Exponential and logarithm functions

 

 

Trigonometric Functions :

           

  Inverse Trigonometric Function :

Rules for finding the derivative
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eal number, then 

wherever this function is defined. For example, if f(x) = x1 / 4, then 

 

and the derivative function is defined only for positive x, not for x = 0. When 
≠ 0, which is almost the constant rule (stated below).

functions: 

 

 

Trigonometric Functions : 

 

 

 

Inverse Trigonometric Function : 

 

 

 

Rules for finding the derivative 

. When r = 0, this rule 
rule (stated below). 



 

In many cases, complicated limit calculations by direct application of 
quotient can be avoided using differentiation rules. Some of the most basic rules are the 
following. 

Constant rule: if ƒ(x) is constant, then

 
Sine rule : 

Product rule : 
 

Quotient rule : 
 

Chain rule : If f(x) = h(g(x)), then

Example computation 
 

The derivative of 

Here the second term was computed using the chain rule and third using the product rule. The 
known derivatives of the elementary functions 
the constant 7, were also used.

3.4  Derivatives in higher dimensio

 

Derivative of vector valued function

A vector valued function y(t) of a real variable sends real numbers to vectors in some  vector 
space Rn. A vector-valued function can be split up into its coordinate functions 
yn(t), meaning that y(t) = (y1(t
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In many cases, complicated limit calculations by direct application of Newton's difference 
quotient can be avoided using differentiation rules. Some of the most basic rules are the 

) is constant, then 

for all functions ƒ and g and all real numbers 

for all functions ƒ and g. 

for all functions ƒ and g where g ≠ 0. 

, then 

 
 

 

Here the second term was computed using the chain rule and third using the product rule. The 
known derivatives of the elementary functions x2, x4, sin(x), ln(x) and exp(
the constant 7, were also used. 

3.4  Derivatives in higher dimensions 

Derivative of vector valued function 

) of a real variable sends real numbers to vectors in some  vector 
valued function can be split up into its coordinate functions 

t), ..., yn(t)). This includes, for example, parametric curve in 

Newton's difference 
quotient can be avoided using differentiation rules. Some of the most basic rules are the 

and all real numbers a and b. 

is 

 

Here the second term was computed using the chain rule and third using the product rule. The 
) and exp(x) = ex, as well as 

) of a real variable sends real numbers to vectors in some  vector 
valued function can be split up into its coordinate functions y1(t), y2(t), …, 

)). This includes, for example, parametric curve in R2 



 

or R3. The coordinate functions are real valued functions, so the above definition of 
derivative applies to them. The derivative of 
vector, whose coordinates are the derivatives of the coordinate functions. That is,

Equivalently, 

if the limit exists. The subtraction in the numerator is subtraction of vectors, not scalars. If the 
derivative of y exists for every value of 

If e1, …, en is the standard basis for 
If we assume that the derivative of a vector
then the derivative of y(t) must be

because each of the basis vectors is a constant.

This generalization is useful, for example, if 
then the derivative y′(t) is the velocity vector of the particle at time 

Partial derivative 

Suppose that ƒ is a function that depends on more than one variable. For instance,

ƒ can be reinterpreted as a family of functions of one variable indexed by the other variables:

In other words, every value of 
number. That is, 

 

Once a value of x is chosen, say 
+ y²: 
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. The coordinate functions are real valued functions, so the above definition of 
derivative applies to them. The derivative of y(t) is defined to be the vector, called the ta
vector, whose coordinates are the derivatives of the coordinate functions. That is,

 

 

if the limit exists. The subtraction in the numerator is subtraction of vectors, not scalars. If the 
exists for every value of t, then y′ is another vector valued function.

is the standard basis for Rn, then y(t) can also be written as y1

If we assume that the derivative of a vector-valued function retains the linearity property, 
) must be 

 

because each of the basis vectors is a constant. 

This generalization is useful, for example, if y(t) is the position vector of a particle at time 
) is the velocity vector of the particle at time t. 

is a function that depends on more than one variable. For instance,

 

can be reinterpreted as a family of functions of one variable indexed by the other variables:

 

In other words, every value of x chooses a function, denoted fx, which is a function of one real 

 

is chosen, say a, then f(x,y) determines a function fa that sends 

 

. The coordinate functions are real valued functions, so the above definition of 
) is defined to be the vector, called the tangent 

vector, whose coordinates are the derivatives of the coordinate functions. That is, 

if the limit exists. The subtraction in the numerator is subtraction of vectors, not scalars. If the 
is another vector valued function. 

1(t)e1 + … + yn(t)en. 
valued function retains the linearity property, 

of a particle at time t; 

is a function that depends on more than one variable. For instance, 

can be reinterpreted as a family of functions of one variable indexed by the other variables: 

, which is a function of one real 

that sends y to a² + ay 



 

In this expression, a is a constant
Consequently the definition of the derivative for a function of one variable applies:

 

The above procedure can be performed for any choice of 
together into a function gives a function that describes the variation of 

This is the partial derivative of 
derivative symbol. To distinguish it from the letter 
"del", or "partial" instead of "dee".

In general, the partial derivative
…, an) is defined to be: 

In the above difference quotient, all the variables except 
fixed values determines a function of one variable

and, by definition, 

In other words, the different choices of 
the example above. This expression also shows that the computation of partial derivatives 
reduces to the computation of one

An important example of a function of several variables is the case of a scalar valued function 
ƒ(x1,...xn) on a domain in Euclidean space 
derivative ∂ƒ/∂xj with respect to each variable 
define the vector 

This vector is called the gradient of 
domain, then the gradient is a vector
∇f(a). Consequently the gradient 
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constant, not a variable, so fa is a function of only one real variable. 
Consequently the definition of the derivative for a function of one variable applies:

above procedure can be performed for any choice of a. Assembling the derivatives 
together into a function gives a function that describes the variation of ƒ in the 

 

This is the partial derivative of ƒ with respect to y. Here ∂ is a rounded d
. To distinguish it from the letter d, ∂ is sometimes pronounced "der", 

"del", or "partial" instead of "dee". 

partial derivative  of a function ƒ(x1, …, xn) in the direction 

In the above difference quotient, all the variables except xi are held fixed. That choice of 
fixed values determines a function of one variable 

 

ds, the different choices of a index a family of one-variable functions just as in 
the example above. This expression also shows that the computation of partial derivatives 
reduces to the computation of one-variable derivatives. 

unction of several variables is the case of a scalar valued function 
) on a domain in Euclidean space Rn (e.g., on R² or R³). In this case 

with respect to each variable xj. At the point a, these partial 

 

This vector is called the gradient of ƒ at a. If ƒ is differentiable at every point in some 
domain, then the gradient is a vector-valued function ∇ƒ that takes the point 

. Consequently the gradient determines a vector field. 

is a function of only one real variable. 
Consequently the definition of the derivative for a function of one variable applies: 

. Assembling the derivatives 
in the y direction: 

d called the partial 
 is sometimes pronounced "der", 

) in the direction xi at the point (a1 

 

are held fixed. That choice of 

 

variable functions just as in 
the example above. This expression also shows that the computation of partial derivatives 

unction of several variables is the case of a scalar valued function 
³). In this case ƒ has a partial 

, these partial derivatives 

is differentiable at every point in some 
that takes the point a to the vector 
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Generalizations 

The concept of a derivative can be extended to many other settings. The common thread is 
that the derivative of a function at a point serves as a linear approximation of the function at 
that point. 

4.0 CONCLUSION 

In this unit, you have known the derivative of a function .Through the derivative of 
functions, you have identified   higher derivative, and you have solved   problems by 
computing derivative through the use of this functions. You have also identified   
derivative   of higher dimension. 

5.0 SUMMARY 

In this unit, you have studied the following:  

o the derivative of a function 

o identify   higher derivative 

o solve   problems by Computing derivative 

o identify   derivative   of higher dimension 

6.0 TUTOR MARKED ASSIGNMENT 

 Find the derivative of F(x,y) = 3sin(3xy) 

Find the derivative  of F(x,y)= ( ))(6ln
3

yx +  

Evaluate the derivative F(x,y) = )tan(23
2

yxyx −+  

Find the derivative of F(x,y) = 
e

x

xy
cos

sin
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Solve problems on partial derivative for function of several variables 



 

A graph of z = x2 + xy + y2. For the partial derivative at (1, 1, 3) that leaves 
corresponding tangent line is parallel to the 

A slice of the graph above at y

The graph of this function defines a 
surface, there are an infinite number of 
choosing one of these lines and finding its 
that are parallel to the xz-plane, and those that are parallel to the 

To find the slope of the line tangent to the function at (1, 1, 3) that is parallel to the 
the y variable is treated as constant. The graph and this plane are shown on the right. On the 
graph below it, we see the way the function looks on the pla
derivative of the equation while assuming that 
z) is found to be: 

 

So at (1, 1, 3), by substitution, the slo

 

at the point. (1, 1, 3). That is, the partial derivative of 

2.0:  OBJECTIVES 

After studying this, you should be able to  :

• define Partial derivative
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. For the partial derivative at (1, 1, 3) that leaves 

line is parallel to the xz-plane. 

 
y= 1 

of this function defines a surface in Euclidean space. To every point on this 
surface, there are an infinite number of tangent lines. Partial differentiation is the act of 
choosing one of these lines and finding its slope. Usually, the lines of most interest are those 

plane, and those that are parallel to the yz-plane. 

To find the slope of the line tangent to the function at (1, 1, 3) that is parallel to the 
variable is treated as constant. The graph and this plane are shown on the right. On the 

graph below it, we see the way the function looks on the plane y = 1. By finding the 
of the equation while assuming that y is a constant, the slope of 

So at (1, 1, 3), by substitution, the slope is 3. Therefore 

at the point. (1, 1, 3). That is, the partial derivative of z with respect to x at (1, 1, 3) is 3

After studying this, you should be able to  : 

define Partial derivative 

. For the partial derivative at (1, 1, 3) that leaves y constant, the 

. To every point on this 
. Partial differentiation is the act of 

. Usually, the lines of most interest are those 

To find the slope of the line tangent to the function at (1, 1, 3) that is parallel to the xz-plane, 
variable is treated as constant. The graph and this plane are shown on the right. On the 

= 1. By finding the 
is a constant, the slope of ƒ at the point (x, y, 

at (1, 1, 3) is 3 
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• know the geometric interpretation 

• identify anti derivative analogue 

• solve problems on partial derivative for function of several variables 

• identify higher order derivatives 

3.0  MAIN CONTENT 

Let us consider a function  
 
1)        u = f(x, y, z, p, q, ... )  
 
of several variables. Such a function can be studied by holding all variables except one 
constant and observing its variation with respect to one single selected variable. If we 
consider all the variables except x to be constant, then  
 

               
 
represents the partial derivative of f(x, y, z, p, q, ... ) with respect to x (the hats indicating 
variables held fixed). The variables held fixed are viewed as parameters. 
 

Definition of Partial derivative.  
The partial derivative of a function of two or more variables with respect to one of its 
variables is the ordinary derivative of the function with respect to that variable, considering 
the other variables as constants. 
 
Example 1. The partial derivative of 3x2y + 2y2 with respect to x is 6xy. Its partial derivative 
with respect to y is 3x2 + 4y.  
 
The partial derivative of a function z = f(x, y, ...) with respect to the variable x is commonly 
written in any of the following ways: 
 

 
 
Its derivative with respect to any other variable is written in a similar fashion. 
 



 

Geometric interpretation. The geometric interpretation of a partial derivative is the same as 
that for an ordinary derivative. It represents the slope of the tangent to that curve represented 
by the function at a particular point P. In the case of a function of two variables 
  
            z = f(x, y)  
 

Fig. 1 shows the interpretation of 
the tangent to the curve APB at point P (where curve APB is the intersection of the surface 

with a plane through P perpendicular to the y axis). Similarly, 
slope of the tangent to the curve CPD at point P (where curve CPD is the intersection of the 
surface with a plane through P perpendicular to the x axis).

Examples 2 

 

The volume of a cone depends on height and radius

The volume V of a cone depends on the cone's 
formula 

 

The partial derivative of V
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The geometric interpretation of a partial derivative is the same as 

that for an ordinary derivative. It represents the slope of the tangent to that curve represented 
by the function at a particular point P. In the case of a function of two variables 

Fig. 1 shows the interpretation of and . corresponds to the slope of 
the tangent to the curve APB at point P (where curve APB is the intersection of the surface 

with a plane through P perpendicular to the y axis). Similarly, 
slope of the tangent to the curve CPD at point P (where curve CPD is the intersection of the 
surface with a plane through P perpendicular to the x axis). 

 

The volume of a cone depends on height and radius 

depends on the cone's height h and its radius 

V with respect to r is 

The geometric interpretation of a partial derivative is the same as 
that for an ordinary derivative. It represents the slope of the tangent to that curve represented 
by the function at a particular point P. In the case of a function of two variables  

corresponds to the slope of 
the tangent to the curve APB at point P (where curve APB is the intersection of the surface 

corresponds to the 
slope of the tangent to the curve CPD at point P (where curve CPD is the intersection of the 

 r according to the 



 

which represents the rate with which a cone's volume changes if its radius is varied 
and its height is kept constant. The partial derivative with respect to 

 

which represents the rate with which the volume changes if its height is varied and its radi
is kept constant. 

By contrast, the total derivative

and 

The difference between the total and partial derivative is the 
dependencies between variables in partial derivatives.

If (for some arbitrary reason) the cone's proportions have to stay the same, and the height and 
radius are in a fixed ratio k, 

 

This gives the total derivative with respect to 

Equations involving an unknown function's partial derivatives are called 
equations and are common in 
disciplines. 

Notation 

For the following examples, let 

First-order partial derivatives:
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which represents the rate with which a cone's volume changes if its radius is varied 
and its height is kept constant. The partial derivative with respect to 

which represents the rate with which the volume changes if its height is varied and its radi

derivative of V with respect to r and h are respectively

 

 

The difference between the total and partial derivative is the elimination of indirect 
dependencies between variables in partial derivatives. 

If (for some arbitrary reason) the cone's proportions have to stay the same, and the height and 

This gives the total derivative with respect to r: 

 

Equations involving an unknown function's partial derivatives are called 
and are common in physics, engineering, and other sciences

r the following examples, let f be a function in x, y and z. 

order partial derivatives: 

which represents the rate with which a cone's volume changes if its radius is varied 
and its height is kept constant. The partial derivative with respect to h is 

which represents the rate with which the volume changes if its height is varied and its radius 

are respectively 

elimination of indirect 

If (for some arbitrary reason) the cone's proportions have to stay the same, and the height and 

Equations involving an unknown function's partial derivatives are called partial differential 
sciences and applied 



 

 

Second-order partial derivatives:

Second-order mixed derivatives

Higher-order partial and mixed derivatives:

When dealing with functions of multiple variables, some of these variables may be related to 
each other, and it may be necessary to specify explicitly which variables are being held 
constant. In fields such as statistical mechanics
holding y and z constant, is often expressed as

 

Anti derivative analogue 

There is a concept for partial derivatives that is analogous to 
derivatives. Given a partial derivative, it allows for the partial recovery of the original 
function. 

Consider the example of 
x (treating y as constant, in a similar manner to partial derivation):

Here, the "constant" of integration
variables of the original function except 
are treated as constant when taking the partial derivative, so any functio
involve x will disappear when taking the partial derivative, and we have to account for this 
when we take the antiderivative. The most general way to represent this is to have the 
"constant" represent an unknown function of all the other variables. Thus the set of 
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order partial derivatives: 

 

mixed derivatives: 

 

order partial and mixed derivatives: 

 

When dealing with functions of multiple variables, some of these variables may be related to 
each other, and it may be necessary to specify explicitly which variables are being held 

statistical mechanics, the partial derivative of f
constant, is often expressed as 

for partial derivatives that is analogous to anti derivatives
derivatives. Given a partial derivative, it allows for the partial recovery of the original 

. The "partial" integral can be taken with respect to 
as constant, in a similar manner to partial derivation): 

 

"constant" of integration is no longer a constant, but instead a function of all the 
variables of the original function except x. The reason for this is that all the other variables 
are treated as constant when taking the partial derivative, so any functio

will disappear when taking the partial derivative, and we have to account for this 
when we take the antiderivative. The most general way to represent this is to have the 
"constant" represent an unknown function of all the other variables. Thus the set of 

When dealing with functions of multiple variables, some of these variables may be related to 
each other, and it may be necessary to specify explicitly which variables are being held 

, the partial derivative of f with respect to x, 

anti derivatives for regular 
derivatives. Given a partial derivative, it allows for the partial recovery of the original 

. The "partial" integral can be taken with respect to 

is no longer a constant, but instead a function of all the 
. The reason for this is that all the other variables 

are treated as constant when taking the partial derivative, so any function which does not 
will disappear when taking the partial derivative, and we have to account for this 

when we take the antiderivative. The most general way to represent this is to have the 
"constant" represent an unknown function of all the other variables. Thus the set of functions 



 

x2 + xy + g(y), where g is any one
variables x,y that could have produced the 

If all the partial derivatives of a function are known (for example, with the 
antiderivatives can be matched via the above process to reconstruct the original function up to 
a constant 

Example 3  

For the function  

 

find the partial derivatives of f 
function in the x and y directions at the point (

Initially we will not specify the values of x and y when we take the derivatives; we will just 
remember which one we are going to hold c
fixed and find the partial derivative of f with respect to x: 

Second, hold x fixed and find the partial derivative of f with respect to y: 

Now, plug in the values x=-1 and y=2 into the equations. We 
1,2)=28.  

Partial Derivatives for Functions of Several Variables 

We can of course take partial derivatives of functions of more than two variables. If f is a 
function of n variables x_1, x_2, ..., x_n, then to take the partial
x_i we hold all variables besides x_i constant and take the derivative. 

Example 4 

To find the partial derivative of f with respect to t for the function 

we hold x, y, and z constant and take the derivative with respect to the remaining variable t. 
The result is  
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is any one-argument function, represents the entire set of functions in 
that could have produced the x-partial derivative 2x+y. 

If all the partial derivatives of a function are known (for example, with the 
antiderivatives can be matched via the above process to reconstruct the original function up to 

 

find the partial derivatives of f with respect to x and y and compute the rates of change of the 
function in the x and y directions at the point (-1,2).  

Initially we will not specify the values of x and y when we take the derivatives; we will just 
remember which one we are going to hold constant while taking the derivative. First, hold y 
fixed and find the partial derivative of f with respect to x:  

 

Second, hold x fixed and find the partial derivative of f with respect to y:  

 

1 and y=2 into the equations. We obtain f_x(

Partial Derivatives for Functions of Several Variables  

We can of course take partial derivatives of functions of more than two variables. If f is a 
function of n variables x_1, x_2, ..., x_n, then to take the partial derivative of f with respect to 
x_i we hold all variables besides x_i constant and take the derivative.  

To find the partial derivative of f with respect to t for the function  

 

we hold x, y, and z constant and take the derivative with respect to the remaining variable t. 

 

argument function, represents the entire set of functions in 

If all the partial derivatives of a function are known (for example, with the gradient), then the 
antiderivatives can be matched via the above process to reconstruct the original function up to 

with respect to x and y and compute the rates of change of the 

Initially we will not specify the values of x and y when we take the derivatives; we will just 
onstant while taking the derivative. First, hold y 

 

obtain f_x(-1,2)=10 and f_y(-

We can of course take partial derivatives of functions of more than two variables. If f is a 
derivative of f with respect to 

we hold x, y, and z constant and take the derivative with respect to the remaining variable t. 



 

Interpretation   

 

∂f 
 

∂x 

Is the rate at which f changes as x changes, for a fixed (constant) y.

∂f 
 

∂y 
Is the rate at which f changes as y 

Higher Order Partial Derivatives

 
If f is a function of x, y, and possibly other variables, then 

∂2f 
 

∂x2 
is defined to be 

Similarly,  

∂2f 
 

∂y2 
is defined to be

∂2f 
 

∂y∂x 
is defined to be

∂2f 
 

∂x∂y 
is defined to be

The above second order partial derivatives can also be denoted by f
respectively.  

The last two are called mixed derivatives
the first order partial derivatives are continuous. 

Some examples of partial derivatives of functions of several variables are shown below, 
variable as we did in Calculus I.
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Is the rate at which f changes as x changes, for a fixed (constant) y. 

Is the rate at which f changes as y changes, for a fixed (constant) x. 

Higher Order Partial Derivatives  

If f is a function of x, y, and possibly other variables, then  

 
∂ 

 
∂x  

∂f 
 

∂x  
 

is defined to be 
∂ 

 
∂y  

∂f 
 

∂y  
 

is defined to be 
∂ 

 
∂y  

∂f 
 

∂x  
 

is defined to be 
∂ 

 
∂x  

∂f 
 

∂y  
 

The above second order partial derivatives can also be denoted by f

mixed derivatives and will always be equal to each other when all 
the first order partial derivatives are continuous.  

Some examples of partial derivatives of functions of several variables are shown below, 
variable as we did in Calculus I.  

The above second order partial derivatives can also be denoted by fxx, fyy, fxy, and fyx 

and will always be equal to each other when all 

Some examples of partial derivatives of functions of several variables are shown below, 



 

Example 1  Find all of the firs

(a)

  

(b)

(c)

  

(d)

 Solution 

(a) 

Let’s first take the derivative with respect to 
be treated as constants.  The partial derivative with respect to 

 

 Notice that the second and the third term differentiate to zero in this case.
why the third term differentiated to zero.
differentiate to zero.  This is also the reason that the second term differentiated to zero.
Remember that since we are differentiating with respect to 
as constants.  That means that terms that only i
hence will differentiate to zero.

 Now, let’s take the derivative with respect to 
so the first term involves only 
Here is the partial derivative with respect to 

                  

(b) 

With this function we’ve got three first order derivatives to compute.
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Find all of the first order partial derivatives for the following functions.

 

   

 

   

 

Let’s first take the derivative with respect to x and remember that as we do so all the 
The partial derivative with respect to x is, 

Notice that the second and the third term differentiate to zero in this case.
why the third term differentiated to zero.  It’s a constant and we know that

This is also the reason that the second term differentiated to zero.
Remember that since we are differentiating with respect to x here we are going to treat all 

That means that terms that only involve y’s will be treated as constants and 
hence will differentiate to zero. 

Now, let’s take the derivative with respect to y.  In this case we treat all x
so the first term involves only x’s and so will differentiate to zero, just as the third term will.
Here is the partial derivative with respect to y. 

             

With this function we’ve got three first order derivatives to compute.  Let’s do the partial 

t order partial derivatives for the following functions. 

 

and remember that as we do so all the y’s will 

Notice that the second and the third term differentiate to zero in this case.  It should be clear 
It’s a constant and we know that constants always 

This is also the reason that the second term differentiated to zero.  
here we are going to treat all y’s 

’s will be treated as constants and 

x’s as constants and 
the third term will.  

 

Let’s do the partial 



 

derivative with respect to x first.
all y’s and all z’s as constants.
to zero since they only involve 

 This first term contains both 
will be thought of as a multiplicative constant and so the first term will be differentiated just 
as the third term will be differentiated.

 Here is the partial derivative with respect to 

    

  

Let’s now differentiate with respect to 
constants.  This means the third term will differentiate to zero since it contains only 
the x’s in the first term and the 
constants.  Here is the derivative with respect to 

      

  

Finally, let’s get the derivative with respect to 
will be the only non-zero term in th
multiplicative constants.  Here is the derivative with respect to 

                                          

 (c) 

With this one we’ll not put in the detail of the first two.
rewrite the function a little to help us with the differentiation process.

   

  

Now, the fact that we’re using 
problem.  It will work the same way.
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first.  Since we are differentiating with respect to 
’s as constants.  This means that the second and fourth terms will differentiate 

to zero since they only involve y’s and z’s. 

This first term contains both x’s and y’s and so when we differentiate with respect to 
will be thought of as a multiplicative constant and so the first term will be differentiated just 
as the third term will be differentiated. 

Here is the partial derivative with respect to x. 

 

’s now differentiate with respect to y.  In this case all x’s and z’s will be treated as 
This means the third term will differentiate to zero since it contains only 

’s in the first term and the z’s in the second term will be treated as multiplicative 
Here is the derivative with respect to y. 

Finally, let’s get the derivative with respect to z.  Since only one of the terms involve 
zero term in the derivative.  Also, the y’s in that term will be treated as 

Here is the derivative with respect to z. 

                                      

 

With this one we’ll not put in the detail of the first two.  Before taking 
rewrite the function a little to help us with the differentiation process. 

 

Now, the fact that we’re using s and t here instead of the “standard” x and 
It will work the same way.  Here are the two derivatives for this function.

Since we are differentiating with respect to x we will treat 
This means that the second and fourth terms will differentiate 

and so when we differentiate with respect to x the y 
will be thought of as a multiplicative constant and so the first term will be differentiated just 

’s will be treated as 
This means the third term will differentiate to zero since it contains only x’s while 

’s in the second term will be treated as multiplicative 

 

Since only one of the terms involve z’s this 
’s in that term will be treated as 

 the derivative let’s 

and y shouldn’t be a 
ivatives for this function. 



 

              

  

Remember how to differentiate natural logarithms.

 

  

(d) 

Now, we can’t forget the product rule with derivatives.
way here as it does with functions of 
remember which variable we are differentiating with respect to.

  

Let’s start out by differentiating with respect to 
exponential contain x’s and so we’ve really got a product of two functions involving 
so we’ll need to product rule this up.
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Remember how to differentiate natural logarithms. 

                

 

Now, we can’t forget the product rule with derivatives.  The product rule will work the same 
way here as it does with functions of one variable.  We will just need to be careful to 
remember which variable we are differentiating with respect to. 

Let’s start out by differentiating with respect to x.  In this case both the cosine and the 
’s and so we’ve really got a product of two functions involving 

so we’ll need to product rule this up.  Here is the derivative with respect to 

 

The product rule will work the same 
We will just need to be careful to 

In this case both the cosine and the 
’s and so we’ve really got a product of two functions involving x’s and 

Here is the derivative with respect to x. 



 

  

Do not forget the chain rule for functions of one variable.
rule for some more complicated expressions for multivariable functions in a latter section.
However, at this point we’re treating all the 
continue to work as it did back in Calculus I.

 Also, don’t forget how to differentiate exponential functions,

             

  

Now, let’s differentiate with respect to 
about since the only place that the 
considered to be constants for this derivative, the cosine in the front will also be thought of as 
a multiplicative constant.  Here is the derivative with respect to 

        

Example 2  Find all of the first order partial derivatives for the following functions.

(a) 

(b) 

(c) 
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for functions of one variable.  We will be looking at the chain 
rule for some more complicated expressions for multivariable functions in a latter section.
However, at this point we’re treating all the y’s as constants and so the chain rule will 
continue to work as it did back in Calculus I. 

Also, don’t forget how to differentiate exponential functions, 

 

Now, let’s differentiate with respect to y.  In this case we don’t have a product rule to worry 
ce the only place that the y shows up is in the exponential.  Therefore, since 

considered to be constants for this derivative, the cosine in the front will also be thought of as 
Here is the derivative with respect to y. 

 

Find all of the first order partial derivatives for the following functions.

 

    

 

We will be looking at the chain 
rule for some more complicated expressions for multivariable functions in a latter section.  

o the chain rule will 

In this case we don’t have a product rule to worry 
Therefore, since x’s are 

considered to be constants for this derivative, the cosine in the front will also be thought of as 

Find all of the first order partial derivatives for the following functions. 



 

Solution 

(a) 

We also can’t forget about the quotient rule.
simply give the derivatives. 

          

  

In the case of the derivative with respect to 
differentiate the numerator we will get zero!

 

  

(b) 

Now, we do need to be careful however to not use the quotient rule when it doesn’t need to 
be used.  In this case we do have a quotient, however, since the 
numerator and the z’s only appear in the denominator this really isn’

  

Let’s do the derivatives with respect to 
and so the denominator in this is a constant and so we don’t really need to worry too much 
about it.  Here are the derivatives f
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We also can’t forget about the quotient rule.  Since there isn’t too much to this one, we will 

 

In the case of the derivative with respect to v recall that u’s are constant and so when we 
differentiate the numerator we will get zero! 

 

Now, we do need to be careful however to not use the quotient rule when it doesn’t need to 
In this case we do have a quotient, however, since the x’s and y’s only appear in the 

’s only appear in the denominator this really isn’t a quotient rule problem.

Let’s do the derivatives with respect to x and y first.  In both these cases the 
and so the denominator in this is a constant and so we don’t really need to worry too much 

Here are the derivatives for these two cases. 

 

Since there isn’t too much to this one, we will 

’s are constant and so when we 

Now, we do need to be careful however to not use the quotient rule when it doesn’t need to 
’s only appear in the 

t a quotient rule problem. 

In both these cases the z’s are constants 
and so the denominator in this is a constant and so we don’t really need to worry too much 



 

  

Now, in the case of differentiation with respect to 
quick rewrite of the function. 

                                       

  

We went ahead and put the derivative back into the “original” form just so we could say that 
we did.  In practice you probably don’t really need to do that.

(c) 

In this last part we are just going to do a somewhat messy chain rule problem.
you had a good background in 
problem.  Here are the two derivatives,
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Now, in the case of differentiation with respect to z we can avoid the quotient rule with a 
  Here is the rewrite as well as the derivative with respect to 

We went ahead and put the derivative back into the “original” form just so we could say that 
In practice you probably don’t really need to do that. 

 

In this last part we are just going to do a somewhat messy chain rule problem.
you had a good background in Calculus I chain rule this shouldn’t be all that difficult of

Here are the two derivatives, 

we can avoid the quotient rule with a 
Here is the rewrite as well as the derivative with respect to z. 

 

We went ahead and put the derivative back into the “original” form just so we could say that 

In this last part we are just going to do a somewhat messy chain rule problem.  However, if 
this shouldn’t be all that difficult of a 

 



 

 

  

So, there are some examples of partial derivatives.
we can remember to treat the other variables 
manner that derivatives of functions of one variable do.
derivative you shouldn’t have too much difficulty in doing basic partial derivatives.

  

There is one final topic that we need
differentiation.  Before getting into implicit differentiation for multiple variable functions 
let’s first remember how implicit differentiation works for functions of one variable.

  

Example 3  Find    for   

Solution 

Remember that the key to this is to always think of 
whenever we differentiate a term involving 

chain rule which will mean that we will add on a 

  

The first step is to differentiate both sides with respect to 
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So, there are some examples of partial derivatives.  Hopefully you will agree that as long as 
we can remember to treat the other variables as constants these work in exactly the same 
manner that derivatives of functions of one variable do.  So, if you can do Calculus I 
derivative you shouldn’t have too much difficulty in doing basic partial derivatives.

There is one final topic that we need to take a quick look at in this section, implicit 
Before getting into implicit differentiation for multiple variable functions 

let’s first remember how implicit differentiation works for functions of one variable.

. 

Remember that the key to this is to always think of y as a function of x, or 
whenever we differentiate a term involving y’s with respect to x we will really need to use the 

chain rule which will mean that we will add on a  to that term. 

The first step is to differentiate both sides with respect to x. 

 

 

Hopefully you will agree that as long as 
as constants these work in exactly the same 

So, if you can do Calculus I 
derivative you shouldn’t have too much difficulty in doing basic partial derivatives. 

to take a quick look at in this section, implicit 
Before getting into implicit differentiation for multiple variable functions 

let’s first remember how implicit differentiation works for functions of one variable. 

, or   and so 
we will really need to use the 



 

  

The final step is to solve for 

          

 Now, we did this problem because implicit differentiation works in exactly the same manner 
with functions of multiple variables.

and z we will assume that z is in fact a function of 

whenever we differentiate z’s with respect to 

Likewise, whenever we differentiate 

Let’s take a quick look at a couple of implicit differentiation

  

Example 4  Find   and  

(a) 

(b) 

  

Solution 

(a) 

Let’s start with finding 

remember to add on a  whenever we differentiate a 

                                          

any product of x’s and z’s will be a product and so will need the product rule!
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Now, we did this problem because implicit differentiation works in exactly the same manner 
with functions of multiple variables.  If we have a function in terms of three variables 

is in fact a function of x and y.  In other words, 

’s with respect to x we will use the chain rule and add on a 

Likewise, whenever we differentiate z’s with respect to y we will add on a 

Let’s take a quick look at a couple of implicit differentiation problems. 

 for each of the following functions. 

 

 

  We first will differentiate both sides with respect to 

whenever we differentiate a z. 

Remember that since we are assuming 
’s will be a product and so will need the product rule!

Now, we did this problem because implicit differentiation works in exactly the same manner 
If we have a function in terms of three variables x, y, 

er words, .  Then 

we will use the chain rule and add on a  .  

we will add on a . 

    

We first will differentiate both sides with respect to x and 

Remember that since we are assuming  then 
’s will be a product and so will need the product rule!  Now, solve for 



 

Now we’ll do the same thing for 

 whenever we differentiate a 

 

 (b) 

We’ll do the same thing for this function as we did in the previous part.
. 

                

Don’t forget to do the chain rule on each of the trig functions and when we are differentiating 
the inside function on the cosine we will need to also use the product rule.

for  
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. 
     
 

                                     

Now we’ll do the same thing for  except this time we’ll need to remember to add on a 

whenever we differentiate a z. 

 

We’ll do the same thing for this function as we did in the previous part.  First let’s find 

 

forget to do the chain rule on each of the trig functions and when we are differentiating 
the inside function on the cosine we will need to also use the product rule.

                                       

except this time we’ll need to remember to add on a 

 

First let’s find 

forget to do the chain rule on each of the trig functions and when we are differentiating 
the inside function on the cosine we will need to also use the product rule.  Now let’s solve 



 

            

Now let’s take care of  .  This one will be slig

              

 

 

 

4.0 CONCLUSION 

In this unit, you have defined a Partial derivative of a function of several variables. You have 
used the partial derivative of a function of several variable to know the geometric 
interpretation of a function and  anti derivative analogue has been identif
Solved problems on partial derivative for function of several variables and identified higher 
order derivatives.  

5.0 SUMMARY 

 In this unit, you have studied the following:

the definition of Partial derivative of functions of several variable

 the geometric interpretation of partial derivative of functions of several variables
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This one will be slightly easier than the first one.

In this unit, you have defined a Partial derivative of a function of several variables. You have 
used the partial derivative of a function of several variable to know the geometric 
interpretation of a function and  anti derivative analogue has been identif
Solved problems on partial derivative for function of several variables and identified higher 

In this unit, you have studied the following: 

the definition of Partial derivative of functions of several variable 

the geometric interpretation of partial derivative of functions of several variables

htly easier than the first one. 

 

In this unit, you have defined a Partial derivative of a function of several variables. You have 
used the partial derivative of a function of several variable to know the geometric 
interpretation of a function and  anti derivative analogue has been identified. You have 
Solved problems on partial derivative for function of several variables and identified higher 

the geometric interpretation of partial derivative of functions of several variables 
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the identification of antiderivative analogue of partial derivative of functions of several 
variable 

Solve problems on partial derivative for function of several variables 

The identification of higher order derivatives of functions of several variables 

TUTOR MARKED ASSIGNMENT 

1.Find the partial derivatives fx and fy if f(x , y) is given by  

f(x , y) = x2 y + 2x + y 

 

2: Find fx and fy if f(x , y) is given by  

f(x , y) = sin(x y) + cos x 

 

3.Find fx and fy if f(x , y) is given by  

f(x , y) = x ex y 

 

 

4.Find fx and fy if f(x , y) is given by  

f(x , y) = ln ( x2 + 2 y) 
 

5.Find fx(2 , 3) and fy(2 , 3) if f(x , y) is given by  

f(x , y) = y x2 + 2 y 
 

6.Find partial derivatives fx and fy of the following functions  
 
A. f(x , y) = x ex + y  
 
B. f(x , y) = ln ( 2 x + y x)  
 
C. f(x , y) = x sin(x - y) 
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Unit 3  APPLICATION OF PARTIAL DERIVATIVE  

   CONTENT 

1.0 INTRODUCTION 

2.0 OBJECTIVES 

3.0 MAIN CONTENT 

    3.1  Apply partial derivative of functions of several variable in  
Chain rule. 

3.2  Apply partial derivative of functions of several variable in Curl (Mathematics) 
3.3  Apply partial derivative of functions of several variable in Derivatives 
3.4  Apply partial derivative of functions of several variable in D’ Alamber 

operator 
3.5  Apply partial derivative of functions of several variable in Double integral 
3.6  Apply partial derivative of functions of several variable in Exterior derivative 
3.7  Apply partial derivative of function of several variable in Jacobian matrix and 

determinant 
 

4.0    CONCLUSION 

5.0    SUMMARY 

 6.0   TUTOR-MARKED ASSIGNMENT 
 7.0    REFERENCES/FURTHER READINGS 
 

1.0 INTRODUCTION  
The partial derivative of f with respect to x is the derivative of f with respect to x, treating 
all other variables as constant.  

Similarly, the partial derivative of f with respect to y is the derivative of f with respect to y, 
treating all other variables as constant, and so on for other variables. The partial derivatives 



 

are written as ∂f/∂x, ∂f/∂y, and so on. The symbol "
that there is more than one variable, and that we are holding the other variables fixed. 

 

OBJECTIVES 
In this Unit, you should be able to:

Apply partial derivative of functions of several variable in Chain rule.

  Apply partial derivative of functions of several variable in Curl (Mathematics)

   Apply partial derivative of functions of several variable in Derivatives

    Apply partial derivative of functions of several variable in D’ Alamber operator

    Apply partial derivative of functions of several variable in Double integral

    Apply partial derivative of functions of several variable in Exterior derivative

    Apply partial derivative of function of several variable in Jacobian matrix and determinant

MAIN CONTENT 

APPLICATIONS OF PARTIAL DERIVATIVE OF FUNCTIONS IN SEVERAL 
VARIABLE. 

Chain rule 

Composites of more than two functions

The chain rule can be applied to composites of more than two functions. To take the 
derivative of a composite of more than two fun
(in that order) is the composite of 
derivative of f ∘ g ∘ h, it is sufficient to compute the derivative of 
The derivative of f can be calculated directly, and the derivative of 
applying the chain rule again. 

For concreteness, consider the function

 

This can be decomposed as the composite of three functions:

Their derivatives are: 
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∂ ∂y, and so on. The symbol "∂" is used (instead of "
that there is more than one variable, and that we are holding the other variables fixed. 

In this Unit, you should be able to: 

Apply partial derivative of functions of several variable in Chain rule. 

Apply partial derivative of functions of several variable in Curl (Mathematics)

Apply partial derivative of functions of several variable in Derivatives 

Apply partial derivative of functions of several variable in D’ Alamber operator

tial derivative of functions of several variable in Double integral

Apply partial derivative of functions of several variable in Exterior derivative

Apply partial derivative of function of several variable in Jacobian matrix and determinant

APPLICATIONS OF PARTIAL DERIVATIVE OF FUNCTIONS IN SEVERAL 

Composites of more than two functions 

The chain rule can be applied to composites of more than two functions. To take the 
derivative of a composite of more than two functions, notice that the composite of 
(in that order) is the composite of f with g ∘ h. The chain rule says that to compute the 

, it is sufficient to compute the derivative of f and the derivative of 
can be calculated directly, and the derivative of g ∘ h can be calculated by 

 

For concreteness, consider the function 

This can be decomposed as the composite of three functions: 

 

" is used (instead of "d") to remind us 
that there is more than one variable, and that we are holding the other variables fixed.  

Apply partial derivative of functions of several variable in Curl (Mathematics) 

Apply partial derivative of functions of several variable in D’ Alamber operator 

tial derivative of functions of several variable in Double integral 

Apply partial derivative of functions of several variable in Exterior derivative 

Apply partial derivative of function of several variable in Jacobian matrix and determinant 

APPLICATIONS OF PARTIAL DERIVATIVE OF FUNCTIONS IN SEVERAL 

The chain rule can be applied to composites of more than two functions. To take the 
ctions, notice that the composite of f, g, and h 

. The chain rule says that to compute the 
and the derivative of g ∘ h. 

can be calculated by 



 

The chain rule says that the derivative of their composite at the point 

In Leibniz notation, this is: 

or for short, 

The derivative function is therefore:

Another way of computing this derivative is to view the composite function 
composite of f ∘ g and h. Applying the chain rule to this situation gives:

This is the same as what was computed above. This should be expected because (
∘ (g ∘ h). 

 The quotient rule 
 

The chain rule can be used to derive some well
quotient rule is a consequence of the chain rule and the product rule. To see this, write the 
function f(x)/g(x) as the product 
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The chain rule says that the derivative of their composite at the point x = a 

 

 

The derivative function is therefore: 

 

Another way of computing this derivative is to view the composite function 
. Applying the chain rule to this situation gives: 

This is the same as what was computed above. This should be expected because (

The chain rule can be used to derive some well-known differentiation rules. For example, the 
quotient rule is a consequence of the chain rule and the product rule. To see this, write the 

) as the product f(x) · 1/g(x). First apply the product rule: 

 

 is: 

 

Another way of computing this derivative is to view the composite function f ∘ g ∘ h as the 

 

This is the same as what was computed above. This should be expected because (f ∘ g) ∘ h = f 

known differentiation rules. For example, the 
quotient rule is a consequence of the chain rule and the product rule. To see this, write the 



 

To compute the derivative of 1/
function, that is, the function that sends 
−1/x2. By applying the chain rule, the last 

which is the usual formula for the quotient rule.

 Derivatives of inverse functions

 inverse functions and differentiation

Suppose that y = g(x) has an 
f(y). There is a formula for the derivative of 
that f and g satisfy the formula

f(g(x)) = x. 

Because the functions f(g(x)) and 
of x is the constant function with value 1, and the derivative of 
chain rule. Therefore we have:

f'(g(x))g'(x) = 1. 

To express f′ as a function of an independent variable 
appears. Then we can solve for 

For example, consider the function 
Because g′(x) = ex, the above formula says that

This formula is true whenever 
formula can fail when one of these conditions is not true. For example, consider 
inverse is f(y) = y1/3, which is not differentiable at zero. If we attempt to use the above 
formula to compute the derivative of 
g′(0) = 0, so we must evaluate 1/0, which is undefined. Therefore the formula fails in this 
case. This is not surprising because 
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To compute the derivative of 1/g(x), notice that it is the composite of g 
function, that is, the function that sends x to 1/x. The derivative of the reciprocal function is 

. By applying the chain rule, the last expression becomes: 

which is the usual formula for the quotient rule. 

Derivatives of inverse functions 

ferentiation 

inverse function. Call its inverse function f so that we have 
). There is a formula for the derivative of f in terms of the derivative of 

satisfy the formula 

)) and x are equal, their derivatives must be equal. The derivative 
is the constant function with value 1, and the derivative of f(g(x)) is 

chain rule. Therefore we have: 

 as a function of an independent variable y, we substitute f(y
appears. Then we can solve for f′. 

 

For example, consider the function g(x) = ex. It has an inverse which is denoted 
, the above formula says that 

 

This formula is true whenever g is differentiable and its inverse f is also differentiable. This 
formula can fail when one of these conditions is not true. For example, consider 

, which is not differentiable at zero. If we attempt to use the above 
formula to compute the derivative of f at zero, then we must evaluate 1/g

(0) = 0, so we must evaluate 1/0, which is undefined. Therefore the formula fails in this 
case. This is not surprising because f is not differentiable at zero. 

 with the reciprocal 
. The derivative of the reciprocal function is 

 

so that we have x = 
erivative of g. To see this, note 

are equal, their derivatives must be equal. The derivative 
)) is determined by the 

y) for x wherever it 

inverse which is denoted f(y) = ln y. 

is also differentiable. This 
formula can fail when one of these conditions is not true. For example, consider g(x) = x3. Its 

, which is not differentiable at zero. If we attempt to use the above 
g′(f(0)). f(0) = 0 and 

(0) = 0, so we must evaluate 1/0, which is undefined. Therefore the formula fails in this 



 

 Higher derivatives 

Faà di Bruno's formula generalizes the chain rule to higher derivatives. The first few 
derivatives are 

Example 

Given where 

and using the chain rule. 

and 

Curl (mathematics) 

In vector calculus, the curl  (or 
rotation of a 3-dimensional vector field
a vector. The attributes of this vector (length and direction) characterize the rotation at that 
point. 

The curl of a vector field F, denoted curl 
projection onto various lines through the point. If 
curl of F onto is defined to be the limiting value of a closed 
orthogonal to as the path used in the integral b
divided by the area enclosed. 
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generalizes the chain rule to higher derivatives. The first few 

 

 

 

where and , determine the value of 

(or rotor ) is a vector operator that describes the 
vector field. At every point in the field, the curl is represented by 
this vector (length and direction) characterize the rotation at that 

, denoted curl F or ∇×F, at a point is defined in terms of its 
projection onto various lines through the point. If is any unit vector, the projection of the 

is defined to be the limiting value of a closed line integral
as the path used in the integral becomes infinitesimally close to the point, 

 

generalizes the chain rule to higher derivatives. The first few 

, determine the value of 

 

 

 

that describes the infinitesimal 
. At every point in the field, the curl is represented by 

this vector (length and direction) characterize the rotation at that 

, at a point is defined in terms of its 
is any unit vector, the projection of the 

line integral in a plane 
ecomes infinitesimally close to the point, 



 

As such, the curl operator maps 

 

Convention for vector orientation of the line integral

Implicitly, curl is defined by:[2]

The above formula means that the curl of a vector field is defined as t
density of the circulation of that field. To this definition fit naturally (i) the 
theorem, as a global formula corresponding to the definition, and (ii) the following "easy to 
memorize" definition of the curl in orthogonal curvilinear
coordinates, spherical, or cylindrical, or even elliptical or parabolical coordinates:

If (x1,x2,x3) are the Cartesian 

is the length of the coordinate vector corresponding to 
two components of curl result from cyclic index

Usage 

In practice, the above definition is rarely used because in virtually all cases, the curl 
can be applied using some set of 
have been derived. 

The notation ∇×F has its origins in the similarities to the 3 dimensional 
is useful as a mnemonic in Cartesian coordinates
del. Such notation involving 
coordinate systems are used, for instance, polar
physics) using the notation ∇×

Expanded in Cartesian coordinates
spherical and cylindrical coordinate
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As such, the curl operator maps C1 functions from R3 to R3 to C0 functions from 

 

Convention for vector orientation of the line integral 

[2] 

 

The above formula means that the curl of a vector field is defined as the infinitesimal 
of that field. To this definition fit naturally (i) the 

, as a global formula corresponding to the definition, and (ii) the following "easy to 
memorize" definition of the curl in orthogonal curvilinear coordinates, e.g. in cartesian 
coordinates, spherical, or cylindrical, or even elliptical or parabolical coordinates:

 

 coordinates and (u1,u2,u3) are the curvilinear coordinates, then 

is the length of the coordinate vector corresponding to 
two components of curl result from cyclic index-permutation: 3,1,2 → 1,2,3 →

In practice, the above definition is rarely used because in virtually all cases, the curl 
can be applied using some set of curvilinear coordinates, for which simpler representations 

has its origins in the similarities to the 3 dimensional cross product
Cartesian coordinates if we take ∇ as a vector differential operator

. Such notation involving operators is common in physics and algebra
coordinate systems are used, for instance, polar-toroidal coordinates (common in plasma 

×F will yield an incorrect result. 

Cartesian coordinates (see: Del in cylindrical and spherical coordinates
cylindrical coordinate representations), ∇×F is, for F composed of [

functions from R3 to R3. 

he infinitesimal area 
of that field. To this definition fit naturally (i) the Kelvin-Stokes 

, as a global formula corresponding to the definition, and (ii) the following "easy to 
coordinates, e.g. in cartesian 

coordinates, spherical, or cylindrical, or even elliptical or parabolical coordinates: 

) are the curvilinear coordinates, then 

is the length of the coordinate vector corresponding to . The remaining 
→ 1,2,3 → 2,3,1. 

In practice, the above definition is rarely used because in virtually all cases, the curl operator 
, for which simpler representations 

cross product, and it 
differential operator 
algebra. If certain 

toroidal coordinates (common in plasma 

Del in cylindrical and spherical coordinates for 
composed of [Fx, Fy, Fz]: 



 

 

where i, j , and k are the unit vectors
follows:[4] 

Although expressed in terms of coordinates, the result is invariant under proper rotations of 
the coordinate axes but the result inverts under reflection.

In a general coordinate system, the curl

where ε denotes the Levi-Civita symbol
and the Einstein summation convention
Equivalently, 

where ek are the coordinate vector fields. Equivalently, using the 
can be expressed as: 

Here and are the musical isomorphisms
to calculate the curl of F in any coordinate system, and how to extend the curl to any 
three dimensional Riemannian
a chiral operation. In other words, if the orientation is reversed, then the direction of the curl 
is also reversed. 

Directional derivative 

The directional derivative of a 

along a unit vector 
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unit vectors for the x-, y-, and z-axes, respectively. This expands as 

Although expressed in terms of coordinates, the result is invariant under proper rotations of 
the coordinate axes but the result inverts under reflection. 

In a general coordinate system, the curl is given by[2] 

 

Civita symbol, the metric tensor is used to lower the index
Einstein summation convention implies that repeated indices are summed over. 

 

are the coordinate vector fields. Equivalently, using the exterior derivative

 

musical isomorphisms, and is the Hodge dual. This formula shows how 
to calculate the curl of F in any coordinate system, and how to extend the curl to any 

Riemannian manifold. Since this depends on a choice of orientation, curl is 
operation. In other words, if the orientation is reversed, then the direction of the curl 

The directional derivative of a scalar function 

 

 

axes, respectively. This expands as 

 

Although expressed in terms of coordinates, the result is invariant under proper rotations of 

lower the index on F, 
implies that repeated indices are summed over. 

exterior derivative, the curl 

. This formula shows how 
to calculate the curl of F in any coordinate system, and how to extend the curl to any oriented 

manifold. Since this depends on a choice of orientation, curl is 
operation. In other words, if the orientation is reversed, then the direction of the curl 



 

is the function defined by the 

(See other notations below.) If the function 

derivative exists along any unit vector 

where the on the right denotes the 
point , the directional derivative of 
the point . 

One sometimes permits non-unit vectors, allowing the directional derivative to be taken in the 
direction of , where is any nonzero vector. In this case, one must modify the definitions 
to account for the fact that may not be 

or in case f is differentiable at 

Such notation for non-unit vectors (undefined for the zero vector), however, is incompatible 
with notation used elsewhere in mathematics, where the space of derivations in a 
algebra is expected to be a vector space.

 Notation 

Directional derivatives can be also denoted by:

In the continuum mechanics of solids

Several important results in continuum mechanics require the derivatives of vectors with 
respect to vectors and of tensors
directive provides a systematic way of finding these derivatives.

The definitions of directional derivatives for various situations are given below. It is assumed 
that the functions are sufficiently smooth that derivatives can be taken.
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defined by the limit 

 

(See other notations below.) If the function f is differentiable at , then the directional 

derivative exists along any unit vector and one has 

 

on the right denotes the gradient and is the Euclidean inner product
, the directional derivative of f intuitively represents the rate of change

unit vectors, allowing the directional derivative to be taken in the 
is any nonzero vector. In this case, one must modify the definitions 

may not be normalized, so one has 

 

is differentiable at , 

 

unit vectors (undefined for the zero vector), however, is incompatible 
with notation used elsewhere in mathematics, where the space of derivations in a 

is expected to be a vector space. 

Directional derivatives can be also denoted by: 

 

In the continuum mechanics of solids 

Several important results in continuum mechanics require the derivatives of vectors with 
tensors with respect to vectors and tensors.[1]

provides a systematic way of finding these derivatives. 

The definitions of directional derivatives for various situations are given below. It is assumed 
tions are sufficiently smooth that derivatives can be taken. 

, then the directional 

Euclidean inner product. At any 
rate of change in f along at 

unit vectors, allowing the directional derivative to be taken in the 
is any nonzero vector. In this case, one must modify the definitions 

unit vectors (undefined for the zero vector), however, is incompatible 
with notation used elsewhere in mathematics, where the space of derivations in a derivation 

Several important results in continuum mechanics require the derivatives of vectors with 
[1] The directional 

The definitions of directional derivatives for various situations are given below. It is assumed 



 

 Derivatives of scalar valued functions of vectors

Let be a real valued function of the vector 
to (or at ) in the direction 

for all vectors . 

Properties: 

1) If 

2) If 

3) If then 

 Derivatives of vector valued functions of vectors

Let be a vector valued function of the vector 
respect to (or at ) in the direction 

for all vectors . 

Properties: 

1) If 

2) If 

3) If then 
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Derivatives of scalar valued functions of vectors 

be a real valued function of the vector . Then the derivative of 
) in the direction is the vector defined as 

 

then  

2) If 

 

then  

Derivatives of vector valued functions of vectors 

be a vector valued function of the vector . Then the derivative of 
) in the direction is the second order tensor defined as

 

then  

2) If 

 

then  

. Then the derivative of with respect 

then 

. Then the derivative of with 
defined as 

then 



 

 Derivatives of scalar valued functions of second

Let be a real valued function of the second order tensor 

with respect to (or at 

for all second order tensors 

Properties: 

1) If 

2) If 

3) If then 

 Derivatives of tensor valued functions of second

Let be a second order tensor valued function of the second order tensor 

derivative of with respect to 
defined as 

for all second order tensors 

Properties: 

1) If 

2) If 
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Derivatives of scalar valued functions of second-order tensors 

be a real valued function of the second order tensor . Then the derivative of 

(or at ) in the direction is the second order tensor

 

. 

then 

2) If 

 

then  

Derivatives of tensor valued functions of second-order tensors 

be a second order tensor valued function of the second order tensor 

with respect to (or at ) in the direction is the fourth order tensor

 

. 

then 

2) If 

 

. Then the derivative of 

second order tensor defined as 

 

then 

be a second order tensor valued function of the second order tensor . Then the 

fourth order tensor 

 

then 



 

3) If 

4) If then 

Exterior derivative 

The exterior derivative of a differential form of degree 
There are a variety of equivalent definitions of the exterior derivative.

 Exterior derivative of a function

If ƒ is a smooth function, then the exterior derivative of 
the unique one-form such that for every smooth 
directional derivative of ƒ in the direction of 
0-form) is a one-form. 

 Exterior derivative of a k-form

The exterior derivative is defined to be the unique 
forms satisfying the following properties:

1. dƒ is the differential of 
2. d(dƒ) = 0 for any smooth function 
3. d(α∧β) = dα∧β + (−1)

antiderivation of degree 1 

The second defining property holds in more generality: in fact, d(d
This is part of the Poincaré lemma
if ƒ is a function and α a k-form, then d(
degree 0. 

 Exterior derivative in local coordinates

Alternatively, one can work entirely in a 
coordinate differentials dx1,...,d
Given a multi-index I = (i1,...,
form 

over Rn is defined as 
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then 

then  

The exterior derivative of a differential form of degree k is a differential form of degree 
There are a variety of equivalent definitions of the exterior derivative. 

Exterior derivative of a function 

is a smooth function, then the exterior derivative of ƒ is the differential
such that for every smooth vector field X, dƒ(X) = Xƒ

in the direction of X. Thus the exterior derivative of a function (or 

form 

The exterior derivative is defined to be the unique R-linear mapping from 
forms satisfying the following properties: 

is the differential of ƒ for smooth functions ƒ. 
) = 0 for any smooth function ƒ. 

−1)p(α∧dβ) where α is a p-form. That is to say, d is an 
of degree 1 on the exterior algebra of differential forms.

The second defining property holds in more generality: in fact, d(dα) = 0 for any 
Poincaré lemma. The third defining property implies as a special case that 

form, then d(ƒα) = dƒ∧α + ƒ∧dα because functions are forms of 

derivative in local coordinates 

Alternatively, one can work entirely in a local coordinate system (x
,...,dxn form a basic set of one-forms within the 
,...,ik) with 1 ≤ ip ≤ n for 1 ≤ p ≤ k, the exterior derivative of a 

 

 

 

is a differential form of degree k + 1. 

differential of ƒ. That is, dƒ is 
Xƒ, where Xƒ is the 

vative of a function (or 

linear mapping from k-forms to (k+1)-

form. That is to say, d is an 
of differential forms. 

) = 0 for any k-form α. 
. The third defining property implies as a special case that 

because functions are forms of 

x1,...,xn). First, the 
forms within the coordinate chart. 

, the exterior derivative of a k-



 

For general k-forms ω = ΣI fI 
values in {1, ..., n}), the definition of the exterior derivative is extended 
whenever i is one of the components of the multi
product). 

The definition of the exterior derivative in local coordinates follows from the preceding 
definition. Indeed, if ω = ƒI dx

Here, we have here interpreted 
exterior derivative. 

 Invariant formula 

Alternatively, an explicit formula can be given for the exterior derivative of a 
paired with k+1 arbitrary smooth 

where [Vi,Vj] denotes Lie bracket

In particular, for 1-forms we have: d
vector fields. 

 Examples 

1. Consider σ = u dx1
∧dx2 over a 1
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 dxI (where the components of the multi-index 
}), the definition of the exterior derivative is extended 

is one of the components of the multi-index I then dxi∧dx

The definition of the exterior derivative in local coordinates follows from the preceding 
xi1∧...∧dxik, then 

 

 

 

 

re interpreted ƒI as a zero-form, and then applied the properties of the 

Alternatively, an explicit formula can be given for the exterior derivative of a 
+1 arbitrary smooth vector fields V1,V2, ..., Vk: 

 

Lie bracket and the hat denotes the omission of that element:

forms we have: dω(X,Y) = Xω(Y) − Yω(X) − ω([X,Y]), where 

over a 1-form basis dx1,...,dxn. The exterior derivative is:

 

index I run over all the 
}), the definition of the exterior derivative is extended linearly. Note that 

xI = 0 (see wedge 

The definition of the exterior derivative in local coordinates follows from the preceding 

 

form, and then applied the properties of the 

Alternatively, an explicit formula can be given for the exterior derivative of a k-form ω, when 

 

and the hat denotes the omission of that element: 

 

]), where X and Y are 

. The exterior derivative is: 



 

The last formula follows easily from the properties of the 

. 

2. For a 1-form σ = u dx + v d
each term (consider x1 = x and 

D'Alembert operator 

In special relativity, electromagnetism
(represented by a box: ), also called the 
Laplace operator of Minkowski space
physicist Jean le Rond d'Alembert
has the form: 

Applications 

he Klein–Gordon equation has the form

 

The wave equation for the electromagnetic fie
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The last formula follows easily from the properties of the wedge product

dy defined over R2. We have, by applying the above formula to 
and x2 = y) the following sum, 

 

 

 

electromagnetism and wave theory, the d'Alembert operator
), also called the d'Alembertian  or the wave operator

Minkowski space. The operator is named for French mathematician and 
Jean le Rond d'Alembert. In Minkowski space in standard coordinates (

 

has the form 

for the electromagnetic field in vacuum is 

wedge product. Namely, 

. We have, by applying the above formula to 

 

d'Alembert operator  
wave operator, is the 

h mathematician and 
. In Minkowski space in standard coordinates (t, x, y, z) it 

 



 

 

where Aµ is the electromagnetic four

The wave equation for small vibrations is of the form

where is the displacement.

 Green's function 

The Green's function 

where is the Dirac delta function

Explicitly we have 

where is the Heaviside step function

 

 

 
Double Integral
The double integral of f(x, y) over the region R in the xy

 

= (volume above R and under the graph of f) 
    - (volume below R

• The following figure illustrates this volume (in the case that the graph of f is above 
the region R).  
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electromagnetic four-potential. 

for small vibrations is of the form 

 

is the displacement. 

for the d'Alembertian is defined by the equation

 

Dirac delta function and and are two points in Minkowski space.

 

Heaviside step function 

Double Integral
double integral of f(x, y) over the region R in the xy-plane is defined as 

 

R 

f(x, y) dx dy 

= (volume above R and under the graph of f) 
(volume below R and above the graph of f). 

The following figure illustrates this volume (in the case that the graph of f is above 

for the d'Alembertian is defined by the equation 

are two points in Minkowski space. 

Double Integral  
is defined as  

The following figure illustrates this volume (in the case that the graph of f is above 



 

• 

• 

• Computing Double Integrals
If R is the rectangle a �

 

R 

  

• 

• 

• If R is the region a � x �
over R according to the following equation. 

 

R 

f(x, y) dx dy =

• 
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Computing Double Integrals
� x � b and c � y � d (see figure below) then 

f(x, y) dx dy = 
 

d 
 
c  

 

b 
 
a 

f(x, y) dx 
 

dy 

= 
 

b 
 
a  

 

d 
 
c 

f(x, y) dy 
 

dx 

 

� x � b and c(x) � y � d(x) (see figure below) then we integrate 
over R according to the following equation.  

f(x, y) dx dy = 
 

b 
 
a  

 

d(x) 
 
c(x) 

f(x, y) dy 
 

dx 

 

 

Computing Double Integrals  
 d (see figure below) then  

 

 d(x) (see figure below) then we integrate 



 

               JACOBIAN  MATRIX 

determina  

The Jacobian of a function describes the orientation
the Jacobian generalizes the gradient of a scalar valued function of multiple variables which itself generalizes the 
derivative of a scalar-valued function of a scalar. Likewise, the Jacobian can also be thought of as describing the 
amount of "stretching" that a transformation imposes. For e
the Jacobian of f, J(x1,y1) describes how much the image in the neighborhood of 
directions. 

If a function is differentiable at a point, its derivative is given in coordinates by the Jacobian, but a function doesn't 
need to be differentiable for the Jacobian to be defined, since only the 

The importance of the Jacobian lies in the fact that it represents the best 
function near a given point. In this sense, the Jacobian is the derivative of a multivariate function.

If p is a point in Rn and F is differentiable
described by JF(p) is the best linear approximation

for x close to p and where o is the little o-notation

In a sense, both the gradient and Jacobian are "
of several variables, the latter the first derivative of a 
be regarded as a special version of the Jacobian: it is the Jacobian of a scalar function of several variables.

The Jacobian of the gradient has a special name: the 
the scalar function of several variables in question.

 Inverse 

According to the inverse function theorem
Jacobian matrix of the inverse function. That is, for some function 

 

It follows that the (scalar) inverse of the Jacobian determinant of a transformation is the Jacobian determinant of the 
inverse transformation. 

 Uses 

 Dynamical systems 

Consider a dynamical system of the form x
→ Rn is continuous and differentiable. If 
behavior of the system near a stationary point is related to the 
stationary point.[1] Specifically, if the eigenvalues all have a negative real part, then the system is stable in the 
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orientation of a tangent plane to the function at a given point. In this way, 
of a scalar valued function of multiple variables which itself generalizes the 

valued function of a scalar. Likewise, the Jacobian can also be thought of as describing the 
amount of "stretching" that a transformation imposes. For example, if (x2,y2) = f(x1,y1) is used to transform an image, 

describes how much the image in the neighborhood of (x1,y

If a function is differentiable at a point, its derivative is given in coordinates by the Jacobian, but a function doesn't 
need to be differentiable for the Jacobian to be defined, since only the partial derivatives

The importance of the Jacobian lies in the fact that it represents the best linear approximation to a differentiable 
function near a given point. In this sense, the Jacobian is the derivative of a multivariate function.

differentiable at p, then its derivative is given by JF(p). In this case, the 
linear approximation of F near the point p, in the sense that

 

notation (for ) and is the distance

and Jacobian are "first derivatives"  — the former the first derivative of a 
of several variables, the latter the first derivative of a vector function of several variables. In general, the 
be regarded as a special version of the Jacobian: it is the Jacobian of a scalar function of several variables.

has a special name: the Hessian matrix, which in a sense is the "
the scalar function of several variables in question. 

inverse function theorem, the matrix inverse of the Jacobian matrix of an 
function. That is, for some function F : Rn → Rn and a point 

It follows that the (scalar) inverse of the Jacobian determinant of a transformation is the Jacobian determinant of the 

x' = F(x), where x' is the (component-wise) time derivative of 
is continuous and differentiable. If F(x0) = 0, then x0 is a stationary point (also called a fixed point). The 

behavior of the system near a stationary point is related to the eigenvalues of JF(x
Specifically, if the eigenvalues all have a negative real part, then the system is stable in the 

    

2

 
 

 

to the function at a given point. In this way, 
of a scalar valued function of multiple variables which itself generalizes the 

valued function of a scalar. Likewise, the Jacobian can also be thought of as describing the 
is used to transform an image, 
y1) is stretched in the x and y 

If a function is differentiable at a point, its derivative is given in coordinates by the Jacobian, but a function doesn't 
partial derivatives are required to exist. 

approximation to a differentiable 
function near a given point. In this sense, the Jacobian is the derivative of a multivariate function. 

). In this case, the linear map 
, in the sense that 

distance between x and p. 

the former the first derivative of a scalar function 
of several variables. In general, the gradient can 

be regarded as a special version of the Jacobian: it is the Jacobian of a scalar function of several variables. 

, which in a sense is the "second derivative" of 

of the Jacobian matrix of an invertible function is the 
and a point p in Rn, 

It follows that the (scalar) inverse of the Jacobian determinant of a transformation is the Jacobian determinant of the 

wise) time derivative of x, and F : Rn 
is a stationary point (also called a fixed point). The 

x0), the Jacobian of F at the 
Specifically, if the eigenvalues all have a negative real part, then the system is stable in the 
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operating point, if any eigenvalue has a positive real part, then the point is unstable. 

 Newton's method 

A system of coupled nonlinear equations can be solved iteratively by Newton's method. This method uses the 
Jacobian matrix of the system of equations. 

The following is the dettail code in MATLAB 

function s = jacobian(f, x, tol) % f is a multivariable function handle, x is a starting point 

   if nargin == 2 

       tol = 10
5−
; 

   end 
   while 1 
       % if x and f(x) are row vectors, we need transpose operations here 
       y = x' - jacob(f, x)\f(x)';             % get the next point 
       if norm(f(y))<tol                       % check error tolerate 
           s = y'; 
           return; 
       end 
       x = y'; 
   end   

function j = jacob(f, x) % approximately calculate Jacobian matrix 

   k = length(x); 
   j = zeros(k, k); 
   for m = 1: k 
       x2 = x; 
       x2(m) =x(m)+0.001; 
       j(m, :) = 1000*(f(x2)-f(x));        % partial derivatives in m-th row       
   end 

Jacobian determinant 

If m = n, then F is a function from n-space to n-space and the Jacobian matrix is a square matrix. We can then form 
its determinant, known as the Jacobian determinant. The Jacobian determinant is sometimes simply called "the 
Jacobian." 

The Jacobian determinant at a given point gives important information about the behavior of F near that point. For 
instance, the continuously differentiable function F is invertible near a point p ∈ Rn if the Jacobian determinant at p 
is non-zero. This is the inverse function theorem. Furthermore, if the Jacobian determinant at p is positive, then F 
preserves orientation near p; if it is negative, F reverses orientation. The absolute value of the Jacobian determinant 
at p gives us the factor by which the function F expands or shrinks volumes near p; this is why it occurs in the 
general substitution rule. 

 Uses 



 

The Jacobian determinant is used when making a 
function over a region within its domain. To accommodate for the change of coordinates the magnitude of the 
Jacobian determinant arises as a multiplica
coordinates be done in a manner which maintains an 
The Jacobian determinant, as a result, is usually well defined.

 Examples 

Example 1. The transformation from spherical coordinates
the function F : R+ × [0,π] × [0,2π) → R3 with components:

 

 

 

The Jacobian matrix for this coordinate change is

The determinant is r2 sin θ. As an example, since 
volume element dV = r2 sin θ dr dθ dϕ

variation the new coordinates can be defined a

equals to 1 and volume element becomes 

Example 2. The Jacobian matrix of the function 

 

 

 

 

is 
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The Jacobian determinant is used when making a change of variables when evaluating a 
function over a region within its domain. To accommodate for the change of coordinates the magnitude of the 
Jacobian determinant arises as a multiplicative factor within the integral. Normally it is required that the change of 
coordinates be done in a manner which maintains an injectivity between the coordinates that determine the domain
The Jacobian determinant, as a result, is usually well defined. 

spherical coordinates (r, θ, φ) to Cartesian coordinates
with components: 

change is 

. As an example, since dV = dx1 dx2 dx3 this determinant implies that the 
ϕ. Nevertheless this determinant varies with coordinates. To avoid any 

variation the new coordinates can be defined as 

. 

The Jacobian matrix of the function F : R3 → R4 with components 

when evaluating a multiple integral of a 
function over a region within its domain. To accommodate for the change of coordinates the magnitude of the 

tive factor within the integral. Normally it is required that the change of 
between the coordinates that determine the domain. 

Cartesian coordinates (x1, x2, x3) , is given by 

 

this determinant implies that the differential 
. Nevertheless this determinant varies with coordinates. To avoid any 

[2] Now the determinant 



 

This example shows that the Jacobian need not be a square matrix.

Example 3. 

 

 

The Jacobian determinant is equal to r. This shows how an integral in the 
into an integral in the polar coordinate system

. 

Example 4. The Jacobian determinant of the function 

 

is 

From this we see that F reverses orientation near those points where 
locally invertible everywhere except near points where 
around the point (1,1,1) and apply F to that object, you will get an object set with approximately 40 times the volume 
of the original one 
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example shows that the Jacobian need not be a square matrix. 

 

. This shows how an integral in the Cartesian coordinate system
polar coordinate system: 

The Jacobian determinant of the function F : R3 → R3 with components 

reverses orientation near those points where x1 and x2 have the same sign; the function is 
invertible everywhere except near points where x1 = 0 or x2 = 0. Intuitively, if you start with a tiny object 

to that object, you will get an object set with approximately 40 times the volume 

 

Cartesian coordinate system is transformed 

 

have the same sign; the function is 
= 0. Intuitively, if you start with a tiny object 

to that object, you will get an object set with approximately 40 times the volume 



 

CONCLUSION 

   In this unit you have applied partial derivative of functions of several variable to solve chain rule and curl 
(mathematics) . You have also applied partial derivative of functions of several variable solve derivatives and D’ 
Alamber operator. You have applied partial derivative of functions of several variable in Double integral and 
Exterior derivative. You also used partial derivative of function of several variable in Jacobian matrix and 
determinant. 

SUMMARY 

In this unit, you have studied the : 

         Application of partial derivative of functions of several variable in Chain rule.

         Application of partial derivative of functions of several variable in Curl (Mathematics)

         Application of partial derivative of functions of several 

         Application of partial derivative of functions of several variable in D’ Alamber operator

         Application of partial derivative of functions of several variable in Double integral

        Application of partial derivative of functions of several variable in Exterior derivative

        Application of partial derivative of function of several variable in Jacobian matrix and determinant

 

TUTOR – MARKED ASSIGNMENT 

1. Find the equation of the tangent plane to 

 2.Find the linear approximation to 
 

2.Find the absolute minimum and absolute maximum of 

given by  and 

4. Find the absolute minimum and absolute maximum of

5. Find the  partial derivatives of the following in the second order :

a. F(x,y) = 62
2 +− xxyx

b. F(x,y) = e
xy
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   Introduction 

This article is an overview of the term as used in calculus. For a less technical overview of 
the subject, see Differential calculus

 

The graph of a function, drawn in black, and a 
slope of the tangent line is equal to the derivative of the function at the marked point.

In calculus, a branch of mathematics
as its input changes. Loosely speaking, a derivative can be thought of as how much one 
quantity is changing in response to changes in some other quantity; for example, the 
derivative of the position of a moving object with respect to time is the object's instantaneous 
velocity. 

The derivative of a function at a chosen input value describes the best 
the function near that input value. For a 
derivative at a point equals the 
point. In higher dimensions, the derivative of a function at a point is a 
called the linearization.[1] A closely related notion is the 

The process of finding a derivative is called 
antidifferentiation . The fundamental theorem of calculus
same as integration. Differentiation and int
in single-variable calculus. 

OBJECTIVES 

In this unit, you should be able to :
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Use derivative to solve Total derivative, total differential and Jacobian matrix

Marked Assignment 
7.0    References/Further Readings 

This article is an overview of the term as used in calculus. For a less technical overview of 
Differential calculus. For other uses, see Derivative (disambiguation)

 

The graph of a function, drawn in black, and a tangent line to that function, drawn in red. The 
slope of the tangent line is equal to the derivative of the function at the marked point.

mathematics, the derivative is a measure of how a 
Loosely speaking, a derivative can be thought of as how much one 

quantity is changing in response to changes in some other quantity; for example, the 
derivative of the position of a moving object with respect to time is the object's instantaneous 

The derivative of a function at a chosen input value describes the best linear approximation
e function near that input value. For a real-valued function of a single real variable, the 

derivative at a point equals the slope of the tangent line to the graph of the function
point. In higher dimensions, the derivative of a function at a point is a linear transformation

A closely related notion is the differential of a function

The process of finding a derivative is called differentiation . The reverse process is called 
fundamental theorem of calculus states that antidifferentiation is the 

. Differentiation and integration constitute the two fundamental operations 

In this unit, you should be able to : 

Use derivative to solve Total derivative, total differential and Jacobian matrix 

This article is an overview of the term as used in calculus. For a less technical overview of 
Derivative (disambiguation). 

to that function, drawn in red. The 
slope of the tangent line is equal to the derivative of the function at the marked point. 

is a measure of how a function changes 
Loosely speaking, a derivative can be thought of as how much one 

quantity is changing in response to changes in some other quantity; for example, the 
derivative of the position of a moving object with respect to time is the object's instantaneous 

linear approximation of 
of a single real variable, the 
graph of the function at that 

linear transformation 
rential of a function. 

. The reverse process is called 
states that antidifferentiation is the 

egration constitute the two fundamental operations 



 

Solve directional derivatives  

Use derivative to solve Total derivative, total differential and Jacobian matrix

Main content 

Directional derivatives 

If ƒ is a real-valued function on 
the direction of the coordinate axes. For example, if 
derivatives measure the variation in
however, directly measure the variation of 
line y = x. These are measured using directional derivatives. Choose a vector

 

The directional derivative of 

In some cases it may be easier to compute or estimate the directional derivative after 
changing the length of the vector. Often this is done to turn the problem into the computation 
of a directional derivative in the direction of a unit vector. To see how this works, suppose 
that v = λu. Substitute h = k/λ into the difference quotient. The difference quotient becomes:

This is λ times the difference quotient for the directional derivative of 
Furthermore, taking the limit as 
zero because h and k are multiples of each other. Therefore 
rescaling property, directional derivatives are f

If all the partial derivatives of 
directional derivative of ƒ in the direction 

This is a consequence of the definition of the 
derivative is linear in v, meaning that 

The same definition also works when 
is applied to each component of the vectors. In this case, the directional derivative is a vector 
in Rm. 
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valued function on Rn, then the partial derivatives of ƒ measure its variation in 
the direction of the coordinate axes. For example, if ƒ is a function of x and 
derivatives measure the variation in ƒ in the x direction and the y direction. They do not, 
however, directly measure the variation of ƒ in any other direction, such as along the diagonal 

. These are measured using directional derivatives. Choose a vector

 

of ƒ in the direction of v at the point x is the limit

 

In some cases it may be easier to compute or estimate the directional derivative after 
changing the length of the vector. Often this is done to turn the problem into the computation 

al derivative in the direction of a unit vector. To see how this works, suppose 
/λ into the difference quotient. The difference quotient becomes:

 

 times the difference quotient for the directional derivative of f
Furthermore, taking the limit as h tends to zero is the same as taking the limit as 

are multiples of each other. Therefore Dv(ƒ) = λDu(ƒ). Because of this 
rescaling property, directional derivatives are frequently considered only for unit vectors.

If all the partial derivatives of ƒ exist and are continuous at x, then they determine the 
in the direction v by the formula: 

 

This is a consequence of the definition of the total derivative. It follows that the directional 
, meaning that Dv + w(ƒ) = Dv(ƒ) + Dw(ƒ). 

The same definition also works when ƒ is a function with values in Rm. The above definition 
is applied to each component of the vectors. In this case, the directional derivative is a vector 

Use derivative to solve Total derivative, total differential and Jacobian matrix 

measure its variation in 
and y, then its partial 

direction. They do not, 
in any other direction, such as along the diagonal 

. These are measured using directional derivatives. Choose a vector 

is the limit 

In some cases it may be easier to compute or estimate the directional derivative after 
changing the length of the vector. Often this is done to turn the problem into the computation 

al derivative in the direction of a unit vector. To see how this works, suppose 
 into the difference quotient. The difference quotient becomes: 

 

f with respect to u. 
tends to zero is the same as taking the limit as k tends to 

(ƒ). Because of this 
requently considered only for unit vectors. 

, then they determine the 

. It follows that the directional 

. The above definition 
is applied to each component of the vectors. In this case, the directional derivative is a vector 



 

 Total derivative, total differential and Jacobian mat

When ƒ is a function from an open subset of 
chosen direction is the best linear approximation to 
when n > 1, no single directional derivative can give a comp
The total derivative, also called the (
considering all directions at onc
approximation formula holds:

Just like the single-variable derivative, 
approximation is as small as possible.

If n and m are both one, then the derivative 
the product of two numbers. But in higher dimensions, it is impossible for 
number. If it were a number, then 
would be vectors in Rm, and th
approximation formula to make sense, 
vectors in Rm, and ƒ�′(a)v must denote this function evaluated at 

To determine what kind of function it i
rewritten as 

Notice that if we choose another vector 
approximate equation by substituting 
substituting both w for v and a

If we assume that v is small and that the derivative varies continuously in 
is approximately equal to ƒ�′(
left-hand side can be rewritten in a different way using the linear approximation formula with 
v + w substituted for v. The linear approximation formula implies:

This suggests that ƒ�′(a) is a 
space Rm. In fact, it is possible to make this a precise derivation by measuring the error in the 
approximations. Assume that the error in these linear approximation formula is bounded by a 
constant times ||v||, where the constant is independent of 
Then, after adding an appropriate error term, all of the above approximate
rephrased as inequalities. In particular, 
term. In the limit as v and w 
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is a function from an open subset of Rn to Rm, then the directional derivative of 
chosen direction is the best linear approximation to ƒ at that point and in that direction. But 

> 1, no single directional derivative can give a complete picture of the behavior of 
The total derivative, also called the (total) differential , gives a complete picture by 
considering all directions at once. That is, for any vector v starting at 
approximation formula holds: 

 

variable derivative, ƒ�′(a) is chosen so that the error in this 
approximation is as small as possible. 

are both one, then the derivative ƒ�′(a) is a number and the expression 
the product of two numbers. But in higher dimensions, it is impossible for 
number. If it were a number, then ƒ�′(a)v would be a vector in Rn while the other terms 

, and therefore the formula would not make sense. For the linear 
approximation formula to make sense, ƒ�′(a) must be a function that sends vectors in 

must denote this function evaluated at v. 

To determine what kind of function it is, notice that the linear approximation formula can be 

 

Notice that if we choose another vector w, then this approximate equation determines another 
approximate equation by substituting w for v. It determines a third approximate equation by 

a + v for a. By subtracting these two new equations, we get

is small and that the derivative varies continuously in 
�′(a), and therefore the right-hand side is approximately zero. The 

hand side can be rewritten in a different way using the linear approximation formula with 
. The linear approximation formula implies: 

a linear transformation from the vector space 
. In fact, it is possible to make this a precise derivation by measuring the error in the 

proximations. Assume that the error in these linear approximation formula is bounded by a 
||, where the constant is independent of v but depends continuously on 

Then, after adding an appropriate error term, all of the above approximate
rephrased as inequalities. In particular, ƒ�′(a) is a linear transformation up to a small error 

 tend to zero, it must therefore be a linear transformation. Since 

, then the directional derivative of ƒ in a 
at that point and in that direction. But 

lete picture of the behavior of ƒ. 
, gives a complete picture by 

starting at a, the linear 

) is chosen so that the error in this 

) is a number and the expression ƒ�′(a)v is 
the product of two numbers. But in higher dimensions, it is impossible for ƒ�′(a) to be a 

while the other terms 
erefore the formula would not make sense. For the linear 

) must be a function that sends vectors in Rn to 

s, notice that the linear approximation formula can be 

, then this approximate equation determines another 
. It determines a third approximate equation by 

. By subtracting these two new equations, we get 

 

is small and that the derivative varies continuously in a, then ƒ�′(a + v) 
hand side is approximately zero. The 

hand side can be rewritten in a different way using the linear approximation formula with 

 

from the vector space Rn to the vector 
. In fact, it is possible to make this a precise derivation by measuring the error in the 

proximations. Assume that the error in these linear approximation formula is bounded by a 
but depends continuously on a. 

Then, after adding an appropriate error term, all of the above approximate equalities can be 
) is a linear transformation up to a small error 

tend to zero, it must therefore be a linear transformation. Since 



 

we define the total derivative by taking a limit as 
transformation. 

In one variable, the fact that the derivative is the best linear approximation is expressed by 
the fact that it is the limit of difference quotients
not make sense in higher dimensions because it is not usually possible to divide vectors. In 
particular, the numerator and denominator of the difference quotient are not even in the same 
vector space: The numerator lies in the codomain 
domain Rn. Furthermore, the derivative is a linear transformation, a different type of object 
from both the numerator and denominator. To make precise the idea that 
linear approximation, it is necessary to adapt a different formula for the one
derivative in which these problems disappear. If 
derivative may be manipulated to show that the derivative of 
ƒ�′(a) such that 

This is equivalent to 

because the limit of a function tends to zero if and only if the limit of the absolute value of 
the function tends to zero. This last formula can be adapted to the many
replacing the absolute values with 

The definition of the total derivative
transformation ƒ�′(a) : Rn → 

Here h is a vector in Rn, so the norm in the denominator is the standard length on 
However, ƒ′(a)h is a vector in 
Rm. If v is a vector starting at 
sometimes written ƒ*v. 

If the total derivative exists at 
ƒ exist at a, and for all v, ƒ�′
write ƒ using coordinate functions, so that 
expressed using the partial derivatives as a 
of ƒ at a: 
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we define the total derivative by taking a limit as v goes to zero, ƒ�′(a

In one variable, the fact that the derivative is the best linear approximation is expressed by 
the fact that it is the limit of difference quotients. However, the usual difference quotient does 
not make sense in higher dimensions because it is not usually possible to divide vectors. In 
particular, the numerator and denominator of the difference quotient are not even in the same 

ator lies in the codomain Rm while the denominator lies in the 
. Furthermore, the derivative is a linear transformation, a different type of object 

from both the numerator and denominator. To make precise the idea that ƒ
pproximation, it is necessary to adapt a different formula for the one

derivative in which these problems disappear. If ƒ : R → R, then the usual definition of the 
derivative may be manipulated to show that the derivative of ƒ at a is the unique n

 

 

because the limit of a function tends to zero if and only if the limit of the absolute value of 
the function tends to zero. This last formula can be adapted to the many-variable situation by 

solute values with norms. 

total derivative of ƒ at a, therefore, is that it is the unique linear 
→ Rm such that 

 

, so the norm in the denominator is the standard length on 
is a vector in Rm, and the norm in the numerator is the standard length on 

is a vector starting at a, then ƒ�′(a)v is called the pushforward

If the total derivative exists at a, then all the partial derivatives and directional derivatives of 
�′(a)v is the directional derivative of ƒ in the direction 

using coordinate functions, so that ƒ = (ƒ1, ƒ2, ..., ƒm), then the total derivative can be 
expressed using the partial derivatives as a matrix. This matrix is called the 

 

a) must be a linear 

In one variable, the fact that the derivative is the best linear approximation is expressed by 
. However, the usual difference quotient does 

not make sense in higher dimensions because it is not usually possible to divide vectors. In 
particular, the numerator and denominator of the difference quotient are not even in the same 

while the denominator lies in the 
. Furthermore, the derivative is a linear transformation, a different type of object 

ƒ�′�(a) is the best 
pproximation, it is necessary to adapt a different formula for the one-variable 

, then the usual definition of the 
is the unique number 

because the limit of a function tends to zero if and only if the limit of the absolute value of 
variable situation by 

, therefore, is that it is the unique linear 

, so the norm in the denominator is the standard length on Rn. 
, and the norm in the numerator is the standard length on 

pushforward of v by ƒ and is 

, then all the partial derivatives and directional derivatives of 
in the direction v. If we 

), then the total derivative can be 
. This matrix is called the Jacobian matrix 



 

The existence of the total derivative 
partial derivatives, but if the partial derivatives exist and are continuous, then the total 
derivative exists, is given by the Jacobian, and depends continuously on 

The definition of the total derivative subsumes the definition of the derivative in one variable. 
That is, if ƒ is a real-valued function of a real variable, then the total derivative exists if and 
only if the usual derivative exists. The Jacobian matrix reduces to a 1
entry is the derivative ƒ′(x). This 1×1 matrix satisfies the property that 
ƒ�′(a)h is approximately zero, in other words that

Up to changing variables, this is the statement that the function 

The total derivative of a function does not give another function in the same way as the one
variable case. This is because the total derivative of a multivariable function has to record 
much more information than the derivative of a single
derivative gives a function from the 
target. 

The natural analog of second, third, and higher
transformation, is not a function on the tangent bundle, and is not built by repeatedly taking 
the total derivative. The analog of a higher
transformation because higher
concavity, which cannot be described in terms of linear dat
function on the tangent bundle because the tangent bundle only has room for the base space 
and the directional derivatives. Because jets capture higher
arguments additional coordinates repre
determined by these additional coordinates is called the 
total derivative and the partial deriva
the kth order jet of a function and its partial derivatives of order less than or equal to 

 

 

Conclusion 

        In this unit, you have used derivative to solve problems on directional derivatives and 
have also solve problems on total derivative,total differentiation and Jacobian matrix.

Summary 

In this unit you have studied : 

Solve directional derivatives 

Use derivative to solve problems on total derivative, total differentiation and Jacobian matrix.

 
Tutor-Marked Assignment 

1.Evaluate the derivative of F(x,y,z) = 3(
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total derivative ƒ′(a) is strictly stronger than the existence of all the 
partial derivatives, but if the partial derivatives exist and are continuous, then the total 
derivative exists, is given by the Jacobian, and depends continuously on a. 

n of the total derivative subsumes the definition of the derivative in one variable. 
valued function of a real variable, then the total derivative exists if and 

only if the usual derivative exists. The Jacobian matrix reduces to a 1×1 matrix whose only 
). This 1×1 matrix satisfies the property that 

is approximately zero, in other words that 

 

Up to changing variables, this is the statement that the function 

is the best linear approximation to ƒ at a. 

The total derivative of a function does not give another function in the same way as the one
variable case. This is because the total derivative of a multivariable function has to record 

n the derivative of a single-variable function. Instead, the total 
derivative gives a function from the tangent bundle of the source to the tangent bundle of the 

ral analog of second, third, and higher-order total derivatives is not a linear 
transformation, is not a function on the tangent bundle, and is not built by repeatedly taking 
the total derivative. The analog of a higher-order derivative, called a jet, cannot be a linear 
transformation because higher-order derivatives reflect subtle geometric information, such as 
concavity, which cannot be described in terms of linear data such as vectors. It cannot be a 
function on the tangent bundle because the tangent bundle only has room for the base space 
and the directional derivatives. Because jets capture higher-order information, they take as 
arguments additional coordinates representing higher-order changes in direction. The space 
determined by these additional coordinates is called the jet bundle. The relation between the 
total derivative and the partial derivatives of a function is paralleled in the relation between 

th order jet of a function and its partial derivatives of order less than or equal to 

In this unit, you have used derivative to solve problems on directional derivatives and 
have also solve problems on total derivative,total differentiation and Jacobian matrix.

 

Use derivative to solve problems on total derivative, total differentiation and Jacobian matrix.

1.Evaluate the derivative of F(x,y,z) = 3( )sin()
22

zx y+   

) is strictly stronger than the existence of all the 
partial derivatives, but if the partial derivatives exist and are continuous, then the total 

 

n of the total derivative subsumes the definition of the derivative in one variable. 
valued function of a real variable, then the total derivative exists if and 

×1 matrix whose only 
). This 1×1 matrix satisfies the property that ƒ(a + h) − ƒ(a) − 

Up to changing variables, this is the statement that the function 

The total derivative of a function does not give another function in the same way as the one-
variable case. This is because the total derivative of a multivariable function has to record 

variable function. Instead, the total 
of the source to the tangent bundle of the 

order total derivatives is not a linear 
transformation, is not a function on the tangent bundle, and is not built by repeatedly taking 

, cannot be a linear 
order derivatives reflect subtle geometric information, such as 

a such as vectors. It cannot be a 
function on the tangent bundle because the tangent bundle only has room for the base space 

order information, they take as 
order changes in direction. The space 

. The relation between the 
tives of a function is paralleled in the relation between 

th order jet of a function and its partial derivatives of order less than or equal to k. 

In this unit, you have used derivative to solve problems on directional derivatives and 
have also solve problems on total derivative,total differentiation and Jacobian matrix.  

Use derivative to solve problems on total derivative, total differentiation and Jacobian matrix. 
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2.Find the derivative of F(x,y,z) = zxy 43
+  

3.Let F(x,y,z) = zzyx
2345

sin++  ,find the derivative. 

4.Evaluate the derivatives of F(x,y,z) = zx xy
42 +−  

5.Find the derivative of F(x,y,z) = 
x

xx

tan
cos

1

2
sin

−

+
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1.0 INTRODUCTION  
 

In the mathematical field of differential calculus
closely related meanings. 

The total derivative (full derivative) of a function 
respect to one of its input variables, e.g., 
Calculation of the total derivative of 
arguments are constant while 
The total derivative adds in these 
on t. For example, the total derivative of 

Consider multiplying both sides of the equation by the 
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UNIT 2: TOTAL DERIVATIVE  

Differentiate with indirect dependent 
The total derivative via differentials 
The total derivative as a linear map 
Total differential equation. 

Marked Assignment 
7.0     References/Further Readings 

 

differential calculus, the term total derivative

The total derivative (full derivative) of a function f, of several variables, e.g., 
respect to one of its input variables, e.g., t, is different from the partial derivative (
Calculation of the total derivative of f with respect to t does not assume that the other 
arguments are constant while t varies; instead, it allows the other arguments to depend on 
The total derivative adds in these indirect dependencies to find the overall dependency of 

. For example, the total derivative of f(t,x,y) with respect to t is  

 

Consider multiplying both sides of the equation by the differential :  

 

total derivative has a number of 

, of several variables, e.g., t, x, y, etc., with 
partial derivative ( ). 

does not assume that the other 
varies; instead, it allows the other arguments to depend on t. 

to find the overall dependency of f 



 

The result will be the differential change 
of that change will be due to the 
that change will  

also be due to the partial derivatives of 

differential is applied to the total derivatives of 

which can then be used to find the contribution to 

• It refers to a differential operator

which computes the total derivative of a function (with respect to 

• It refers to the (total) differential d
infinitesimals or the modern language of 

• A differential of the form 

is called a total differential
function. Again this can be interpreted infinitesimally, or by using differential forms 
and the exterior derivative

• It is another name for the derivative as a linear map, i.e., if 
from Rn to Rm, then the (total) derivative (or differential) of 
from Rn to Rm whose matrix is the 

• It is a synonym for the gradient
to R. 

• It is sometimes used as a synonym for the 

2.0 OBJECTIVE 

After studying this unit, you should be able to

differentiate with indirect dependent

find the derivative via differentials

solve total derivative as a linear map
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The result will be the differential change in the function f. Because f depends on 
of that change will be due to the partial derivative of f with respect to t. However, some of 

also be due to the partial derivatives of f with respect to the variables 

is applied to the total derivatives of x and y to find differentials 

which can then be used to find the contribution to . 

differential operator such as  

 

which computes the total derivative of a function (with respect to x

It refers to the (total) differential df of a function, either in the traditional language of 
or the modern language of differential forms. 

A differential of the form  

 

total differential  or an exact differential if it is the differential of a 
function. Again this can be interpreted infinitesimally, or by using differential forms 

exterior derivative. 

It is another name for the derivative as a linear map, i.e., if f is a differentiable function
, then the (total) derivative (or differential) of f at x∈R
whose matrix is the Jacobian matrix of f at x. 

gradient, which is essentially the derivative of a function from 

It is sometimes used as a synonym for the material derivative, , in fluid mechanics

tudying this unit, you should be able to 

differentiate with indirect dependent 

find the derivative via differentials 

solve total derivative as a linear map 

depends on t, some 
. However, some of 

with respect to the variables x and y. So, the 

to find differentials and , 

x in this case). 

of a function, either in the traditional language of 

if it is the differential of a 
function. Again this can be interpreted infinitesimally, or by using differential forms 

differentiable function 
Rn is the linear map 

, which is essentially the derivative of a function from Rn 

, in fluid mechanics 



 

know total differential equation.

 

 

3.0 MAIN CONTENT  

Differentiation with indirect dependencies

Suppose that f is a function of two variables, 
be independent. However, in some situations they may be dependent on each other. For 
example y could be a function of 
the partial derivative of f with respect to 
respect to changing x because changing 
such dependencies into account.

For example, suppose 

f(x,y) = xy. 

The rate of change of f with respect to 
in this case, 

. 

However, if y depends on x, the partial derivative does not give the true rate of change of 
x changes because it holds y fixed.

Suppose we are constrained to the line

y = x 

then 

f(x,y) = f(x,x) = x2. 

In that case, the total derivative of 

. 

Notice that this is not equal to the partial derivative:
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know total differential equation. 

 

Differentiation with indirect dependencies 

is a function of two variables, x and y. Normally these variables are assumed to 
be independent. However, in some situations they may be dependent on each other. For 

could be a function of x, constraining the domain of f to a curve
with respect to x does not give the true rate of change of 

because changing x necessarily changes y. The total derivative
such dependencies into account. 

with respect to x is usually the partial derivative of 

, the partial derivative does not give the true rate of change of 
fixed. 

Suppose we are constrained to the line 

In that case, the total derivative of f with respect to x is 

his is not equal to the partial derivative: 

. 

. Normally these variables are assumed to 
be independent. However, in some situations they may be dependent on each other. For 

to a curve in R2. In this case 
does not give the true rate of change of f with 

total derivative takes 

is usually the partial derivative of f with respect to x; 

, the partial derivative does not give the true rate of change of f as 



 

While one can often perform substitutions to eliminate indirect dependencies, the 
provides for a more efficient and general technique. Suppose 
time t and n variables pi which themselves depend on time. Then, the total time derivative of 
M  is 

This expression is often used in 
Lagrangians that differ only by the total time derivative of a function of time and t 
generalized coordinates lead to the same equations of motion. The ope
final expression) is also called the total derivative operator (with respect to 

For example, the total derivative of 

Here there is no ∂f / ∂t term since 

directly 

The total derivative via differentials

Differentials provide a simple way to understand the total derivative. For instance, suppose 

is a function of time 
the differential of M is 

This expression is often interpreted 

However, if the variables t and 
interpreted to mean the composite of 
makes perfect sense as an equality of 
rule for the exterior derivative

account arbitrary dependencies between the variables. For example, if 

the previous section, then 

The total derivative as a linear map
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While one can often perform substitutions to eliminate indirect dependencies, the 
provides for a more efficient and general technique. Suppose M(t, p1, ..., p

which themselves depend on time. Then, the total time derivative of 

 

This expression is often used in physics for a gauge transformation of the 
Lagrangians that differ only by the total time derivative of a function of time and t 

lead to the same equations of motion. The operator in brackets (in the 
final expression) is also called the total derivative operator (with respect to 

For example, the total derivative of f(x(t), y(t)) is 

 

term since f itself does not depend on the independent variable 

The total derivative via differentials 

Differentials provide a simple way to understand the total derivative. For instance, suppose 

is a function of time t and n variables pi as in the previous section. Then, 

 

pression is often interpreted heuristically as a relation between 

and pj are interpreted as functions, and 
interpreted to mean the composite of M with these functions, then the above expression 
makes perfect sense as an equality of differential 1-forms, and is immediate f

exterior derivative. The advantage of this point of view is that it tak

account arbitrary dependencies between the variables. For example, if 

. In particular, if the variables pj are all functions of 

 

The total derivative as a linear map 

While one can often perform substitutions to eliminate indirect dependencies, the chain rule 
, ..., pn) is a function of 

which themselves depend on time. Then, the total time derivative of 

of the Lagrangian, as two 
Lagrangians that differ only by the total time derivative of a function of time and t 

rator in brackets (in the 
final expression) is also called the total derivative operator (with respect to t). 

itself does not depend on the independent variable t   

Differentials provide a simple way to understand the total derivative. For instance, suppose 

as in the previous section. Then, 

as a relation between infinitesimals. 

is 
with these functions, then the above expression 

, and is immediate from the chain 
. The advantage of this point of view is that it takes into 

account arbitrary dependencies between the variables. For example, if then 

are all functions of t, as in 



 

Let be an open subset

differentiable at a point 
denoted Dpf or Df(p)) such that

 The linear map is called the 
function is (totally ) differentiable

 

Note that f is differentiable if and only if each of its components 
differentiable. For this it is necessary, but not sufficient, that the partial derivatives of each 
function fj exist. However, if these partial derivatives exist and are continuous, then 
differentiable and its differential at any point is the linea
matrix of partial derivatives at that point.

Total differential equation 

A total differential equation is a 
Since the exterior derivative 
meaning, such equations are intrinsic and 

CONCLUSION 

In this unit, you have known how to differentiate with indirect dependent. You have used 
total derivative via differentials and have known the total derivative as a linear map. You 
have  

SUMMARY 

In this unit, you have studied the following :

Differentiation with indirect dependent

The total derivative via differentials

The total derivative as a linear map

The total differential equation

TUTOR – MARK ASSIGNMENT

1.Find the total derivative for the second 

F(x,y,z)= zyx
343 −+  
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open subset. Then a function is said to be (

, if there exists a linear map 
(p)) such that 

   

is called the (total) derivative or (total) differential
differentiable if its total derivative exists at every point in its domain.

is differentiable if and only if each of its components 
differentiable. For this it is necessary, but not sufficient, that the partial derivatives of each 

exist. However, if these partial derivatives exist and are continuous, then 
differentiable and its differential at any point is the linear map determined by the 

of partial derivatives at that point. 

is a differential equation expressed in terms of total derivatives. 
 is a natural operator, in a sense that can be given a technical 

meaning, such equations are intrinsic and geometric. 

In this unit, you have known how to differentiate with indirect dependent. You have used 
total derivative via differentials and have known the total derivative as a linear map. You 

In this unit, you have studied the following : 

n with indirect dependent 

The total derivative via differentials 

The total derivative as a linear map 

The total differential equation 

MARK ASSIGNMENT  

1.Find the total derivative for the second – order of the function 

is said to be (totally ) 

(also 

differential  of f at p. A 
if its total derivative exists at every point in its domain. 

is differentiable if and only if each of its components is 
differentiable. For this it is necessary, but not sufficient, that the partial derivatives of each 

exist. However, if these partial derivatives exist and are continuous, then f is 
r map determined by the Jacobian 

expressed in terms of total derivatives. 
, in a sense that can be given a technical 

In this unit, you have known how to differentiate with indirect dependent. You have used 
total derivative via differentials and have known the total derivative as a linear map. You 
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2.Find the total derivative for the function 

F(x,y,z)= zyx
332 +  

3.Solve the total derivative to the third - order of the function 

F(x,y,z)= zxyxyx y
443243 ++  
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UNIT 3: APPLICATION OF TOTAL DERIVATIVE OF A 
FUNCTION . 

1.0 INTRODUCTION 
2.0 OBJECTIVES 
3.0 MAIN CONTENT 

3.1 chain rule 
3.2 directional derivative 
3.3 differentiation under integral sign 
3.4 lebnitz rule 

4.0 CONCLUSION 
5.0 SUMMARY 
6.0 TUTOR-MARKED ASSIGNMENT 
7.0 REFERENCES/FURTHER READINGS 
 

INTRODUCTION 

Let us consider a function  

1)        u = f(x, y, z, p, q, ... )  

of several variables. Such a function can be studied by holding all variables except one 
constant and observing its variation with respect to one single selected variable. If we 
consider all the variables except x to be constant, then  

               

represents the partial derivative of f(x, y, z, p, q, ... ) with respect to x (the hats indicating 
variables held fixed). The variables held fixed are viewed as parameters. 

OBJECTIVES 

After studying this unit, you should be able to correctly : 

   apply total derivative on chain rule for functions of functions 
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   apply total derivative to find directional derivative 
   apply total derivative to solve differentiation under integral sign 
    apply total derivative on lebnitz rule 

APPLICATION OF TOTAL DERIVATIVES. 

 Chain rule for functions of functions.  

If w = f(x, y, z, ...) is a continuous function of n variables x, y, z, ..., with continuous partial 

derivatives , ... and if x, y, z, ... are differentiable functions x = x(t), 
y = y(t) , z = z(t), etc. of a variable t, then the total derivative of w with respect to t is given 
by  

2)          

 

This rule is called the chain rule for the partial derivatives of functions of functions. 

 

Similarly, if w = f(x, y, z, ...) is a continuous function of n variables x, y, z, ..., with 

continuous partial derivatives , ... and if x, y, z, ... are differentiable 
functions of m independent variables r, s, t ... , then  

 

              

 

              

This rule is called the chain rule for the partial derivatives of functions of functions. 

 

Similarly, if w = f(x, y, z, ...) is a continuous function of n variables x, y, z, ..., with 

continuous partial derivatives , ... and if x, y, z, ... are differentiable 
functions of m independent variables r, s, t ... , then  
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Note the similarity between total differentials and total derivatives. The total derivative above 
can be obtained by dividing the total differential  

 

             by dt. 

 

As a special application of the chain rule let us consider the relation defined by the two 
equations 

 

            z = f(x, y);       y = g(x) 

 

Here, z is a function of x and y while y in turn is a function of x. Thus z is really a function of 
the single variable x. If we apply the chain rule we get  

 

              

 

which is the total derivative of z with respect to x. 

 
 

Defination of Scalar point function. A scalar point function is a function that assigns a real 
number (i.e. a scalar) to each point of some region of space. If to each point (x, y, z) of a 
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region R in space there is assigned a real number u = Φ(x, y, z), then Φ is called a scalar point 
function. 

Examples. 1. The temperature distribution within some body at a particular point in time.                                 
2. The density distribution within some fluid at a particular point in time.  

  

 

Directional derivatives. Let Φ(x, y, z) be a scalar point function defined over some region R 
of space. The function Φ(x, y, z) could, for example, represent the temperature distribution 
within some body. At some specified point P(x, y, z) of R we wish to know the rate of change 
of Φ in a particular direction. The rate of change of a function Φ at a particular point P, in a 
specified direction, is called the directional derivative of Φ at P in that direction. We specify 
the direction by supplying the direction angles or direction cosines of a unit vector e pointing 
in the desired direction.  

 

Theorem. The rate of change of a function Φ(x, y, z) in the direction of a vector with 
direction angles (α, β, γ) is given by 

 

3)          

 

where s corresponds to distance in the metric of the coordinate system. That direction for 
which the function Φ at point P has its maximum value is called the gradient of Φ at P.  

 

 

We shall prove the theorem shortly. First let us consider the same problem for two 
dimensional space. 
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Let Φ(x, y) be a scalar point function defined over some region R of the plane. At some 
specified point P(x, y) of R we wish to know the rate of change of Φ in a particular direction. 
We specify the direction by supplying the angle α that a unit vector e pointing in the desired 
direction makes with the positive x direction. See Fig. 4. The rate of change of function Φ at 
point P in the direction of e corresponding to angle α is given by   

  

 

 

where s corresponds to distance in the metric of the coordinate system. We show this as 
follows: 

 

Let  

 

            T = f(x, y) 

 

 

where T is the temperature at any point of the plate shown in Fig. 5. We wish to derive 
expression 4) above. In other words, we wish to derive the expression for the rate of change 
of T with respect to the distance moved in any selected direction. Suppose we move from 
point P to point P'. This represents a displacement ∆x in the x-direction and ∆y in the y-
direction. The distance moved along the plate is  
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The direction is given by the angle α that PP' makes with the positive x-direction. The change 
in the value of T corresponding to the displacement from P to P' is  

 

              

 

where ε is a quantity that approaches 0 when ∆x and ∆y approach 0. 

 

If we divide ∆T by the distance moved along the plate, we have 

 

              

 

 

From Fig. 5 we observe that ∆x/∆s = cos α and ∆y/∆s = sin α . Making these substitutions 
and letting P' approach P along line PP', we have  

 



100 

 

               

 

This is the directional derivative of T in the direction α. 

 

  

A geometric interpretation of a directional derivative in the case of a function z = f(x, y) is 
that of a tangent to the surface at point P as shown in Fig. 6. 

  

Def. Directional derivative. The directional derivative of a scalar point function Φ(x, y, z) is 
the rate of change of the function Φ(x, y, z) at a particular point P(x, y, z) as measured in a 
specified direction. 

 

Tech. Let Φ(x, y, z) be a scalar point function possessing first partial derivatives throughout 
some region R of space. Let P(x0, y0, z0) be some point in R at which we wish to compute the 
directional derivative and let P'(x1, y1, z1) be a neighboring point. Let the distance from P to 
P' be ∆s. Then the directional derivative of Φ in the direction PP' is given by  

  

5)          

 

where P' approaches P along the line PP' and ∆s approaches 0. 

 

Using this definition, let us now derive 3) above. In moving from P to P' the function Φ will 
change by an amount  
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where ε1, ε2, ε3 are higher order infinitesimals which approach zero as P' approaches P i.e. as 
∆x, ∆y and ∆z approach zero. If we divide the change ∆Φ by the distance ∆s we obtain a 
measure of the rate at which Φ changes as we move from P to P': 

 

 6)          

 

We now observe that ∆x/∆s, ∆y/∆s, ∆z/∆s are the direction cosines of the line segment PP'. 
They are also the direction cosines of a unit vector e located at P pointing in the direction of '. 
If the direction angles of e are α, β, γ, then ∆x/∆s, ∆y/∆s, ∆z/∆s are equal to cos α, cos β, and 
cos γ, respectively. Thus 6) becomes 

 

              

and  

7)          

Let us note that 7) can be written in vector form as the following dot product: 

8)          

The vector  

 

              

 

is called the gradient of Φ. Thus the directional derivative of Φ is equal to the dot product of 
the gradient of Φ and the vector e. In other words, 
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where 

              

is the directional derivative of Φ in the direction of unit vector e. 

If the vector e is pointed in the same direction as the gradient of Φ then the directional 
derivative of Φ is equal to the gradient of Φ. 

Differentiation under the integral sign. Leibnitz’s rule. We now consider differentiation 
with respect to a parameter that occurs under an integral sign, or in the limits of integration, 
or in both places.  

Theorem 1. Let  

              

 

where a x b and f is assumed to be integrable on [a, b]. Then the function F(x) is 

continuous and = f(x) at each point where f(x) is continuous. 

 

Theorem 2. Let f(x, α) and ∂f/∂α be continuous in some region R: (a x b, c α d) of 
the x-α plane. Let  

 

 

 

Then  
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Theorem 3. Leibnitz’s rule. Let 

 

 

 

where u1 and u2 are functions of the parameter α i.e. 

 

            u1 = u1(α) 

            u2 = u2(α). 

 

Let f(x, α) and ∂f/∂α be continuous in both x and α in a region R of the x-α plane that 
includes the region u1 x u2, c α d. Let u1 and u2 be continuous and have continuous 
derivatives for c α d. Then  

 

 

 

where f(u1, α) is the expression obtained by substituting the expression u1(α) for x in f(x, α). 
Similarly for f(u2, α). The quantities f(u1, α) and f(u2, α) correspond to ∂G/u1 and ∂G/u2 
respectively and 12) represents the chain rule. 

Order of differentiation. For most functions that one meets 

              

 



 

However, in some cases it is not true. Under what circumstances is it true? It is true if both 
functions fyx and fxy are continuous at the point where the partials are being taken.

Theorem. Let the function f(x, y) be defined in some
the partial derivatives fx, fy, fxy

fyx are both continuous at (a, b), f

EXAMPLE 

Given where 

and using the chain rule. 

and 

4.0 CONCLUSION 

In this unit, you have applied total derivative on chain rule. You have solved problems on 
directional derivatives using total derivative. You have used total derivative to solve 
differentiation under integral sign and leibnitz rule.

5,0 SUMMARY 

In this unit, you have studied the following:

The application of total derivative on chain rule

The application of  total derivative on directional derivative

The application of total derivative on differentiation under

The application of total derivative on leibnitz rule.

6.0 TUTOR - MARKED ASSIGNMENT

1.Find all directional derivatives of the function 

F(x,y) = ( )yx
423 4

1

+
 (where    ), in the point 

 
2. Find the integral of the function 
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However, in some cases it is not true. Under what circumstances is it true? It is true if both 
are continuous at the point where the partials are being taken.

Let the function f(x, y) be defined in some neighborhood of the point (a, b). Let 
, fxy, and fyx also be defined in this neighborhood. Then if f

are both continuous at (a, b), fxy(a, b) = fyx(a, b). 

and , determine the value of 

In this unit, you have applied total derivative on chain rule. You have solved problems on 
directional derivatives using total derivative. You have used total derivative to solve 

sign and leibnitz rule. 

In this unit, you have studied the following: 

The application of total derivative on chain rule 

The application of  total derivative on directional derivative 

The application of total derivative on differentiation under integral sign 

The application of total derivative on leibnitz rule. 

MARKED ASSIGNMENT  

1.Find all directional derivatives of the function  

4

1

 

), in the point   

Find the integral of the function  

However, in some cases it is not true. Under what circumstances is it true? It is true if both 
are continuous at the point where the partials are being taken. 

neighborhood of the point (a, b). Let 
also be defined in this neighborhood. Then if fxy and 

, determine the value of 

 

 

 

In this unit, you have applied total derivative on chain rule. You have solved problems on 
directional derivatives using total derivative. You have used total derivative to solve 
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F(x,y,z) = x3
2

+ 2xyz 

In the point (0,1)  
3.Find the total derivative of the function 

F(xy) = 3xy + 4y
2
 

 
 
 
 

REFERENCES 

  James & James. Mathematics Dictionary 

  Middlemiss. Differential and Integral Calculus 

  Spiegel. Advanced Calculus 

  Taylor. Advanced Calculus 

  Spiegel. Vector Analysis 

Bernard R. Gelbaum and John M. H. Olmsted. Counterexamples in Analysis. 

Dover, 2003. 

 

 

 

 

 

 

 

 

 

 

 

 



106 

 

 

 

 

 

MODULE 4 

PARTIAL DIFFERENTIABILITY AND TOTAL DIFFERENTIABILI TY OF 
FUNCTION OF SEVERAL VARIABLE  

               -Unit 1: Partial differentials of function of several variables. 

                -Unit 2:  Total differentials of function of several variables. 

                -Unit 3:  Application of partial and total differentials of function of several 
variables. 

UNIT 1  PARTIAL DIFFERENTIABILITY OF FUNCTION OF 
SEVERAL VARIABLE 

CONTENT 
 
1.0   INTRODUCTION 
2.0    OBJECTIVES 
3.0    MAIN CONTENT 

3.1 Partial derivatives 
3.2 Second partial derivatives  
 

4.0    CONCLUSION 
5.0    SUMMARY 
6.0   TUTOR-MARKED ASSIGNMENT 
7.0   REFERENCES/FURTHER READINGS 
 
INTRODUCTION 

Differentiation  is a method to compute the rate at which a dependent output y changes with 
respect to the change in the independent input x. This rate of change is called the derivative 
of y with respect to x. In more precise language, the dependence of y upon x means that y is a 
function of x. This functional relationship is often denoted y = ƒ(x), where ƒ denotes the 
function. If x and y are real numbers, and if the graph of y is plotted against x, the derivative 
measures the slope of this graph at each point. 

The simplest case is when y is a linear function of x, meaning that the graph of y against x is a 
straight line. In this case, y = ƒ(x) = m x + b, for real numbers m and b, and the slope m is 
given by 



 

where the symbol ∆ (the uppercase form of the Greek letter 
"change in." This formula is true because

y + ∆y = ƒ(x+ ∆x) = m (x + ∆x

It follows that ∆y = m ∆x. 

This gives an exact value for the slope of a straight line. If the function 
graph is not a straight line), however, then the change in 
differentiation is a method to find an exact value for this rate of change at any given value of 
x. 

Rate of change as a limiting value

Figure 1. The tangent line at (

Figure 2. The secant to curve 

Figure 3. The tangent line as limit of secants
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 (the uppercase form of the Greek letter Delta) is an abbreviation for 
"change in." This formula is true because 

x) + b = m x + b + m ∆x = y + m∆x. 

This gives an exact value for the slope of a straight line. If the function ƒ is not linear (i.e. its 
graph is not a straight line), however, then the change in y divided by the change in 
ifferentiation is a method to find an exact value for this rate of change at any given value of 

Rate of change as a limiting value 

 
line at (x, ƒ(x)) 

 
to curve y= ƒ(x) determined by points (x, ƒ(x)) and (x

 
The tangent line as limit of secants 

) is an abbreviation for 

is not linear (i.e. its 
divided by the change in x varies: 

ifferentiation is a method to find an exact value for this rate of change at any given value of 

x+h, ƒ(x+h)) 



 

The idea, illustrated by Figures 1
the ratio of the differences ∆y 

In Leibniz's notation, such an 
y with respect to x is written 

 

suggesting the ratio of two infinitesimal quantities. (The above expression is read as "the 
derivative of y with respect to 
often used conversationally, although it may lead to confusion.)

The most common approach[2]

but there are other methods, such as 

Derivatives  

Bound as we humans are to three spacial dimensions, multi
difficult to get a good feel for. (Try picturing a function in the 17th dimension and see how 
far you get!) We can at least make three
even then at a stretch to our intuition. What is needed is a way to cheat and look at multi
variable functions as if they were one

We can do this by using partial functions
obtained from a function of several variables by assigning constant values to all but one of 
the independent variables. What we are doing is taking two
surface represented by the equation. 

For Example: z=x2-y2 can be modeled in three dimensional 
space, but personally I find it difficult to sketch! In the 
section on critical points a picture of a plot of this function 
can be found as an example of a saddle point. But by 
alternately setting x=1 (red), x
(green), we can take slices of z
parallel to the z-y plane) and see different partial functions. 
We can get a further idea of the behavior 
considering that the same curves are obtained for 
and -0.25. 

Food For Thought: How do partial functions compare to 
level curves and level surfaces
surface have to be continuous? What about partial functions? 

All of this helps us to get to our main topic, that is, partial differentiation. We know how to 
take the derivative of a single-
function? What does that even mean? Partial Derivatives are the
that question.  

OBJECTIVES 
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The idea, illustrated by Figures 1-3, is to compute the rate of change as the 
 / ∆x as ∆x becomes infinitely small. 

, such an infinitesimal change in x is denoted by dx, and the derivative of 

suggesting the ratio of two infinitesimal quantities. (The above expression is read as "the 
with respect to x", "d y by d x", or "d y over d x". The oral form "d y d x" is 

often used conversationally, although it may lead to confusion.) 

[2] to turn this intuitive idea into a precise definition uses limits, 
but there are other methods, such as non-standard analysis.[3] 

Bound as we humans are to three spacial dimensions, multi-variable functions can be very 
difficult to get a good feel for. (Try picturing a function in the 17th dimension and see how 
far you get!) We can at least make three-dimensional models of two-variab
even then at a stretch to our intuition. What is needed is a way to cheat and look at multi
variable functions as if they were one-variable functions.  

partial functions. A partial function is a one-variable functi
obtained from a function of several variables by assigning constant values to all but one of 
the independent variables. What we are doing is taking two-dimensional "slices" of the 
surface represented by the equation.  

can be modeled in three dimensional 
space, but personally I find it difficult to sketch! In the 

a picture of a plot of this function 
n example of a saddle point. But by 

x=0.5 (white), and x=0.25 
z=x2-y2 (each one a plane 

plane) and see different partial functions. 
We can get a further idea of the behavior of the function by 
considering that the same curves are obtained for x=-1, -0.5 

How do partial functions compare to 
level surfaces? If the function f is a continuous function, does the level set or 

surface have to be continuous? What about partial functions?  

All of this helps us to get to our main topic, that is, partial differentiation. We know how to 
-variable function. What about the derivative of a multi

function? What does that even mean? Partial Derivatives are the beginning of an answer to 

3, is to compute the rate of change as the limiting value of 

, and the derivative of 

suggesting the ratio of two infinitesimal quantities. (The above expression is read as "the 
by d x", or "d y over d x". The oral form "d y d x" is 

ecise definition uses limits, 

variable functions can be very 
difficult to get a good feel for. (Try picturing a function in the 17th dimension and see how 

variable functions, but 
even then at a stretch to our intuition. What is needed is a way to cheat and look at multi-

variable function 
obtained from a function of several variables by assigning constant values to all but one of 

dimensional "slices" of the 

is a continuous function, does the level set or 

All of this helps us to get to our main topic, that is, partial differentiation. We know how to 
variable function. What about the derivative of a multi-variable 

beginning of an answer to 



 

In this unit, you should be able to : 

Identify and solve partial derivatives

Solve second partial derivatives.

 

MAIN CONTENT 

A partial derivative  is the rate of change of a multi
one of the variables to change. Specifically, we differentiate with respect to only one 
variable, regarding all others as constants (now we see the relation to partial functions!). 
Which essentially means if you know how to take a derivative
partial derivative.  

A partial derivative of a function 
yi's are other independent variables) is commonly denoted in the following ways: 

(referred to as ``partial 

(referred to as ``partial f, partial x'' 

Note that this is not the usual derivative ``
``roundback d'', ``curly d'' or ``del d'' (to distinguish from ``delta d''; the symbol is actual
``lowercase Greek `delta' '').  

The next set of notations for partial derivatives is much more compact and especially used 
when you are writing down something that uses lots of partial derivatives, especially if they 
are all different kinds:  

(referred to as ``partial z, partial x''

(referred to as ``partial f, partial x''

(referred to as ``partial f, partial x'') 

Any of the above is equivalent to the limit 
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In this unit, you should be able to :  

Identify and solve partial derivatives 

Solve second partial derivatives. 

is the rate of change of a multi-variable function when
one of the variables to change. Specifically, we differentiate with respect to only one 
variable, regarding all others as constants (now we see the relation to partial functions!). 
Which essentially means if you know how to take a derivative, you know how to take a 

A partial derivative of a function f with respect to a variable x, say z=f(x,y1,
's are other independent variables) is commonly denoted in the following ways: 

referred to as ``partial z, partial x'') 

referred to as ``partial f, partial x'' ) 

Note that this is not the usual derivative ``d'' . The funny ``d'' symbol in the notation is called 
``roundback d'', ``curly d'' or ``del d'' (to distinguish from ``delta d''; the symbol is actual

 

The next set of notations for partial derivatives is much more compact and especially used 
when you are writing down something that uses lots of partial derivatives, especially if they 

ed to as ``partial z, partial x'') 

referred to as ``partial f, partial x'') 

(referred to as ``partial f, partial x'')  

Any of the above is equivalent to the limit  

variable function when we allow only 
one of the variables to change. Specifically, we differentiate with respect to only one 
variable, regarding all others as constants (now we see the relation to partial functions!). 

, you know how to take a 

,y2,...yn) (where the 
's are other independent variables) is commonly denoted in the following ways:  

'' . The funny ``d'' symbol in the notation is called 
``roundback d'', ``curly d'' or ``del d'' (to distinguish from ``delta d''; the symbol is actually a 

The next set of notations for partial derivatives is much more compact and especially used 
when you are writing down something that uses lots of partial derivatives, especially if they 



 

To get an intuitive grasp of partial derivatives, suppose you were an ant
rugged terrain (a two-variable function) where the 
north, the y-axis is east-west and the 
hill and wonder what sort of slope you wil
Since our longitude won't be changing as we go north, the 
slope to the north is the value of 

The actual calculations of partial derivatives for most functions is very easy! Treat every 
indpendent variable except the one we are interested in as if it were a constant and apply the 
familiar rules!  

Example:  

Let's find fx and fy of the function 
differentiate. So, fx=2x-6xy. By treating 

Observe carefully that the expression 
respect to x and then with respect to 

For the same reasons, in the case of the expression,

it is implied that we differentiate first with respect to 

Below are examples of pure second partial derivatives

Example: 

Lets find fxy and fyx of f=exy + y

• fx=yexy + ycosx  
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To get an intuitive grasp of partial derivatives, suppose you were an ant crawling over some 
variable function) where the x-axis is north-south with positive 

west and the z-axis is up-down. You stop at a point 
hill and wonder what sort of slope you will encounter if you walk in a straight line north. 
Since our longitude won't be changing as we go north, the y in our function is constant. The 
slope to the north is the value of fx(x0, y0).  

The actual calculations of partial derivatives for most functions is very easy! Treat every 
indpendent variable except the one we are interested in as if it were a constant and apply the 

of the function z=f=x2 -3x2y+y3. To find fx, we will treat y
. By treating x as a constant, we find fy=-3x2+3y2

Second Partial Derivatives 

Observe carefully that the expression fxy implies that the function f is differentiated first with 
and then with respect to y, which is a natural inference since fxy

For the same reasons, in the case of the expression, 

 

it is implied that we differentiate first with respect to y and then with respect to 

pure second partial derivatives: 

 

y(sinx).  

.  

crawling over some 
south with positive x to the 

down. You stop at a point P=(x0, y0, z0) on a 
l encounter if you walk in a straight line north. 

in our function is constant. The 

The actual calculations of partial derivatives for most functions is very easy! Treat every 
indpendent variable except the one we are interested in as if it were a constant and apply the 

y as a constant and 
2.  

is differentiated first with 
xy is really (fx)y.  

and then with respect to x.  



 

• fxy=xyexy + cosx  
• fy=xexy + sinx  
• fyx=xyexy + cosx  

In this example fxy=fyx. Is this true in general? Most of the time and in most examples that you 
will probably ever see, yes. More precisely, if 

• both fxy and fyx exist for all points near (
• and are continuous at (

then fxy=fyx.  

Partial Derivatives of higher order are defined in the obvious way. And as long as suitable 
continuity exists, it is immaterial in what order a sequence of partial differentiation is carried 
out.  

total differential  

There is the generalisation of the 
several variables; here we formulate it for three variables:

Theorem. Suppose that S is a ball
derivatives fx fy fz  in S and the partial derivatives are continuous in a 
Then the increment  

f:=f(x+ x y+ y z+ z)

which f gets when one moves from 
be split into two parts as follows:

 

Here, := x2+ y2+

The former part of x is called the (
f in the point (x y z) and it is denoted by 

x , we see that df= x and thus 
obtain for the general case the more consistent notation

 
where dx dy dz may be thought as independent variables.

We now assume conversely that the increment of a function 
parts as follows: 
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. Is this true in general? Most of the time and in most examples that you 
will probably ever see, yes. More precisely, if  

exist for all points near (x0,y0)  
and are continuous at (x0,y0),  

Partial Derivatives of higher order are defined in the obvious way. And as long as suitable 
continuity exists, it is immaterial in what order a sequence of partial differentiation is carried 

tion of the theorem in the parent entry concerning the 
; here we formulate it for three variables: 

ball in 3 , the function f:S  is continuous
and the partial derivatives are continuous in a point

)−f(x y z)  

gets when one moves from (x y z) to another point (x+ x y+ y
be split into two parts as follows: 

z2  and is a quantity tending to 0 along with 

is called the (total) differential or the exact differential
and it is denoted by df(x y z) of briefly df . In the special case 

and thus x=dx ; similarly y=dy and z=dz 
obtain for the general case the more consistent notation 

may be thought as independent variables. 

that the increment of a function f in 3 can be split into two 

. Is this true in general? Most of the time and in most examples that you 

Partial Derivatives of higher order are defined in the obvious way. And as long as suitable 
continuity exists, it is immaterial in what order a sequence of partial differentiation is carried 

(Definition) 

concerning the real functions of 

continuous and has partial 
point (x y z) of S . 

y z+ z) of S , can 

 

(1)

is a quantity tending to 0 along with . 

exact differential of the function 
. In the special case f(x y z)

 . Accordingly, we 

 

(2)

can be split into two 



 

 

where the coefficients A BC
as in the above theorem. Then one can infer that the partial derivatives 
point (x y z) and have the values 

then = x  whence (3) attains the form 

f(x+ x y+ y z+ z)−f(x

and therefore  

A=lim x 0 xf(x+ x y+

Similarly we see the values of 

The last consideration showed the uniqueness of the total differential.

Definition. A function f in 3
differentiable in the point (xy

CONCLUSION 

In this unit, you have identified and solved problem on partial differential of function of 
several variables. You have also used partial differential of  function of several variables to 
solve problems on second partial derivatives.

SUMMARY 

In this unit, you have studied :

Partial derivatives 

Second partial derivatives 

TUTOR – MARK ASSIGNMENTS

1.Find the first order derivative of the following function

F(x,y,z) = yx
2

z
4  

2.Find fff
zzyyxx

,given that F(x,y,z) = sin(xyz)

3.Evaluate the second order derivative of 

fff
zzyyxx

= yx xy
43

2 ++
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C are independent on the quantities x y
as in the above theorem. Then one can infer that the partial derivatives fx

and have the values A B C , respectively. In fact, if we choose 

whence (3) attains the form  

y z)=A x+ x x 

y z+ z)−f(x y z)=fx (x y z)  

Similarly we see the values of fy  and fz  .  

The last consideration showed the uniqueness of the total differential. 

3 , satisfying the conditions of the above theorem is said to be 
y z) . 

In this unit, you have identified and solved problem on partial differential of function of 
several variables. You have also used partial differential of  function of several variables to 
solve problems on second partial derivatives. 

this unit, you have studied : 

MARK ASSIGNMENTS  

1.Find the first order derivative of the following function 

at F(x,y,z) = sin(xyz) 

3.Evaluate the second order derivative of  

z
4
 

(3
)

z and are 
fy fz  exist in the 

, respectively. In fact, if we choose y= z=0 , 

, satisfying the conditions of the above theorem is said to be 

In this unit, you have identified and solved problem on partial differential of function of 
several variables. You have also used partial differential of  function of several variables to 
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4.Evaluate the second order derivative of 

F(x,y,z) =  zyx
323 +  

REFFERENCE 

Jacques, I. 1999. Mathematics for Economics and Business. 3rd Edition. Prentice Hall. 

 

 

UNIT  2   TOTAL DIFFERENTIABILITY OF FUNCTION OF SEVERAL 
VARIABLE 

CONTENT 

1.0    INTRODUCTION 
2.0   OBJECTIVES 
3.0   MAIN CONTENT 

                Identify and solve problems on total differentials of  functions of several variables  

          4.0 Conclusion 
          5.0- Summary 
          6.0   Tutor-Marked Assignment 
          7.0   References/Further Readings 

INTRODUCTION 

In the case of a function of a single variable the differential  of the function y = f(x) is the 
quantity  

 

            dy = f '(x) ∆x . 

 

This quantity is used to compute the approximate change in the value of f(x) due to a change 



114 

 

∆x in x. As is shown in Fig. 2,  

            ∆y = CB = f(x + ∆x) - f(x)                     

while   dy = CT = f '(x)∆x . 

 

 

When ∆x is small the approximation is close. Line AT represents the tangent to the curve at 
point A. 

OBJECTIVES 

At the end of this unit, you should be able to identify and solve problems on total differentials 
of functions of several variables  

MAIN CONTENT 

In the case of a function of two variables the situation is analogous. Let us start at point A(x1, 
y1, z1) on the surface                              

            z = f(x, y)  

shown in Fig. 3 and let x and y change by small amounts ∆x and ∆y, respectively. The 
change produced in the value of the function z is  

   ∆z = CB = f(x1 + ∆x, y1 + ∆y) - f(x1, y1) . 

An approximation to ∆z is given by 

           

When ∆x and ∆y are small the approximation is close. Point T lies in that plane tangent to the 
surface at point A. 
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The quantity 

              

 

is called the total differential of the function z = f(x, y). Because is customary to denote 
increments ∆x and ∆y by dx and dy, the total differential of a function z = f(x, y) is defined 
as  

 

              

The total differential of three or more variables is defined similarly. For a function z = f(x, 
y, .. , u) the total differential is defined as  

              

 

Each of the terms represents a partial differential . For example, the term  

 

              

 

is the partial differential of z with respect to x. The total differential is the sum of the partial 
differentials. 

4.0   CONCLUSION 

In this unit, you have identified and solved problems on total differentials of functions of 
several variables  

5.0  SUMMARY  

In this unit, you have studied total differentials of functions of several variables. 
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6.0TUTOR – MARKED ASSIGNMENT 

Find the total differentiability of the following : 

a. F(x,y) = x + 2xy + y
2
 

b. F(x,y,z) = zyx
234

2 ++  

c. F(x,y,z) = zyx
323
 

d. F(x,y,z) = zyx
232

4 +  

e. F(x,y,z) = xyzyx 2
32 −+  

 

7.0   REFERENCES 

 James & James. Mathematics Dictionary 

  Middlemiss. Differential and Integral Calculus 

  Spiegel. Advanced Calculus 

  Taylor. Advanced Calculus 
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  MODULE 5 COMPOSITE DIFFERENTIATION, EULER’S THEOREM , IMPLICIT 
DIFFERENTIATION. 

             Unit 1: Composite differentiation 

             Unit 2: Euler’s Theorem 

             Unit 3: Implicit differentiation. 

 

UNIT 1: COMPOSITE DIFFERENTIATION 

1.0    INTRODUCTION 

2.0    OBJECTIVES 

3.0     MAIN CONTENT 

        3.1  The chain rule 

        3.2 Composites of more than two functions 

        3.4 The quotient rule 

        3.5 Higher derivative 

        3.6  Proof of the chain rule 

        3.7  The rule in higher dimension 

4.0   CONCLUSION 

 5.0  SUMMARY 

 6.0   TUTOR-MARKED ASSIGNMENT 

7.0    REFERENCES/FURTHER READINGS 

1.0     INTRODUCTION 

In calculus, the chain rule is a formula for computing the derivative of the composition of two 
or more functions. That is, if f is a function and g is a function, then the chain rule expresses 
the derivative of the composite function f ∘ g in terms of the derivatives of f and g. 

Calculate the derivatives of each function. Write in fraction form, if needed, so that all 
exponents are positive in your final answer. Use the "modified power rule" for each. 

   

 

 

2.0    OBJECTIVES   

At the end of this unit, you should be able to 



 

use chain rule to solve mathematical problems

 solve composites of more than two functions

 use the quotient rule to solve composite functions

 identify problems in composite function which could be solve by  the use of higher 
derivative. 

        Proof  the chain rule 

        Know the rule in higher dimension

  

3.0   MAIN CONTENT  

Statement of the Rule 

The simplest form of the chain rule is for real
that if g is a function that is differentiable at a point c (i.e.
is a function that is differentiable at g(c), then the composite function f
at c, and the derivative is 

The rule is sometimes abbreviated as

If y = f(u) and u = g(x), then this abbreviated form is written in 

 

The points where the derivatives are evaluated may also be stated explicitly:

Further examples 

The chain rule in the absence of formulas

It may be possible to apply the chain rule even when there are no formulas for the 
functions which are being differentiated. This can happen when the derivatives are 
measured directly. Suppose that a car is driving up a tall mountain. The car's speedometer
measures its speed directly. If the 
using trigonometry. Suppose that the car is ascending at 2.5
Earth's atmosphere imply that the temperature drops about 6.5
(see lapse rate). To find the temperature drop per hour, we apply the chain rule. Let the 
function g(t) be the altitude of the car at time 
h kilometers above sea level. 
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use chain rule to solve mathematical problems 

solve composites of more than two functions 

use the quotient rule to solve composite functions 

identify problems in composite function which could be solve by  the use of higher 

Know the rule in higher dimension 

The simplest form of the chain rule is for real-valued functions of one real
that if g is a function that is differentiable at a point c (i.e. the derivative g
is a function that is differentiable at g(c), then the composite function f ∘ 

 

The rule is sometimes abbreviated as 

 

), then this abbreviated form is written in Leibniz notation

The points where the derivatives are evaluated may also be stated explicitly:

 

The chain rule in the absence of formulas 

It may be possible to apply the chain rule even when there are no formulas for the 
functions which are being differentiated. This can happen when the derivatives are 
measured directly. Suppose that a car is driving up a tall mountain. The car's speedometer
measures its speed directly. If the grade is known, then the rate of ascent can be calculated 

. Suppose that the car is ascending at 2.5 km/h. Standard models for the 
Earth's atmosphere imply that the temperature drops about 6.5 °C per kilometer ascended 

). To find the temperature drop per hour, we apply the chain rule. Let the 
) be the altitude of the car at time t, and let the function f(h) be the temperature 

kilometers above sea level. f and g are not known exactly: For example, the alti

identify problems in composite function which could be solve by  the use of higher 

real variable. It says 
the derivative g′(c) exists) and f 

 g is differentiable 

Leibniz notation as: 

The points where the derivatives are evaluated may also be stated explicitly: 

It may be possible to apply the chain rule even when there are no formulas for the 
functions which are being differentiated. This can happen when the derivatives are 
measured directly. Suppose that a car is driving up a tall mountain. The car's speedometer 

is known, then the rate of ascent can be calculated 
km/h. Standard models for the 

°C per kilometer ascended 
). To find the temperature drop per hour, we apply the chain rule. Let the 

) be the temperature 
are not known exactly: For example, the altitude 



 

where the car starts is not known and the temperature on the mountain is not known. 
However, their derivatives are known: 
says that the derivative of the composite function is the product of the der
the derivative of g. This is −6.5 °C/km · 2.5

One of the reasons why this computation is possible is because 
This is because the above model is very simple. A more accurate description of how 
temperature near the car varies over time would require an accurate model of how the 
temperature varies at different altitudes. This model may not have a constant derivative. To 
compute the temperature change in such a model, it would be necessary to k
just g′, because without knowing 

 Composites of more than two functions

The chain rule can be applied to composites of more than two functions. To take the 
derivative of a composite of more t
h (in that order) is the composite of 
derivative of f ∘ g ∘ h, it is sufficient to compute the derivative of 
h. The derivative of f can be calculated directly, and the derivative of 
calculated by applying the chain rule again.

For concreteness, consider the function

 

This can be decomposed as the composite of three functions:

 

Their derivatives are: 

 

The chain rule says that the derivative of their composite at the point 

In Leibniz notation, this is: 

119 

where the car starts is not known and the temperature on the mountain is not known. 
However, their derivatives are known: f′ is −6.5 °C/km, and g′ is 2.5 km/h. The chain rule 
says that the derivative of the composite function is the product of the der

−6.5 °C/km · 2.5 km/h = −16.25 °C/h. 

One of the reasons why this computation is possible is because f′ is a constant function. 
This is because the above model is very simple. A more accurate description of how 
temperature near the car varies over time would require an accurate model of how the 
temperature varies at different altitudes. This model may not have a constant derivative. To 
compute the temperature change in such a model, it would be necessary to k

, because without knowing g it is not possible to know where to evaluate 

Composites of more than two functions 

The chain rule can be applied to composites of more than two functions. To take the 
derivative of a composite of more than two functions, notice that the composite of 

(in that order) is the composite of f with g ∘ h. The chain rule says that to compute the 
, it is sufficient to compute the derivative of f and the derivative of 
can be calculated directly, and the derivative of g ∘ 

calculated by applying the chain rule again. 

For concreteness, consider the function 

This can be decomposed as the composite of three functions: 

The chain rule says that the derivative of their composite at the point x = 

 

where the car starts is not known and the temperature on the mountain is not known. 
km/h. The chain rule 

says that the derivative of the composite function is the product of the derivative of f and 

′ is a constant function. 
This is because the above model is very simple. A more accurate description of how the 
temperature near the car varies over time would require an accurate model of how the 
temperature varies at different altitudes. This model may not have a constant derivative. To 
compute the temperature change in such a model, it would be necessary to know g and not 

it is not possible to know where to evaluate f′. 

The chain rule can be applied to composites of more than two functions. To take the 
han two functions, notice that the composite of f, g, and 

. The chain rule says that to compute the 
and the derivative of g ∘ 

 h can be 

= a is: 



 

or for short, 

 

The derivative function is therefore:

Another way of computing this derivative is to view the composite function 
composite of f ∘ g and h. Applying the chain rule to this situation gives:

This is the same as what was computed above. This should be expected because (
= f ∘ (g ∘ h). 

 The quotient rule 

 

The chain rule can be used to derive some well
the quotient rule is a consequence of the chain rule and the product rule. To see this, write 
the function f(x)/g(x) as the product 

To compute the derivative of 1/
function, that is, the function that sends 
−1/x2. By applying the chain rule, the last expressi

which is the usual formula for the quotient rule.

 Derivatives of inverse functions

 

Suppose that y = g(x) has an 
= f(y). There is a formula for the derivative of f in terms of the derivative of g. To see this, 
note that f and g satisfy the formula

f(g(x)) = x. 

Because the functions f(g(x)) and 
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The derivative function is therefore: 

 

Another way of computing this derivative is to view the composite function 
. Applying the chain rule to this situation gives: 

This is the same as what was computed above. This should be expected because (

The chain rule can be used to derive some well-known differentiation rules. For example, 
the quotient rule is a consequence of the chain rule and the product rule. To see this, write 

) as the product f(x) · 1/g(x). First apply the product rule:

 

To compute the derivative of 1/g(x), notice that it is the composite of g with the reciprocal 
function, that is, the function that sends x to 1/x. The derivative of the reciprocal function is 

. By applying the chain rule, the last expression becomes: 

which is the usual formula for the quotient rule. 

Derivatives of inverse functions 

) has an inverse function. Call its inverse function f so that we have x 
= f(y). There is a formula for the derivative of f in terms of the derivative of g. To see this, 
note that f and g satisfy the formula 

)) and x are equal, their derivatives must be equal. The 

Another way of computing this derivative is to view the composite function f ∘ g ∘ h as the 

 

This is the same as what was computed above. This should be expected because (f ∘ g) ∘ h 

known differentiation rules. For example, 
the quotient rule is a consequence of the chain rule and the product rule. To see this, write 

uct rule: 

with the reciprocal 
. The derivative of the reciprocal function is 

 

so that we have x 
= f(y). There is a formula for the derivative of f in terms of the derivative of g. To see this, 

are equal, their derivatives must be equal. The 



 

derivative of x is the constant function with value 1, and the derivative of 
determined by the chain rule. Therefore we have:

f'(g(x))g'(x) = 1. 

To express f′ as a function of an independent variable 
appears. Then we can solve for 

For example, consider the function 
Because g′(x) = ex, the above formula says that

 

  

This formula is true whenever 
This formula can fail when one of these conditions is not true. For example, consider 
= x3. Its inverse is f(y) = y1/3, which is not differentiable at zero. If we attempt to use the 
above formula to compute the derivative of 
= 0 and g′(0) = 0, so we must evaluate 1/0, which is undefined. Therefore the formula fails 
in this case. This is not surprising because 

 Higher derivatives 

Faà di Bruno's formula generalizes the chain rule to higher derivatives. The first few 
derivatives are 

 

 Proofs of the chain rule 
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is the constant function with value 1, and the derivative of 
determined by the chain rule. Therefore we have: 

 as a function of an independent variable y, we substitute f(y) for 
rs. Then we can solve for f′. 

 

For example, consider the function g(x) = ex. It has an inverse which is denoted 
, the above formula says that 

This formula is true whenever g is differentiable and its inverse f is also differentiable. 
This formula can fail when one of these conditions is not true. For example, consider 

, which is not differentiable at zero. If we attempt to use the 
above formula to compute the derivative of f at zero, then we must evaluate 1/

(0) = 0, so we must evaluate 1/0, which is undefined. Therefore the formula fails 
in this case. This is not surprising because f is not differentiable at zero. 

generalizes the chain rule to higher derivatives. The first few 

 

 

is the constant function with value 1, and the derivative of f(g(x)) is 

) for x wherever it 

. It has an inverse which is denoted f(y) = ln y. 

is also differentiable. 
This formula can fail when one of these conditions is not true. For example, consider g(x) 

, which is not differentiable at zero. If we attempt to use the 
at zero, then we must evaluate 1/g′(f(0)). f(0) 

(0) = 0, so we must evaluate 1/0, which is undefined. Therefore the formula fails 

generalizes the chain rule to higher derivatives. The first few 



 

First proof 

One proof of the chain rule begins with the definition of the derivative:

Assume for the moment that 
expression is equal to the product of two factors:

When g oscillates near a, then it might happen that no matter how close one gets to 
is always an even closer x such that 
x2sin(1 / x) near the point a = 0. Whenever this happens, the above expression is undefined 
because it involves division by zero
follows: 

We will show that the difference quotient for 

Whenever g(x) is not equal to 
When g(x) equals g(a), then the difference quotient for 
f(g(a)), and the above product is zero because it equals 
product is always equal to the difference quotient, and to show that the derivative of 
a exists and to determine its value, we need only show that the limit as 
above product exists and determine its value.

To do this, recall that the limit of a product exists if the limits of its factors exist. When this 
happens, the limit of the product of these two factors will equal the product of the limits of 
the factors. The two factors are 
difference quotient for g at a
x tends to a exists and equals 

It remains to study Q(g(x)). Q
differentiable at g(a) by assumption, 
is differentiable at a, and therefore 
and equals Q(g(a)), which is 

This shows that the limits of both factors exist and that they equal 
respectively. Therefore the derivative of 

Second proof 
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rule begins with the definition of the derivative: 

 

Assume for the moment that g(x) does not equal g(a) for any x near a. Then the previous 
expression is equal to the product of two factors: 

 

, then it might happen that no matter how close one gets to 
such that g(x) equals g(a). For example, this happens for 
= 0. Whenever this happens, the above expression is undefined 

division by zero. To work around this, introduce a function 

 

We will show that the difference quotient for f ∘ g is always equal to: 

 

) is not equal to g(a), this is clear because the factors of g(x
), then the difference quotient for f ∘ g is zero because 

)), and the above product is zero because it equals f′(g(a)) times zero. So the above 
product is always equal to the difference quotient, and to show that the derivative of 

exists and to determine its value, we need only show that the limit as x goes to 
above product exists and determine its value. 

To do this, recall that the limit of a product exists if the limits of its factors exist. When this 
happens, the limit of the product of these two factors will equal the product of the limits of 
the factors. The two factors are Q(g(x)) and (g(x) - g(a)) / (x - a). The latter is the 

a, and because g is differentiable at a by assumption, its limit as 
exists and equals g′(a). 

Q is defined wherever f is. Furthermore, because 
) by assumption, Q is continuous at g(a). g is continuous at 
, and therefore Q ∘ g is continuous at a. So its limit as 

)), which is f′(g(a)). 

This shows that the limits of both factors exist and that they equal f′(g(a)) and 
respectively. Therefore the derivative of f ∘ g at a exists and equals f′(g(a))

. Then the previous 

, then it might happen that no matter how close one gets to a, there 
). For example, this happens for g(x) = 

= 0. Whenever this happens, the above expression is undefined 
. To work around this, introduce a function Q as 

x) - g(a) cancel. 
is zero because f(g(x)) equals 

s zero. So the above 
product is always equal to the difference quotient, and to show that the derivative of f ∘ g at 

goes to a of the 

To do this, recall that the limit of a product exists if the limits of its factors exist. When this 
happens, the limit of the product of these two factors will equal the product of the limits of 

). The latter is the 
by assumption, its limit as 

is. Furthermore, because f is 
is continuous at a because it 

. So its limit as x goes to a exists 

)) and g′(a), 
))g′(a). 



 

Another way of proving the chain rule is to measure the error in the
determined by the derivative. This proof has the advantage that it generalizes to several 
variables. It relies on the following equivalent definition of differentiability at a point: A 
function g is differentiable at 
tends to zero as h tends to zero, and furthermore

Here the left-hand side represents the true difference between the value of 
h, whereas the right-hand side represents the approximation dete
plus an error term. 

In the situation of the chain rule, such a function 
differentiable at a. Again by assumption, a similar function also exists for 
this function η, we have 

The above definition imposes no constraints on 
tends to zero as k tends to zero. If we set 

Proving the theorem requires studying the difference 
zero. The first step is to substitute for 
at a: 

f(g(a + h)) − f(g(a)) = f(g(a) + 

The next step is to use the definition of differentiability of 
the form f(g(a) + k) for some 
g′(a)h + ε(h)h and the right hand side becomes 
definition of the derivative gives:

To study the behavior of this expression as 
terms, the right-hand side becomes:

Because ε(h) and η(kh) tend to zero as 
tends to zero. Because the abov
by the definition of the derivative 
f′(g(a))g′(a). 

The role of Q in the first proof is played by 
equation: 

The need to define Q at g(a) is analogous to the need to define 
proofs are not exactly equivalent. The first proof relies on a theorem about products of 
limits to show that the derivative exists. The second proof does not need this because 
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Another way of proving the chain rule is to measure the error in the linear approximation 
determined by the derivative. This proof has the advantage that it generalizes to several 
variables. It relies on the following equivalent definition of differentiability at a point: A 

is differentiable at a if there exists a real number g′(a) and a function 
tends to zero, and furthermore 

 

hand side represents the true difference between the value of 
hand side represents the approximation determined by the derivative 

In the situation of the chain rule, such a function ε exists because g is assumed to be 
. Again by assumption, a similar function also exists for 

 

The above definition imposes no constraints on η(0), even though it is assumed that 
tends to zero. If we set η(0) = 0, then η is continuous at 0.

Proving the theorem requires studying the difference f(g(a + h)) − f(g(a)) as 
zero. The first step is to substitute for g(a + h) using the definition of differentiability of 

) + g'(a)h + ε(h)h) − f(g(a)). 

The next step is to use the definition of differentiability of f at g(a). This requires a term of 
) for some k. In the above equation, the correct k varies with 

and the right hand side becomes f(g(a) + kh) − f(g(a)). Applying the 
definition of the derivative gives: 

 

To study the behavior of this expression as h tends to zero, expand kh. After regrouping the 
hand side becomes: 

tend to zero as h tends to zero, the bracketed terms tend to zero as 
tends to zero. Because the above expression is equal to the difference f(g(
by the definition of the derivative f ∘ g is differentiable at a and its derivative is 

in the first proof is played by η in this proof. They are related by the 

 

) is analogous to the need to define η at zero. However, the 
proofs are not exactly equivalent. The first proof relies on a theorem about products of 
limits to show that the derivative exists. The second proof does not need this because 

linear approximation 
determined by the derivative. This proof has the advantage that it generalizes to several 
variables. It relies on the following equivalent definition of differentiability at a point: A 

) and a function ε(h) that 

hand side represents the true difference between the value of g at a and at a + 
rmined by the derivative 

is assumed to be 
. Again by assumption, a similar function also exists for f at g(a). Calling 

(0), even though it is assumed that η(k) 
 is continuous at 0. 

)) as h tends to 
) using the definition of differentiability of g 

). This requires a term of 
varies with h. Set kh = 

)). Applying the 

. After regrouping the 

 

tends to zero, the bracketed terms tend to zero as h 
(a + h)) − f(g(a)), 

and its derivative is 

 in this proof. They are related by the 

η at zero. However, the 
proofs are not exactly equivalent. The first proof relies on a theorem about products of 
limits to show that the derivative exists. The second proof does not need this because 



 

showing that the error term vanishes proves the existence of the limit directly.

The chain rule in higher dimensions

The simplest generalization of the chain rule to higher dimensions uses the 
The total derivative is a linear transformation that captures how the function changes in all 
directions. Let f : Rm → Rk and 
total derivative operator. If a
that: 

or for short, 

 

In terms of Jacobian matrices

That is, the Jacobian of the composite function is the product of
composed functions. The higher
similar to the second proof given above.

The higher-dimensional chain rule is a generalization of the one
k, m, and n are 1, so that f : R
are 1 × 1. Specifically, they are:

 

The Jacobian of f ∘ g is the product of these 1 × 1 matrices, so it is 
expected from the one-dimensional chain rule. In the language of linear transformations, 
Da(g) is the function which scales a vector by a factor of 
which scales a vector by a factor of 
two linear transformations is the linear transformation 
function that scales a vector by 

Another way of writing the chain rule is used when 
components as y = f(u) = (f1(
above rule for Jacobian matrices is usually written as:

The chain rule for total derivatives implies a chain rule for partial derivatives. Recall that 
when the total derivative exists, the partial derivative in the 
found by multiplying the Jacobian matrix by the 
formula above, we find: 
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ror term vanishes proves the existence of the limit directly.

The chain rule in higher dimensions 

The simplest generalization of the chain rule to higher dimensions uses the 
The total derivative is a linear transformation that captures how the function changes in all 

and g : Rn → Rm be differentiable functions, and let 
a is a point in Rn, then the higher dimensional chain rule says 

 

 

Jacobian matrices, the rule says 

 

That is, the Jacobian of the composite function is the product of the Jacobians of the 
composed functions. The higher-dimensional chain rule can be proved using a technique 
similar to the second proof given above. 

dimensional chain rule is a generalization of the one-dimensional chain rule. If 
R → R and g : R → R, then the Jacobian matrices of 

are 1 × 1. Specifically, they are: 

 

is the product of these 1 × 1 matrices, so it is f′(g(a))
dimensional chain rule. In the language of linear transformations, 

) is the function which scales a vector by a factor of g′(a) and Dg(a)(f) is the function 
which scales a vector by a factor of f′(g(a)). The chain rule says that the composite of these 
two linear transformations is the linear transformation Da(f ∘ g), and therefore it is the 
function that scales a vector by f′(g(a))g′(a). 

Another way of writing the chain rule is used when f and g are expressed in terms of thei
(u), ..., fk(u)) and u = g(x) = (g1(x), ..., gm(x)). In this case, the 

above rule for Jacobian matrices is usually written as: 

 

The chain rule for total derivatives implies a chain rule for partial derivatives. Recall that 
when the total derivative exists, the partial derivative in the ith coordinate direction is 
found by multiplying the Jacobian matrix by the ith basis vector. By doing this to the 

ror term vanishes proves the existence of the limit directly. 

The simplest generalization of the chain rule to higher dimensions uses the total derivative. 
The total derivative is a linear transformation that captures how the function changes in all 

be differentiable functions, and let D be the 
the higher dimensional chain rule says 

the Jacobians of the 
dimensional chain rule can be proved using a technique 

dimensional chain rule. If 
, then the Jacobian matrices of f and g 

))g′(a), as 
dimensional chain rule. In the language of linear transformations, 

f) is the function 
that the composite of these 

), and therefore it is the 

are expressed in terms of their 
)). In this case, the 

The chain rule for total derivatives implies a chain rule for partial derivatives. Recall that 
th coordinate direction is 

doing this to the 



 

Since the entries of the Jacobian matrix are partial derivatives, we may simplify the above 
formula to get: 

More conceptually, this rule expresses the fact that a change in the 
all of g1 through gk, and any of these changes may affect 

In the special case where k = 1, so that 
simplifies even further: 

 

 Example 

Given where 

and using the chain rule.

and 

derivatives of multivariable functions

Faà di Bruno's formula for higher
to the multivariable case. If f
of f ∘ g is: 

 

 
 

The composite function chain rule
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Since the entries of the Jacobian matrix are partial derivatives, we may simplify the above 

 

More conceptually, this rule expresses the fact that a change in the xi direction may change 
, and any of these changes may affect f. 

= 1, so that f is a real-valued function, then this formula 

where and , determine the value of 

using the chain rule. 

derivatives of multivariable functions 

Faà di Bruno's formula for higher-order derivatives of single-variable functions generalizes 
f is a function of u = g(x) as above, then the second derivative 

 

chain rule notation can also be adjusted for the multivariate case:

Since the entries of the Jacobian matrix are partial derivatives, we may simplify the above 

direction may change 

valued function, then this formula 

, determine the value of 

 

 

 Higher 

variable functions generalizes 
) as above, then the second derivative 

notation can also be adjusted for the multivariate case: 



 

                  

Then the partial derivatives of z with respect to its two

                  

Let's do the same example as above, this time using the composite function notation where 
functions within the z function are renamed.
problem, so when is it necessary to go to the trouble of presenting the more formal composite 
function notation?  As problems become more complicated, renaming parts of a composite 
function is a better way to keep track of all parts of the problem.
consuming, but mistakes within the problem are less likely.

                 

The final step is the same, replace u with function g:

                 

Multivariate function 

The rule for differentiating multivariate natural logarithmic functions, with 
notation changes is as follows:

                 

Then the partial derivatives of z with respect to its independent variables are defined as:
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Then the partial derivatives of z with respect to its two independent variables are defined as:

Let's do the same example as above, this time using the composite function notation where 
functions within the z function are renamed.  Note that either rule could be used for this 

is it necessary to go to the trouble of presenting the more formal composite 
As problems become more complicated, renaming parts of a composite 

function is a better way to keep track of all parts of the problem.  It is slightly more tim
consuming, but mistakes within the problem are less likely. 

 

The final step is the same, replace u with function g: 

 

The rule for differentiating multivariate natural logarithmic functions, with 
notation changes is as follows: 

 

Then the partial derivatives of z with respect to its independent variables are defined as:

 

independent variables are defined as: 

Let's do the same example as above, this time using the composite function notation where 
Note that either rule could be used for this 

is it necessary to go to the trouble of presenting the more formal composite 
As problems become more complicated, renaming parts of a composite 

It is slightly more time 

The rule for differentiating multivariate natural logarithmic functions, with appropriate 

Then the partial derivatives of z with respect to its independent variables are defined as: 



 

Let's do an example.  Find the partial derivatives of the following function:

                 

The rule for taking partials of exponential functions can be written as:

                 

Then the partial derivatives of z with respect to its independent variables are defined as:

                  

One last time, we look for partial 
rule: 

                 

Higher order partial and cross partial derivatives

The story becomes more complicated when we take higher order derivatives of multivariate 
functions.  The interpretation of the first derivative remains the same, but there are now two 
second order derivatives to consider.

First, there is the direct second
differentiated once, with respect to an independent variab
constant.  Then the result is differentiated a second time, again with respect to the same 
independent variable.  In a function such as the following:

                  

There are 2 direct second-order partial derivatives, a
notation: 
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Find the partial derivatives of the following function:

 

The rule for taking partials of exponential functions can be written as: 

 

Then the partial derivatives of z with respect to its independent variables are defined as:

One last time, we look for partial derivatives of the following function using the exponential 

 

Higher order partial and cross partial derivatives 

The story becomes more complicated when we take higher order derivatives of multivariate 
of the first derivative remains the same, but there are now two 

second order derivatives to consider. 

First, there is the direct second-order derivative.  In this case, the multivariate function is 
differentiated once, with respect to an independent variable, holding all other variables 

Then the result is differentiated a second time, again with respect to the same 
In a function such as the following: 

order partial derivatives, as indicated by the following examples of 

Find the partial derivatives of the following function: 

Then the partial derivatives of z with respect to its independent variables are defined as: 

derivatives of the following function using the exponential 

The story becomes more complicated when we take higher order derivatives of multivariate 
of the first derivative remains the same, but there are now two 

In this case, the multivariate function is 
le, holding all other variables 

Then the result is differentiated a second time, again with respect to the same 

s indicated by the following examples of 



 

                 

These second derivatives can be interpreted as the rates of change of the two slopes of the 
function z. 

Now the story gets a little more complicated.
following way.  First, take the partial derivative of z with respect to x.
derivative again, but this time, take it with respect to y, and hold the x constant.
think of the cross partial as a measure of how the
changes, when the y variable changes.
partials: 

                 

We'll discuss economic meaning further in the next section, but for now, we'll just show an 
example, and note that in a function where the cross
identical.  For the following function:

                 

Take the first and second partial derivatives.

                 

Now, starting with the first partials, find the

                 

 

4.0  CONCLUSION  

In this unit, you have been introduced to the composite differentiation also called the chain 
rule. You have known the Composites of more than two functions. You have also known the 
quotient rule. You have solved problems on higher derivative with the use of composite 
differentiation. You have proof the chain rule and known the rule in higher dimension.

5.0  SUMMARY  
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These second derivatives can be interpreted as the rates of change of the two slopes of the 

Now the story gets a little more complicated.  The cross-partials, fxy and fyx

First, take the partial derivative of z with respect to x.  Then take the 
derivative again, but this time, take it with respect to y, and hold the x constant.
think of the cross partial as a measure of how the slope (change in z with respect to x) 
changes, when the y variable changes.  The following are examples of notation for cross

  

We'll discuss economic meaning further in the next section, but for now, we'll just show an 
, and note that in a function where the cross-partials are continuous, they will be 

For the following function: 

 

Take the first and second partial derivatives. 

 

Now, starting with the first partials, find the cross partial derivatives: 

 

In this unit, you have been introduced to the composite differentiation also called the chain 
rule. You have known the Composites of more than two functions. You have also known the 

ule. You have solved problems on higher derivative with the use of composite 
differentiation. You have proof the chain rule and known the rule in higher dimension.

These second derivatives can be interpreted as the rates of change of the two slopes of the 

yx  are defined in the 
Then take the 

derivative again, but this time, take it with respect to y, and hold the x constant.  Spatially, 
slope (change in z with respect to x) 

The following are examples of notation for cross-

We'll discuss economic meaning further in the next section, but for now, we'll just show an 
partials are continuous, they will be 

In this unit, you have been introduced to the composite differentiation also called the chain 
rule. You have known the Composites of more than two functions. You have also known the 

ule. You have solved problems on higher derivative with the use of composite 
differentiation. You have proof the chain rule and known the rule in higher dimension. 
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In this unit, you have studied : 

The chain rule 

Composites of more than two functions 

The quotient rule 

Higher derivative 

Proof of the chain rule 

The rule in higher dimension 

6.0  TUTOR-MARKED ASSIGNMENT  

1.0 What are the second – order derivatives of the function F(x,y)= yxxy
532

+  

2.0 Express x- and y- derivatives of W( )
33 yx  in terms of x,y. 

3.0 What are the second - order derivatives of the function F(x,y) = yx
64
. 

4.0 What are the second – order derivatives of the function K(x,y) = ln (2x-3y). 

 5.0 What are the second – order derivatives of the function R(x,y) =  yx 3

1

2

1

. 

6.0 What are the second – order derivatives of the function N(x,y) = ).,(tan
1

yx
−
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UNIT 2: EULER’S THEOREM

CONTENT 

1.0 INTRODUCTION 

2.0 OBJECTIVES 

3.0 MAIN CONTENT 

      Statement and prove of Euler’s theorem

4.0 CONCLUSION 

5.0 SUMMARY 

 6.0 TUTOR-MARKED ASSIGNMENT

  7.0 REFERENCES/FURTHER READINGS

 

1.0  INTRODUCTION 

In number theory, Euler's theorem
totient theorem) states that if 

 

where φ(n) is Euler's totient function

 

2.0    OBJECTIVES 

In this unit, the student should able to state and prove the Euler’s theorem.

3.0   MAIN CONTENT   

The converse of Euler's theorem is also true: if the above congruence holds for positive 
integers a and n, then a and n are coprime.

The theorem is a generalization of 
Carmichael's theorem. 

The theorem may be used to easily reduce large powers modulo 
finding the ones place decimal digit of 7
coprime, and φ(10) = 4. So Euler's theorem yields 7
≡ (74)55×72 ≡ 155×72 ≡ 49 ≡ 9 (mod 10).

In general, when reducing a power of 
work modulo φ(n) in the exponent of 

if x ≡ y (mod φ(n)), then ax ≡ a

Euler's theorem also forms the basis of the 
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2: EULER’S THEOREM  

tatement and prove of Euler’s theorem 

MARKED ASSIGNMENT  

7.0 REFERENCES/FURTHER READINGS 

Euler's theorem (also known as the Fermat–Euler theorem
) states that if n and a are coprime positive integers, then 

Euler's totient function and "... ≡ ... (mod n)" denotes congruence modulo n

In this unit, the student should able to state and prove the Euler’s theorem. 

Euler's theorem is also true: if the above congruence holds for positive 
integers a and n, then a and n are coprime. 

The theorem is a generalization of Fermat's little theorem, and is further generalized by 

The theorem may be used to easily reduce large powers modulo n. For example, consider 
ones place decimal digit of 7222, i.e. 7222 (mod 10). Note that 7 and 10 are 

(10) = 4. So Euler's theorem yields 74 ≡ 1 (mod 10), and we get 7
≡ ≡ 9 (mod 10). 

In general, when reducing a power of a modulo n (where a and n are coprime), one needs to 
) in the exponent of a: 

ay (mod n). 

Euler's theorem also forms the basis of the RSA encryption system: encryption and 

Euler theorem or Euler's 

congruence modulo n. 

 

Euler's theorem is also true: if the above congruence holds for positive 

, and is further generalized by 

. For example, consider 
(mod 10). Note that 7 and 10 are 

 1 (mod 10), and we get 7222 ≡ 74×55 + 2 

are coprime), one needs to 

encryption system: encryption and 
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decryption in this system together amount to exponentiating the original text by kφ(n)+1 for 
some positive integer k, so Euler's theorem shows that the decrypted result is the same as the 
original. 

 Proofs 

1. Leonhard Euler published a proof in 1789. Using modern terminology, one may prove the 
theorem as follows: the numbers b which are relatively prime to n form a group under 
multiplication mod n, the group G of (multiplicative) units of the ring Z/nZ. This group has 
φ(n) elements. The element a := a (mod n) is a member of the group G, and the order o(a) of 
a (the least k > 0 such that ak = 1) must have a multiple equal to the size of G. (The order of a 
is the size of the subgroup of G generated by a, and Lagrange's theorem states that the size of 
any subgroup of G divides the size of G.) 

Thus for some integer M > 0, M·o(a) = φ(n). Therefore aφ(n) = ao(a)·M = (ao(a))M = 1M = 1. This 
means that aφ(n) = 1 (mod n). 

2. Another direct proof: if a is coprime to n, then multiplication by a permutes the residue 
classes mod n that are coprime to n; in other words (writing R for the set consisting of the 
φ(n) different such classes) the sets { x : x in R } and { ax : x in R } are equal; therefore, the 
two products over all of the elements in each set are equal. Hence, P ≡ aφ(n)P (mod n) where 
P is the product over all of the elements in the first set. Since P is coprime to n, it follows that 
aφ(n) ≡ 1 (mod  

 

4.0 CONCLUSION  

In this unit, you have stated and proved the Euler’s theorem 

5.0 SUMMARY  

In this unit, you have known the statement of euler’s theorem and proved euler’s theorem. 

6.0  TUTOR-MARKED ASSIGNMENT  

State and prove euler’s theorem. 
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UNIT 3 :IMPLICIT DIFFERENTIATION

 

CONTENTS 

     1.0   INTRODUCTION 

    2.0    OBJECTIVES 

    3.0     MAIN CONTENT 

                     3.1 Know the derivatives of Inverse Trigonometric Functions

                     3.2  Define and identify Implicit differentiation

                     3.3 Know formula for 

                     3.4 Know applications in economics

                     3.5  Solve Implicit differentiation problems

     4.0    CONCLUSION 

     5.0     SUMMARY 

    6.0      TUTOR-MARKED ASSIGNMENT

    7.0     REFERENCES/FURTHER READINGS

INTRODUCTION 

Most of our math work thus far has always allowed us to solve an equation for 
x. When an equation can be solved for y we call it an 
can be solved for y. An example is:

 

This equation cannot be solved for 
implicit function. The good news is that we can still differentiate such a function. The 
technique is called implicit differentiation

When we implicitly differentiate, we must treat 

must use the chain rule with y
. This notation tells us that we are differentiating with respect to 
what are differentiating with respect to, we need to regard it as a composite function. As you 
know, when we differentiate a composite function we must use the chain rule.

Let’s now try to differentiate the implicit function, 
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UNIT 3 :IMPLICIT DIFFERENTIATION  

 

Know the derivatives of Inverse Trigonometric Functions 

Define and identify Implicit differentiation 

Know formula for two variables 

Know applications in economics 

Implicit differentiation problems 

MARKED ASSIGNMENT  

7.0     REFERENCES/FURTHER READINGS 

Most of our math work thus far has always allowed us to solve an equation for 
. When an equation can be solved for y we call it an explicit function. But not all equations 

. An example is: 

This equation cannot be solved for y. When an equation cannot be solved for 
function. The good news is that we can still differentiate such a function. The 

implicit differentiation. 

iate, we must treat y as a composite function and therefore we 

y terms. The reason for this can be seen in Leibnitz notation: 
. This notation tells us that we are differentiating with respect to x. Because y is not native to 

hat are differentiating with respect to, we need to regard it as a composite function. As you 
know, when we differentiate a composite function we must use the chain rule.

Let’s now try to differentiate the implicit function, . 

 

Most of our math work thus far has always allowed us to solve an equation for y in terms of 
function. But not all equations 

. When an equation cannot be solved for y, we call it an 
function. The good news is that we can still differentiate such a function. The 

as a composite function and therefore we 

terms. The reason for this can be seen in Leibnitz notation: 
. Because y is not native to 

hat are differentiating with respect to, we need to regard it as a composite function. As you 
know, when we differentiate a composite function we must use the chain rule. 



 

 

This is a "
difficulty to solve for y, so we will want to use implicit 
differentiation.

 

Here we show with Leibnitz notation that we are implicitly 
differentiating both sides of

On the left side we need to individually take the derivative of each 
term. On the right side we will have to use the product rule. (

 

Here we take the individual derivatives. Note: Where did the 
come from? Because we are different
need to use the chain rule on the 
product rule on the right side.

 

Now we get the 

 
Now we factor 

Now we divide both sides by the 

We can see in a plot of the implicit function that the slope of the 
tangent line at the point (3,3) does appear to be 
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This is a "folium of Descartes" curve. This would be very 
difficulty to solve for y, so we will want to use implicit 
differentiation. 

Here we show with Leibnitz notation that we are implicitly 
differentiating both sides of the equation. 

On the left side we need to individually take the derivative of each 
term. On the right side we will have to use the product rule. (

) 

Here we take the individual derivatives. Note: Where did the 
come from? Because we are differentiating with respect to 
need to use the chain rule on the y. Notice that we did use the 
product rule on the right side. 

Now we get the y’ terms on the same side of the equation.

Now we factor y’ out of the expression on the left side.

Now we divide both sides by the  factor and simplify.

We can see in a plot of the implicit function that the slope of the 
tangent line at the point (3,3) does appear to be -

" curve. This would be very 
difficulty to solve for y, so we will want to use implicit 

Here we show with Leibnitz notation that we are implicitly 

On the left side we need to individually take the derivative of each 
term. On the right side we will have to use the product rule. ( 

Here we take the individual derivatives. Note: Where did the y’ 
iating with respect to x, we 

. Notice that we did use the 

terms on the same side of the equation. 

out of the expression on the left side. 

factor and simplify. 

We can see in a plot of the implicit function that the slope of the 
-1. 



 

Another example: Differentiate: 
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Another example: Differentiate:  

Given 
implicit 
function

 

Doing 
implicit 
differentiation 
on the 
function. 
Note the use 
of the product 
rule on the 
second term

 

We do the 
algebra to 
solve for y'.

 

Here we see a 
portion of 
plot of the 
implicit 
equation with 
c set equal to 
5.. When does 
it appear that 
the slope of 
the tangent 
line will be 
zero? It 
appears to be 
at about 
(2.2,2.2).

We take our 
derivative, set 
it equal to 
zero, and 
solve.

Given 
implicit 
function 

Doing 
implicit 
differentiation 
on the 
function. 
Note the use 
of the product 
rule on the 
second term 

We do the 
algebra to 
solve for y'. 

Here we see a 
portion of 
plot of the 
implicit 
equation with 

set equal to 
5.. When does 
it appear that 
the slope of 
the tangent 
line will be 
zero? It 
appears to be 
at about 
(2.2,2.2). 

We take our 
derivative, set 
it equal to 
zero, and 
solve. 



 

 

x = y = 2.116343299 

 

 

2.0    OBJECTIVES 

At the end of this unit, you should be able to :

Know the derivatives of Inverse Trigonometric Functions

Define and identify Implicit differentiation

Know formula for two variables

Know applications in economics

 Solve Implicit differentiation problems
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Now putting 
x = 
original 
implicit 
equation, we 
find that...

We still must 
use a 
computer 
algebra 
system to 
solve this 
cubic 
equation. The 
one real 
answer is 
shown at the 
left. This 
answer does 
seem 
consistent 
with our 
visual 
estimate.

This can be 
done in 
Maple with 
the following

 

At the end of this unit, you should be able to : 

Know the derivatives of Inverse Trigonometric Functions 

Define and identify Implicit differentiation 

variables 

Know applications in economics 

Implicit differentiation problems 

Now putting 
= y in the 

original 
implicit 
equation, we 
find that... 

We still must 
use a 
computer 
algebra 
system to 
solve this 
cubic 
equation. The 
one real 
answer is 
shown at the 
left. This 
answer does 
seem 
consistent 
with our 
visual 
estimate. 

This can be 
done in 
Maple with 
the following 



 

3.0    MAIN CONTENT 

Links to other explanations of Implicit Differentiation

Derivatives of Inverse Trigonometric Functions

Thanks to implicit differentiation, we can develop
have developed otherwise. The inverse trigonometric functions fall under this category. We 
will develop and remember the derivatives of the inverse sine and inverse tangent.
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Links to other explanations of Implicit Differentiation 

Derivatives of Inverse Trigonometric Functions 

Thanks to implicit differentiation, we can develop important derivatives that we could not 
have developed otherwise. The inverse trigonometric functions fall under this category. We 
will develop and remember the derivatives of the inverse sine and inverse tangent.

Inverse sine function. 

This is what inverse sine means. 

We implicitly differentiate both sides of the equation 
with respect to x. Because we are differentiating 
with respect to x, we need to use the chain rule on 
the left side. 

We solve the equation for . 

This is because of the trigonometric identity, 

. 

Refer back to the equation in step two above. We 
have our derivative.  

 

important derivatives that we could not 
have developed otherwise. The inverse trigonometric functions fall under this category. We 
will develop and remember the derivatives of the inverse sine and inverse tangent. 

We implicitly differentiate both sides of the equation 
. Because we are differentiating 
, we need to use the chain rule on 

This is because of the trigonometric identity, 

Refer back to the equation in step two above. We 



 

Implicit differentiation 

In 

calculus, a method called implicit differentiation
implicitly defined functions. 

As explained in the introduction, 
explicitly. When we have an equation 
differentiate. However, sometimes it is simpler to differentiate 
and then solve for dy/dx. 

 Examples 

1. Consider for example 

 

This function normally can be manipulated by
expressing y in terms of an explicit function

 

where the right side is the explicit function whose output value is 

. Alternatively, one can 
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implicit differentiation  makes use of the chain rule

As explained in the introduction, y can be given as a function of x implicitly rather than 
explicitly. When we have an equation R(x, y) = 0, we may be able to solve it for 
differentiate. However, sometimes it is simpler to differentiate R(x, y) with respect to 

This function normally can be manipulated by using algebra to change this 
explicit function: 

where the right side is the explicit function whose output value is y. Differentiation then gives 

. Alternatively, one can totally differentiate the original equation:

The inverse tangent function. 

This is what inverse tangent means. 

We implicitly differentiate both sides of the 
equation with respect to x. Because we are 
differentiating with respect to x, we need to use the 
chain rule on the left side. 

We solve the equation for . 

This is because of the trigonometric identity, 

. 

 

Refer back to the equation in step two above. We 
have our derivative.  

chain rule to differentiate 

implicitly rather than 
0, we may be able to solve it for y and then 

) with respect to x and y 

to change this equation to one 

. Differentiation then gives 

the original equation: 

We implicitly differentiate both sides of the 
. Because we are 

, we need to use the 

This is because of the trigonometric identity, 

Refer back to the equation in step two above. We 



 

 

 

Solving for gives: 

 

the same answer as obtained previously.

2. An example of an implicit function, for which implicit differentiatio
attempting to use explicit differentiation, is

 

In order to differentiate this explicitly with respect to 
algebra) 

and then differentiate this function. This creates two derivatives: one for 
for y < 0. 

One might find it substantially easier to implicitly differentiate the original function:

 

giving, 

 

3. Sometimes standard explicit differentiation cannot be used and, in order to obtain the 
derivative, implicit differentiation must
equation y5 − y = x. It is impossible to express 
dy/dx cannot be found by explicit differentiation. Using the implicit method, 
expressed: 

 

where Factoring out 
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the same answer as obtained previously. 

An example of an implicit function, for which implicit differentiation might be easier than 
attempting to use explicit differentiation, is 

In order to differentiate this explicitly with respect to x, one would have to obtain (via 

 

and then differentiate this function. This creates two derivatives: one for y >

One might find it substantially easier to implicitly differentiate the original function:

Sometimes standard explicit differentiation cannot be used and, in order to obtain the 
derivative, implicit differentiation must be employed. An example of such a case is the 

x. It is impossible to express y explicitly as a function of x
cannot be found by explicit differentiation. Using the implicit method, 

Factoring out shows that 

n might be easier than 

, one would have to obtain (via 

> 0 and another 

One might find it substantially easier to implicitly differentiate the original function: 

Sometimes standard explicit differentiation cannot be used and, in order to obtain the 
be employed. An example of such a case is the 

x and therefore 
cannot be found by explicit differentiation. Using the implicit method, dy/dx can be 



 

 

which yields the final answer 

 

which is defined for 

Formula for two variables 

"The Implicit Function Theorem states that if 

where F(a,b) = 0, 
equation F(x,y) = 0 defines y as a function of 
function is given by..."[1]:§ 11.5 

where Fx and Fy indicate the derivatives of 

The above formula comes from using the 
derivative—with respect to x—

 

and hence 

 

 Implicit function theorem 

 

It can be shown that if R(x,y) is given by a 

of this submanifold such that the 
M in some small enough neighbourhood
is a smooth function. In less technical language, implicit functions exist and can be 
differentiated, unless the tangent to the supposed graph would be vertical. In the standard 
case where we are given an equation

R(x,y) = 0 

the condition on R can be checked by means of 
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"The Implicit Function Theorem states that if F is defined on an open disk containing 

, and Fx and Fy are continuous on the disk, then the 
as a function of x near the point (a,b) and the derivative of this 
 

 

indicate the derivatives of F with respect to x and y. 

The above formula comes from using the generalized chain rule to obtain the 
—of both sides of F(x, y) = 0: 

is given by a smooth submanifold M in , and 

of this submanifold such that the tangent space there is not vertical (that is 
neighbourhood of (a,b) is given by a parametrization

less technical language, implicit functions exist and can be 
differentiated, unless the tangent to the supposed graph would be vertical. In the standard 
case where we are given an equation 

can be checked by means of partial derivatives . 

is defined on an open disk containing (a,b), 

are continuous on the disk, then the 
and the derivative of this 

to obtain the total 

, and (a,b) is a point 

there is not vertical (that is    ), then 
parametrization (x,f(x)) where f 

less technical language, implicit functions exist and can be 
differentiated, unless the tangent to the supposed graph would be vertical. In the standard 



 

 Applications in economics 

 Marginal rate of substitution 

 

In economics, when the level s
consumed of two goods, the absolute value of the implicit derivative is interpreted as the 
marginal rate of substitution of the two goods: how much more of 
to be indifferent to a loss of 1 unit of

 IMPLICIT DIF FERENTIATION PROBLEMS 

 

The following problems require the use of implicit differentiation. Implicit differentiation is 
nothing more than a special case of the well
of differentiation problems in first
functions of x . For example, if 

,  

then the derivative of y is  

.  

However, some functions y are written IMPLICITLY as functions of 
of this is the equation  

x2 + y2 = 25 ,  

which represents a circle of radius five centered at the origin. Suppose that we wish to find 
the slope of the line tangent to the graph of this equation at the point (3, 

How could we find the derivative of 
as a function of x . Thus,  
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, when the level set R(x,y) = 0 is an indifference curve for the quantities 
consumed of two goods, the absolute value of the implicit derivative is interpreted as the 

of the two goods: how much more of y one must receive in order 
to be indifferent to a loss of 1 unit of x. 

FERENTIATION PROBLEMS  

The following problems require the use of implicit differentiation. Implicit differentiation is 
nothing more than a special case of the well-known chain rule for derivatives. The majority 
of differentiation problems in first-year calculus involve functions y written EXPLICITLY as 

. For example, if  

are written IMPLICITLY as functions of x . A familiar example 

which represents a circle of radius five centered at the origin. Suppose that we wish to find 
the slope of the line tangent to the graph of this equation at the point (3, -4) . 

 

How could we find the derivative of y in this instance ? One way is to first 

for the quantities x and y 
consumed of two goods, the absolute value of the implicit derivative is interpreted as the 

one must receive in order 

The following problems require the use of implicit differentiation. Implicit differentiation is 
known chain rule for derivatives. The majority 

written EXPLICITLY as 

. A familiar example 

which represents a circle of radius five centered at the origin. Suppose that we wish to find 
4) .  

 write y explicitly 



 

x2 + y2 = 25 ,  

y2 = 25 - x2 ,  

and  

,  

where the positive square root represents the top semi
represents the bottom semi-circle. Since the point (3, 
by  

,  

the derivative of y is  

i.e.,  

.  

Thus, the slope of the line tangent to the graph at the point (3, 

. 

Unfortunately, not every equation involving 
sake of illustration we will find the derivative of 
function of x . Recall that the derivative (D) of a function of 
using the chain rule :  

Since y symbolically represents a function of 
fashion :  

.  

Now begin with  

x2 + y2 = 25 .  

Differentiate both sides of the equation, getting 

D ( x2 + y2 ) = D ( 25 ) ,  
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where the positive square root represents the top semi-circle and the negative square root 
circle. Since the point (3, -4) lies on the bottom semi

,  

Thus, the slope of the line tangent to the graph at the point (3, -4) is  

.  

Unfortunately, not every equation involving x and y can be solved explicitly for 
on we will find the derivative of y WITHOUT writing y explicitly as a 

. Recall that the derivative (D) of a function of x squared, (f(x

.  

symbolically represents a function of x, the derivative of y2 can be found in the same 

 

Differentiate both sides of the equation, getting  

circle and the negative square root 
m semi-circle given 

can be solved explicitly for y . For the 
explicitly as a 
x))2 , can be found 

can be found in the same 



 

D ( x2 ) + D ( y2 ) = D ( 25 ) ,  

and  

2x + 2 y y' = 0 ,  

so that  

2 y y' = - 2x ,  

and  

,  

i.e.,  

.  

Thus, the slope of the line tangent to the graph at the point (3, 

.  

This second method illustrates the process of implicit differentiation. It is important to note 
that the derivative expression for explicit differentiation involves 
expression for implicit differentiation may involve BOTH 

The following problems range in difficulty from average to challenging. 
 
 

PROBLEM 1 : Assume that y 

SOLUTION 1 : Begin with x3 

D ( x3 + y3 ) = D ( 4 ) ,  

D ( x3 ) + D ( y3 ) = D ( 4 ) ,  

(Remember to use the chain rule on 

3x2 + 3y2 y' = 0 ,  

so that (Now solve for y' .)  

3y2 y' = - 3x2 ,  

and  
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Thus, the slope of the line tangent to the graph at the point (3, -4) is  

This second method illustrates the process of implicit differentiation. It is important to note 
that the derivative expression for explicit differentiation involves x only, while the derivative 
expression for implicit differentiation may involve BOTH x AND y .  

The following problems range in difficulty from average to challenging.  

 is a function of x . Find y' = dy/dx for x3 + y3 

 + y3 = 4 . Differentiate both sides of the equation, getting 

(Remember to use the chain rule on D ( y3 ) .)  

This second method illustrates the process of implicit differentiation. It is important to note 
only, while the derivative 

 

 = 4 .  

= 4 . Differentiate both sides of the equation, getting  



 

 

SOLUTION 2 : Begin with (x-

D (x-y)2 = D ( x + y - 1 ) ,  

D (x-y)2 = D ( x ) + D ( y ) - D

(Remember to use the chain rule on 

2 (x-y) (1- y') = 1 + y' ,  

so that (Now solve for y' .)  

2 (x-y) - 2 (x-y) y' = 1 + y' ,  

- 2 (x-y) y' - y' = 1 - 2 (x-y) ,  

(Factor out y' .)  

y' [ - 2 (x-y) - 1 ] = 1 - 2 (x-y) , 

and  

 
 
 

SOLUTION 3 : Begin with 
getting  

,  

(Remember to use the chain rule on 

, 

so that (Now solve for y' .)  
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-y)2 = x + y - 1 . Differentiate both sides of the equation, getting 

D ( 1 ) ,  

(Remember to use the chain rule on D (x-y)2 .)  

,  

) ,  

.  

. Differentiate both sides of the equation, 

(Remember to use the chain rule on .)  

,  

,  

1 . Differentiate both sides of the equation, getting  

. Differentiate both sides of the equation, 



 

(Factor out y' .)  

and  

.  

SOLUTION 4 : Begin with y = 

D(y) = D ( x2 y3 + x3 y2 ) ,  

D(y) = D ( x2 y3 ) + D ( x3 y2 ) , 

(Use the product rule twice.)  

(Remember to use the chain rule on 

y' = 3x2 y2 y' + 2x y3 + 2x3 y y' + 3

so that (Now solve for y' .)  

y' - 3x2 y2 y' - 2x3 y y' = 2x y3 + 3

(Factor out y' .)  

y' [ 1 - 3x2 y2 - 2x3 y ] = 2x y3 + 3

and  

.  

  
 
 

SOLUTION 5 : Begin with 
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,  

,  

,  

= x2 y3 + x3 y2 . Differentiate both sides of the equation, getting 

) ,  

 

,  

(Remember to use the chain rule on D ( y3 ) and D ( y2 ) .)  

,  

' + 3x2 y2 ,  

+ 3x2 y2 ,  

+ 3x2 y2 ,  

. Differentiate both sides of the equation, 

. Differentiate both sides of the equation, getting  

. Differentiate both sides of the equation, 



 

getting  

, 

so that (Now solve for .)  

(Factor out .)  

and  

.  

  
 
 

SOLUTION 6 : Begin with 
equation, getting  
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,  

,  

,  

,  

,  

,  

,  

. Differentiate both sides of the 

,  

,  

,  

. Differentiate both sides of the 



 

so that (Now solve for y' .)  

(Factor out y' .)  

and  

  
 
 

SOLUTION 7 : Begin with 
getting  

,  

1 = (1/2)( x2 + y2 )-1/2 D ( x2 + 

1 = (1/2)( x2 + y2 )-1/2 ( 2x + 2y y

so that (Now solve for y' .)  

,  

,  
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,  

,  

,  

,  

,  

,  

.  

. Differentiate both sides of the equation, 

 

+ y2 ) ,  

y y' ) ,  

. Differentiate both sides of the equation, 



 

,  

,  

and  

.  

 
 
 

SOLUTION 8 : Begin with 
the equation by y + x2 , getting 

or  

x - y3 = xy + 2y + x3 + 2x2 .  

Now differentiate both sides of the equation, getting 

D ( x - y3 ) = D ( xy + 2y + x3 + 2

D ( x ) - D (y3 ) = D ( xy ) + D

(Remember to use the chain rule on 

1 - 3 y2 y' = ( xy' + (1)y ) + 2 y

so that (Now solve for y' .)  

1 - y - 3x2 - 4x = 3 y2 y' + xy' + 2 

(Factor out y' .)  

1 - y - 3x2 - 4x = (3y2 + x + 2) y

and  

.  
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. Clear the fraction by multiplying both sides of 
, getting  

,  

Now differentiate both sides of the equation, getting  

+ 2x2 ) ,  

D ( 2y ) + D ( x3 ) + D ( 2x2 ) ,  

(Remember to use the chain rule on D (y3 ) .)  

y' + 3x2 + 4x ,  

' + 2 y' ,  

+ 2) y' ,  

. Clear the fraction by multiplying both sides of 



 

 
 

SOLUTION 9 : Begin with 
of the equation by x3 y3 , getting 

y4 + x4 = x5 y7 .  

Now differentiate both sides of the equation, getting 

D ( y4 + x4 ) = D ( x5 y7 ) ,  

D ( y4 ) + D ( x4 ) = x5 D (y7 ) + 

(Remember to use the chain rule on 

4 y3 y' + 4 x3 = x5 (7 y6 y' ) + ( 5 

so that (Now solve for y' .)  

4 y3 y' - 7 x5 y6 y' = 5 x4 y7 - 4 x

(Factor out y' .)  

y' [ 4 y3 - 7 x5 y6 ] = 5 x4 y7 - 4 

and  

.  

  
 
 

SOLUTION 10 : Begin with (x
getting  

D (x2+y2)3 = D ( 8x2y2 ) ,  

3 (x2+y2)2 D (x2+y2) = 8x2 D (y

(Remember to use the chain rule on 

3 (x2+y2)2 ( 2x + 2 y y' ) = 8x2 
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. Clear the fractions by multiplying both sides
, getting  

,  

,  

Now differentiate both sides of the equation, getting  

) + D ( x5 ) y7 ,  

(Remember to use the chain rule on D (y4 ) and D (y7 ) .)  

' ) + ( 5 x4 ) y7 ,  

x3 ,  

4 x3 ,  

x2+y2)3 = 8x2y2 . Now differentiate both sides of the equation, 

y2 ) + D ( 8x2 ) y2 ,  

(Remember to use the chain rule on D (y2 ) .)  

 (2 y y' ) + ( 16 x ) y2 ,  

. Clear the fractions by multiplying both sides 

. Now differentiate both sides of the equation, 



 

so that (Now solve for y' .)  

6x (x2+y2)2 + 6 y (x2+y2)2 y' = 16 

6 y (x2+y2)2 y' - 16 x2 y y' = 16 

(Factor out y' .)  

y' [ 6 y (x2+y2)2 - 16 x2 y ] = 16 

and  

. 

Thus, the slope of the line tangent to the graph at the point (

and the equation of the tangent line is 

y - ( 1 ) = (1) ( x - ( -1 ) )  

or  

y = x + 2 
 
 

SOLUTION 11 : Begin with x

(1)2 + ( y-1 )3 = 9  

so that  

( y-1 )3 = 8 ,  

y-1 = 2 ,  

y = 3 ,  

and the tangent line passes through the point (1, 3) . Now differentiate both sides of the 
original equation, getting  

D ( x2 + (y-x)3 ) = D ( 9 ) ,  

D ( x2 ) + D (y-x)3 = D ( 9 ) ,  

2x + 3 (y-x)2 D (y-x) = 0 ,  

2x + 3 (y-x)2 (y'-1) = 0 ,  

so that (Now solve for y' .)  
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' = 16 x2 y y' + 16 x y2 ,  

' = 16 x y2 - 6x (x2+y2)2 ,  

] = 16 x y2 - 6x (x2+y2)2 ,  

.  

Thus, the slope of the line tangent to the graph at the point (-1, 1) is  

,  

and the equation of the tangent line is  

x2 + (y-x)3 = 9 . If x=1 , then  

and the tangent line passes through the point (1, 3) . Now differentiate both sides of the 

 

and the tangent line passes through the point (1, 3) . Now differentiate both sides of the 



 

2x + 3 (y-x)2 y'- 3 (y-x)2 = 0 ,  

3 (y-x)2 y' = 3 (y-x)2 - 2x ,  

and  

.  

Thus, the slope of the line tangent to the graph at (1, 3) is 

and the equation of the tangent line is 

y - ( 3 ) = (5/6) ( x - ( 1 ) ) ,  

or  

y = (7/6) x + (13/6) .  

 
 
 

SOLUTION 12 : Begin with x
equation, getting  

D ( x2 y + y4 ) = D ( 4 + 2x ) ,  

D ( x2 y ) + D (y4 ) = D ( 4 ) + 

( x2 y' + (2x) y ) + 4 y3 y' = 0 + 2 , 

so that (Now solve for y' .)  

x2 y' + 4 y3 y' = 2 - 2x y ,  

(Factor out y' .)  

y' [ x2 + 4 y3 ] = 2 - 2x y ,  

and  

(Equation 1)  

.  

Thus, the slope of the graph (the slope of the line tangent to the graph) at (
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Thus, the slope of the line tangent to the graph at (1, 3) is  

,  

and the equation of the tangent line is  

x2y + y4 = 4 + 2x . Now differentiate both sides of the original 

 

( 4 ) + D ( 2x ) ,  

' = 0 + 2 ,  

Thus, the slope of the graph (the slope of the line tangent to the graph) at (-

. Now differentiate both sides of the original 

-1, 1) is  



 

.  

Since y'= 4/5 , the slope of the graph is 4/5 and the graph is increasing at the point (
Now determine the concavity of the graph at (

Now let x=-1 , y=1 , and y'=4/5 so that the second derivative is 

 

.  

Since y'' < 0 , the graph is concave down at the point (

4.0 CONCLUSION 

In this unit you have studied the derivative of inverse of trigonometric functions. You have 
known the definition of implicit differentiation and have identified problems on
differentiation.  You have also studied the formular for two variables and implicit 
differentiation applications in economics. You have solved various examples on implicit 
differentiation.  

5.0  SUMMARY 

In this course you have studied

The  derivatives of Inverse Trigonometric Functions

Definition and identification of Implicit differentiation

The formula for two variables

The applications in economics
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'= 4/5 , the slope of the graph is 4/5 and the graph is increasing at the point (
Now determine the concavity of the graph at (-1, 1) . Differentiate Equation 1, getting 

 

.  

'=4/5 so that the second derivative is  

 

'' < 0 , the graph is concave down at the point (-1, 1) 

studied the derivative of inverse of trigonometric functions. You have 
known the definition of implicit differentiation and have identified problems on
differentiation.  You have also studied the formular for two variables and implicit 
differentiation applications in economics. You have solved various examples on implicit 

In this course you have studied 

derivatives of Inverse Trigonometric Functions 

Definition and identification of Implicit differentiation 

The formula for two variables 

The applications in economics 

'= 4/5 , the slope of the graph is 4/5 and the graph is increasing at the point (-1, 1) . 
1, 1) . Differentiate Equation 1, getting  

 

studied the derivative of inverse of trigonometric functions. You have 
known the definition of implicit differentiation and have identified problems on implicit 
differentiation.  You have also studied the formular for two variables and implicit 
differentiation applications in economics. You have solved various examples on implicit 
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 Implicit differentiation problems 

 

5.0 TUTOR-MARKED ASSIGNMENT 

 Find the equation of the tangent line to the ellipse 25 x2 + y2 = 109  

 if Find y' if    

Find y'   if  xy3 + x2y2 + 3x2 - 6 = 1. 

. Show that if a normal line to each point on an ellipse passes through the center of an ellipse, 
then the ellipse is a circle. 
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MODULE 6 TAYLOR’S SERIES EXPANSION   

               -Unit 1: Function of two variables 

               -Unit 2: Taylor’s series expansion for functions of two variables. 

               -Unit 3: Application of Taylor’s series. 

 

UNIT  1 : FUNCTIONS OF TWO VARIABLES 

CONTENTS 

1.0 INTRODUCTION 
2.0 OBJECTIVES 
3.0 MAIN CONTENT 

3.1 Solve problems on partial derivatives in calculus 

3.2 Solve problems on higher order partial derivative 

3.3 State and apply clairauts theorem 

3.4 Solve problem on maxima and manima 

3.5 Identify Taylor series of function of two variable 

3.6 Know analytical function 

4.0 CONCLUSION 
5.0    SUMMARY 
6.0    TUTOR-MARKED ASSIGNMENT 
7.0    REFERENCES/FURTHER READINGS 
 

1.0 INTRODUCTION 

Functions of Two Variables 
Definition of a function of two variables 
Until now, we have only considered functions of a single variable. 
However, many real-world functions consist of two (or more) variables. E.g., the area 
function of a rectangular shape depends on both its width and its height. And, the 
pressure of a given quantity of gas varies with respect to the temperature of the gas and 
its volume. We define a function of two variables as follows: 
A function f of two variables is a relation that assigns to every ordered pair of input 
values x, y in a set called the domain of a unique output value denoted by,f (x, y). The set 
of output values is called the range. 
Since the domain consists of ordered pairs, we may consider the domain to be all (or part) of 
the x-y plane. 
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Unless otherwise stated, we will assume that the variables x and y and the output Value f (x, 
y). 

2.0 OBJECTIVE 

At  this unit, you should be able to : 

• Solve problems on partial derivatives in calculus 
• Solve problems on higher order partial derivative 
• State and apply clairauts theorem 
• Solve problem on maxima and manima 
• Identify Taylor series of function of two variable 
• Know analytical function 

3.0  MAIN CONTENT  

Partial Derivatives in Calculus 

Let f(x,y) be a function with two variables. If we keep y constant and differentiate f 
(assuming f is differentiable) with respect to the variable x, we obtain what is called the 
partial derivative  of f with respect to x which is denoted by  

∂f 
 

∂x 
or fx 

We might also define partial derivatives of function f as follows:  

∂f 
 

∂x 
= 

lim 
h→0 

f(x + h , y) - f(x , y) 
 

h 
 

 
∂f 

 
∂y 

= 
lim 
k→0 

f(x , y + k) - f(x , y) 
 

K 

We now present several examples with detailed solution on how to calculate partial 
derivatives.  

Example 1: Find the partial derivatives fx and fy if f(x , y) is given by  

f(x , y) = x2 y + 2x + y 

Solution to Example 1:  
 
Assume y is constant and differentiate with respect to x to obtain  
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fx = 
∂f 

 
∂x 

= 
∂  

 
∂x 

[ x2 y + 2x + y ] 

= 
∂  

 
∂x 

[ x2 y] + 
∂  

 
∂x 

[ 2 x ] + 
∂  

 
∂x 

[ y ] = [2 x y] + [ 2 ] + [ 0 ] = 2x y + 2 

Now assume x is constant and differentiate with respect to y to obtain  

fy = 
∂f 

 
∂y 

= 
∂  

 
∂y 

[ x2 y + 2x + y ] 

= 
∂  

 
∂y 

[ x2 y] + 
∂  

 
∂y 

[ 2 x ] + 
∂  

 
∂y 

[ y ] = [ x2 ] + [ 0 ] + [ 1 ] = x2 + 1 

Example 2: Find fx and fy if f(x , y) is given by  

f(x , y) = sin(x y) + cos x 

Solution to Example 2:  
 
Differentiate with respect to x assuming y is constant  

fx = 
∂f 

 
∂x 

= 
∂  

 
∂x 

[ sin(x y) + cos x ] = y cos(x y) - sin x 

 
 
Differentiate with respect to y assuming x is constant  

fy = 
∂f 

 
∂y 

= 
∂  

 
∂y 

[ sin(x y) + cos x ] = x cos(x y) 

 

Example 3: Find fx and fy if f(x , y) is given by  

f(x , y) = x ex y 

Solution  3:  
 
Differentiate with respect to x assuming y is constant  

fx = 
∂f 

 
∂x 

= 
∂  

 
∂x 

[ x ex y ] = ex y + x y ex y = (x y + 1)ex y 
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Differentiate with respect to y  

fy = 
∂f 

 
∂y 

= 
∂  

 
∂y 

[ x ex y ] = (x) (x ex y) = x2 ex y 

Example 4: Find fx and fy if f(x , y) is given by  

f(x , y) = ln ( x2 + 2 y) 

Solution    
 
Differentiate with respect to x to obtain  

fx = 
∂f 

 
∂x 

= 
∂  

 
∂x 

[ ln ( x2 + 2 y) ] = 
2x  

 
x2 + 2 y 

 
 
Differentiate with respect to y  

fy = 
∂f 

 
∂y 

= 
∂  

 
∂y 

[ ln ( x2 + 2 y) ] = 
2  

 
x2 + 2 y 

 

Example 5: Find fx(2 , 3) and fy(2 , 3) if f(x , y) is given by  

f(x , y) = y x2 + 2 y 

Solution to Example 5:  
 
We first find fx and fy  
 
fx(x,y) = 2x y  
 
fy(x,y) = x2 + 2  
 
We now calculate fx(2 , 3) and fy(2 , 3) by substituting x and y by their given values  
 
fx(2,3) = 2 (2)(3) = 12  
 
fy(2,3) = 22 + 2 = 6  

Exercise: Find partial derivatives fx and fy of the following functions  
 
1. f(x , y) = x ex + y  



 

 
2. f(x , y) = ln ( 2 x + y x)  
 
3. f(x , y) = x sin(x - y)  
 
Answer to Above Exercise:  
 
1. fx =(x + 1)ex + y , fy = x ex + y

 
2. fx = 1 / x , fy = 1 / (y + 2)  
 
3. fx = x cos (x - y) + sin (x - y) , 
 
More on partial derivatives and mutlivariable functions. 

Higher Order Partial Derivatives

Just as we had higher order derivatives with 
higher order derivatives of functions of more than one variable.
have more options since we do have more than one variable..Consider the case of a function 

of two variables, 
functions of x and y we could in turn differentiate each with respect to 
for the case of a function of two variables there will be a total of four possible second order 
derivatives.  Here they are and the notations that we’ll use to denote them.

 

 

The second and third second order partial derivatives are often called mixed partial 
derivatives since we are taking derivatives with respect to more than one variable.
well that the order that we take the derivatives in is given by the notation f
we are using the subscripting notation, 
right.  In other words, in this case, we will differentiate first with respect to 

respect to y.  With the fractional notation     
differentiate moving along the denominator from right to left.
differentiate with respect to x 

      Let’s take a quick look at an example.
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x + y  

 

y) , fy = -x cos (x - y)  

More on partial derivatives and mutlivariable functions. Multivariable Functions

Higher Order Partial Derivatives 

Just as we had higher order derivatives with functions of one variable we will also have 
higher order derivatives of functions of more than one variable.  However, this time we will 
have more options since we do have more than one variable..Consider the case of a function 

 since both of the first order partial derivatives are also 
we could in turn differentiate each with respect to x or 

for the case of a function of two variables there will be a total of four possible second order 
Here they are and the notations that we’ll use to denote them. 

 

 

The second and third second order partial derivatives are often called mixed partial 
derivatives since we are taking derivatives with respect to more than one variable.
well that the order that we take the derivatives in is given by the notation for each these.
we are using the subscripting notation, e.g. , then we will differentiate from left to 

In other words, in this case, we will differentiate first with respect to 

With the fractional notation     e.g. , it is the opposite.  In these cases we 
differentiate moving along the denominator from right to left.  So, again, in this case we 

 first and then 

Let’s take a quick look at an example. 

Multivariable Functions  

functions of one variable we will also have 
However, this time we will 

have more options since we do have more than one variable..Consider the case of a function 

ce both of the first order partial derivatives are also 
or y.  This means that 

for the case of a function of two variables there will be a total of four possible second order 
 

The second and third second order partial derivatives are often called mixed partial 
derivatives since we are taking derivatives with respect to more than one variable.  Note as 

or each these.  If 
, then we will differentiate from left to 

In other words, in this case, we will differentiate first with respect to x and then with 

In these cases we 
So, again, in this case we 



 

Example 1  Find all the second order derivatives for 

  
Solution 
We’ll first need the first order derivatives so here they are.

                                                

 
  
Now, let’s get the second order derivatives.

                                                     

 

Notice that we dropped the 
doing it most of the time from this point on.
derivatives in most cases. 
  
Now let’s also notice that, in this case, 
is “nice enough” this will always be the case.
theorem tells us. 
  
Clairaut’s Theorem 

Suppose that f is defined on a disk 
 and  are continuous on this disk then,

                                                       
  
Now, do not get too excited about the disk business and the fact that we gave the theorem is 
for a specific point.  In pretty much every example in this class if the two mixed second order 
partial derivatives are continuous then they will be equal.
  

Example 2  Verify Clairaut’s Theorem for 
  
Solution 
We’ll first need the two first order 
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Find all the second order derivatives for 

 

We’ll first need the first order derivatives so here they are. 

                                                 

 

Now, let’s get the second order derivatives. 

                    

 from the derivatives.  This is fairly standard and we will be 
doing it most of the time from this point on.  We will also be dropping it for the first order 

s also notice that, in this case, .  This is not by coincidence.
is “nice enough” this will always be the case.  So, what’s “nice enough”?

is defined on a disk D that contains the point .  If the functions 
are continuous on this disk then, 

                                                         

Now, do not get too excited about the disk business and the fact that we gave the theorem is 
In pretty much every example in this class if the two mixed second order 

partial derivatives are continuous then they will be equal. 

Verify Clairaut’s Theorem for . 

We’ll first need the two first order derivatives.  

 

This is fairly standard and we will be 
We will also be dropping it for the first order 

This is not by coincidence.  If the function 
So, what’s “nice enough”?  The following 

If the functions 

Now, do not get too excited about the disk business and the fact that we gave the theorem is 
In pretty much every example in this class if the two mixed second order 



 

  
Now, compute the two fixed second order partial derivatives.

          

  
Sure enough they are the same.
  
So far we have only looked at second order derivatives.
derivatives as well.  Here are a couple of the third order partial derivatives of function of two 
variables. 

 

  
Notice as well that for both of these we differentiate once with respect to 
respect to x.  There is also another third order partial derivative in which we can do this, 

.  There is an extension to Clairaut’s Theorem that says if all three of these are 
continuous then they should all be equal,

 
 
To this point we’ve only looked at 
to this point will work regardless of the number of variables that we’ve got in the function 
and there are natural extensions to Clairaut’s theorem to all of these cases as well.
instance, 

  

provided both of the derivatives are continuous.

  

In general, we can extend Clairaut’s theorem to any function and mixed partial derivatives.
The only requirement is that in each derivative we differentiate with respect to each variable 
the same number of times.  In other words, provided we meet the continuity condition, the 
following will be equal 
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Now, compute the two fixed second order partial derivatives. 

Sure enough they are the same. 

So far we have only looked at second order derivatives.  There are, of course, higher order 
Here are a couple of the third order partial derivatives of function of two 

 

Notice as well that for both of these we differentiate once with respect to 
There is also another third order partial derivative in which we can do this, 

There is an extension to Clairaut’s Theorem that says if all three of these are 
continuous then they should all be equal, 

 

  

To this point we’ve only looked at functions of two variables, but everything that we’ve done 
to this point will work regardless of the number of variables that we’ve got in the function 
and there are natural extensions to Clairaut’s theorem to all of these cases as well.

provided both of the derivatives are continuous. 

In general, we can extend Clairaut’s theorem to any function and mixed partial derivatives.
The only requirement is that in each derivative we differentiate with respect to each variable 

In other words, provided we meet the continuity condition, the 

 

  

 

of course, higher order 
Here are a couple of the third order partial derivatives of function of two 

 

Notice as well that for both of these we differentiate once with respect to y and twice with 
There is also another third order partial derivative in which we can do this, 

There is an extension to Clairaut’s Theorem that says if all three of these are 

functions of two variables, but everything that we’ve done 
to this point will work regardless of the number of variables that we’ve got in the function 
and there are natural extensions to Clairaut’s theorem to all of these cases as well.  For 

In general, we can extend Clairaut’s theorem to any function and mixed partial derivatives.  
The only requirement is that in each derivative we differentiate with respect to each variable 

In other words, provided we meet the continuity condition, the 



 

because in each case we differentiate with respect to 

Let’s do a couple of examples with higher 
derivatives and functions of more than two variables.

  

Example 3  Find the indicated derivative for each of the following functions.

(a) Find  for 

   

(b) Find  for 

  

Solution 

(a)Find  for 

  

In this case remember that we differentiate from left to right.
part. 

                                                               

                                                             

                                                             

                                                            

                                          
 

  

(b) Find for 

  

Here we differentiate from right to left.
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because in each case we differentiate with respect to t once, s three times and 

Let’s do a couple of examples with higher (well higher order than two anyway) order 
derivatives and functions of more than two variables. 

Find the indicated derivative for each of the following functions.

for 

 

 

In this case remember that we differentiate from left to right.  Here are the derivatives for this 

                                                               

                                                              

                                                              

                                                             

 

 

Here we differentiate from right to left.  Here are the derivatives for this function.

 

three times and r three times. 

(well higher order than two anyway) order 

Find the indicated derivative for each of the following functions. 

Here are the derivatives for this 

are the derivatives for this function. 



 

                                                     

 

Maxima and minima 

For other uses, see Maxima 

statistics, see Maximum (statistics)

Local and global maxima and minima for cos(3

In mathematics, the maximum
known collectively as extrema
the function takes at a point either within a given neighborhood (
or on the function domain in its entirety (
maximum and minimum of a 
in the set. Unbounded infinite sets such as the set of 
maximum. 

To locate extreme values is the basic objective of 

real-valued function f defined on a 
point at the point x∗, if there exists some 
value of the function at this point is called 
has a local minimum point at 
this point is called minimum
maximum point at x∗ if f(x∗) 
minimum point  at x∗ if f(x∗

points are also known as the 
maximum (respectively, minimum) occurs.

Restricted domains: There may be maxima and minima for a function whose 
include all real numbers. A real
maximum and minimum. There may also be local maxima and local minima points, but only 
at points of the domain set where the concept of 
plays the role of the set of x such that |
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Maxima (disambiguation) and Maximum (disambiguation)

Maximum (statistics).  

Local and global maxima and minima for cos(3πx)/x, 0.1≤x≤1.1 

maximum and minimum  (plural: maxima and minima) of a 
extrema (singular: extremum), are the largest and smallest value that 

the function takes at a point either within a given neighborhood (local or 
in its entirety (global or absolute extremum).]More generally, the 

maximum and minimum of a set (as defined in set theory) are the greatest a
in the set. Unbounded infinite sets such as the set of real numbers have no minimum and 

To locate extreme values is the basic objective of optimization 

defined on a real line is said to have a local (or relative) maximum 
, if there exists some ε > 0 such that f(x∗) ≥ f(x) when |

value of the function at this point is called maximum of the function. Similarly, a function 
at x∗, if f(x∗) ≤ f(x) when |x − x∗| < ε. The value of the function at 

minimum  of the function. A function has a global
) ≥ f(x) for all x. Similarly, a function has a global (or absolute) 
∗) ≤ f(x) for all x. The global maximum and global minimum 

points are also known as the arg max and arg min: the argument (input) at which the 
maximum (respectively, minimum) occurs. 

: There may be maxima and minima for a function whose 
. A real-valued function, whose domain is any set

maximum and minimum. There may also be local maxima and local minima points, but only 
at points of the domain set where the concept of neighborhood is defined. A neighborhood 

such that |x − x∗| < ε. 

Maximum (disambiguation). For use in 

(plural: maxima and minima) of a function, 
(singular: extremum), are the largest and smallest value that 

or relative extremum) 
More generally, the 

greatest and least element 
have no minimum and 

local (or relative) maximum 
) when |x − x∗| < ε. The 

of the function. Similarly, a function 
. The value of the function at 

global (or absolute) 
global (or absolute) 

. The global maximum and global minimum 
in: the argument (input) at which the 

: There may be maxima and minima for a function whose domain does not 
set, can have a global 

maximum and minimum. There may also be local maxima and local minima points, but only 
is defined. A neighborhood 



 

A continuous (real-valued) function on a 
values on that set. An important example is a function whose domain is a closed (and 
bounded) interval of real numbers
precludes a local maximum or minimum at an endpoint of an interval. However, an endpoint 
may still be a global maximum or minimum. Thus it is 
that a global maximum (minimum) must also be a local maximum (minimum).

 Finding functional maxima and minima

Finding global maxima and minima is the goal of 
continuous on a closed interval, the
minima exist. Furthermore, a global maximum (or minimum) either must be a local 
maximum (or minimum) in the interio
domain. So a method of finding a global maximum (or minimum) is to look at all the local 
maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on 
the boundary; and take the biggest (or smallest) one.

Local extrema can be found by 
points. One can distinguish whether a critical point is a local maximum or local minimum by 
using the first derivative test or 

For any function that is defined 
maximum (or minimum) of each piece separately; and then seeing which one is biggest (or 
smallest). 

 Examples 

 

The global maximum of occurs at 

• The function x2 has a unique global minimum at 
• The function x3 has no global minima or maxima. Although the first derivative (3

at x = 0, this is an inflection point

• The function has a unique global maximum at 
• The function x-x has a unique global maximum over the positive real numbers at 
• The function x3/3 − x has first derivative 

derivative to 0 and solving for 
second derivative we can see that 
Note that this function has no glob
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valued) function on a compact set always takes maximum and minimum 
values on that set. An important example is a function whose domain is a closed (and 

real numbers (see the graph above). The neighborhood
maximum or minimum at an endpoint of an interval. However, an endpoint 

maximum or minimum. Thus it is not always true, 
that a global maximum (minimum) must also be a local maximum (minimum).

unctional maxima and minima 

Finding global maxima and minima is the goal of mathematical optimization
continuous on a closed interval, then by the extreme value theorem global maxima and 
minima exist. Furthermore, a global maximum (or minimum) either must be a local 
maximum (or minimum) in the interior of the domain, or must lie on the boundary of the 
domain. So a method of finding a global maximum (or minimum) is to look at all the local 
maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on 

the biggest (or smallest) one. 

Local extrema can be found by Fermat's theorem, which states that they must occur at 
. One can distinguish whether a critical point is a local maximum or local minimum by 

or second derivative test. 

For any function that is defined piecewise, one finds a maxima (or minima) by finding the 
maximum (or minimum) of each piece separately; and then seeing which one is biggest (or 

 

occurs at x = e. 

has a unique global minimum at x = 0. 
has no global minima or maxima. Although the first derivative (3

inflection point. 

has a unique global maximum at x = e. (See figure at right)
has a unique global maximum over the positive real numbers at 

has first derivative x2 − 1 and second derivative 
derivative to 0 and solving for x gives stationary points at −1 and +1. From the sign of the 
second derivative we can see that −1 is a local maximum and +1 is a local minimum. 
Note that this function has no global maximum or minimum. 

set always takes maximum and minimum 
values on that set. An important example is a function whose domain is a closed (and 

neighborhood requirement 
maximum or minimum at an endpoint of an interval. However, an endpoint 

 for finite domains, 
that a global maximum (minimum) must also be a local maximum (minimum). 

mathematical optimization. If a function is 
global maxima and 

minima exist. Furthermore, a global maximum (or minimum) either must be a local 
r of the domain, or must lie on the boundary of the 

domain. So a method of finding a global maximum (or minimum) is to look at all the local 
maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on 

, which states that they must occur at critical 
. One can distinguish whether a critical point is a local maximum or local minimum by 

, one finds a maxima (or minima) by finding the 
maximum (or minimum) of each piece separately; and then seeing which one is biggest (or 

has no global minima or maxima. Although the first derivative (3x2) is 0 

. (See figure at right) 
has a unique global maximum over the positive real numbers at x = 1/e. 

 2x. Setting the first 
−1 and +1. From the sign of the 

−1 is a local maximum and +1 is a local minimum. 



 

• The function |x| has a global minimum at 
because the derivative does not exist at 

• The function cos(x) has infinitely many global maxima at 0, ±2
many global minima at ±π

• The function 2 cos(x) − x
maximum or minimum. 

• The function cos(3πx)/x with 0.1
a global minimum near x 
x = 1.0. (See figure at top of page.)

• The function x3 + 3x2 − 2x
extrema: one local maximum at 
maximum at x = 2 and a global minimum at 

Functions of more than one variable

Second partial derivative test 

For functions of more than one variable, similar conditions apply. For example, in the 
(enlargeable) figure at the right, the necessary conditions for a 
those of a function with only one variable. The first 
be maximized) are zero at the maximum (the glowing dot on top in the figure). The second 
partial derivatives are negative. These are only neces
maximum because of the possibility of a 
a maximum, the function z 
derivative test can help classify the point as a relative maximum or relative minimum.

In contrast, there are substantial differences between functions of one variable and functions 
of more than one variable in the identification of global extrema. For example, if a bounded 
differentiable function f defined on a closed interval in the real line has a single critical point, 
which is a local minimum, then it is also a global minimum (use the 
theorem and Rolle's theorem
dimensions, this argument fails, as the function

shows. Its only critical point is at (0,0), which is a local minimum with ƒ(0,0)
it cannot be a global one, because ƒ(4,1)
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| has a global minimum at x = 0 that cannot be found by taking derivatives, 
because the derivative does not exist at x = 0. 

) has infinitely many global maxima at 0, ±2π, ±4π
global minima at ±π, ±3π, …. 

x has infinitely many local maxima and minima, but no global 

with 0.1 ≤ x ≤ 1.1 has a global maximum at x 
= 0.3, a local maximum near x = 0.6, and a local minimum near 

= 1.0. (See figure at top of page.) 
− 2x + 1 defined over the closed interval (segment) [

extrema: one local maximum at x = −1−√15⁄3, one local minimum at x = 
= 2 and a global minimum at x = −4. 

Functions of more than one variable 

 

For functions of more than one variable, similar conditions apply. For example, in the 
(enlargeable) figure at the right, the necessary conditions for a local maximum are similar to 
those of a function with only one variable. The first partial derivatives as to 
be maximized) are zero at the maximum (the glowing dot on top in the figure). The second 
partial derivatives are negative. These are only necessary, not sufficient, conditions for a local 
maximum because of the possibility of a saddle point. For use of these conditions to solve for 

 must also be differentiable throughout. The 
classify the point as a relative maximum or relative minimum.

In contrast, there are substantial differences between functions of one variable and functions 
of more than one variable in the identification of global extrema. For example, if a bounded 

defined on a closed interval in the real line has a single critical point, 
which is a local minimum, then it is also a global minimum (use the 

Rolle's theorem to prove this by reductio ad absurdum). In two and more 
dimensions, this argument fails, as the function 

 

shows. Its only critical point is at (0,0), which is a local minimum with ƒ(0,0)
it cannot be a global one, because ƒ(4,1) = −11. 

 

 

= 0 that cannot be found by taking derivatives, 

π, ±4π, …, and infinitely 

has infinitely many local maxima and minima, but no global 

= 0.1 (a boundary), 
= 0.6, and a local minimum near 

+ 1 defined over the closed interval (segment) [−4,2] has two 
= −1+√15⁄3, a global 

For functions of more than one variable, similar conditions apply. For example, in the 
maximum are similar to 

as to z (the variable to 
be maximized) are zero at the maximum (the glowing dot on top in the figure). The second 

sary, not sufficient, conditions for a local 
. For use of these conditions to solve for 

throughout. The second partial 
classify the point as a relative maximum or relative minimum. 

In contrast, there are substantial differences between functions of one variable and functions 
of more than one variable in the identification of global extrema. For example, if a bounded 

defined on a closed interval in the real line has a single critical point, 
which is a local minimum, then it is also a global minimum (use the intermediate value 

). In two and more 

shows. Its only critical point is at (0,0), which is a local minimum with ƒ(0,0) = 0. However, 

 



 

The global maximum is the 

 In relation to sets 

Maxima and minima are more generally defined for sets. In general, if an 
has a greatest element m, 
ordered set T and m is the greatest element of 
least upper bound of S in 
and greatest lower bound.

In the case of a general partial order
be confused with a minimal element
a partially ordered set (poset) is an 
set, whereas a maximal element
any b in A) then m = b. Any least element or greatest element of a poset is unique, but a 
poset can have several m
maximal element, then these elements will not be mutually comparable.

In a totally ordered set, or 
have at most one minimal element and at most one maximal element. Then, due to 
mutual comparability, the minimal element will also be the least element and the 
maximal element will also be the greatest element. Thus in a 
simply use the terms minimum
a maximum and a minimum. If a chain is infinite then it need not have a maximum or a 
minimum. For example, the set of 
minimum. If an infinite chain 
has a minimum and a maximum, in such case they are called the 
and the least upper bound

TAYLOR SERIES 

The Maclaurin series for any polynomial

The Maclaurin series for (1 − 

so the Taylor series for x−1

By integrating the above Maclaurin series we find the Maclaurin series for 
log denotes the natural logarithm

and the corresponding Taylor series for log(
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The global maximum is the point at the top Counterexample 

Maxima and minima are more generally defined for sets. In general, if an 
, m is a maximal element. Furthermore, if S

is the greatest element of S with respect to order induced by 
in T. The similar result holds for least element

 

partial order, the least element (smaller than all other) should not 
minimal element (nothing is smaller). Likewise, a 

(poset) is an upper bound of the set which is contained within the 
maximal element m of a poset A is an element of A such that if 

. Any least element or greatest element of a poset is unique, but a 
poset can have several minimal or maximal elements. If a poset has more than one 
maximal element, then these elements will not be mutually comparable.

set, or chain, all elements are mutually comparable, so such a set can 
have at most one minimal element and at most one maximal element. Then, due to 
mutual comparability, the minimal element will also be the least element and the 
maximal element will also be the greatest element. Thus in a totally ordered set we can 

minimum and maximum. If a chain is finite then it will always have 
a maximum and a minimum. If a chain is infinite then it need not have a maximum or a 
minimum. For example, the set of natural numbers has no maximum, though it has a 
minimum. If an infinite chain S is bounded, then the closure Cl(S) of the set occasionally 
has a minimum and a maximum, in such case they are called the greatest lower bound

least upper bound of the set S, respectively. 

polynomial is the polynomial itself. 

− x)−1 for |x| < 1 is the geometric series 

 

−1 at a = 1 is 

 

By integrating the above Maclaurin series we find the Maclaurin series for 
logarithm: 

 

and the corresponding Taylor series for log(x) at a = 1 is 

Maxima and minima are more generally defined for sets. In general, if an ordered set S 
S is a subset of an 

with respect to order induced by T, m is a 
least element, minimal element 

(smaller than all other) should not 
(nothing is smaller). Likewise, a greatest element of 

of the set which is contained within the 
such that if m ≤ b (for 

. Any least element or greatest element of a poset is unique, but a 
inimal or maximal elements. If a poset has more than one 

maximal element, then these elements will not be mutually comparable. 

ally comparable, so such a set can 
have at most one minimal element and at most one maximal element. Then, due to 
mutual comparability, the minimal element will also be the least element and the 

totally ordered set we can 
. If a chain is finite then it will always have 

a maximum and a minimum. If a chain is infinite then it need not have a maximum or a 
has no maximum, though it has a 

of the set occasionally 
greatest lower bound 

By integrating the above Maclaurin series we find the Maclaurin series for log(1 − x), where 



 

The Taylor series for the exponential function

 

 

The above expansion holds because the derivative of e
equals 1. This leaves the terms 
term in the infinite sum. 

 History 

The Greek philosopher Zeno considered the problem of summing an infinite series to achieve 
a finite result, but rejected it as an impossibility: the result was 
Aristotle proposed a philosophical resolution of the paradox, but the mathematical content 
was apparently unresolved until taken up by 
Archimedes's method of exhaustion
be performed to achieve a finite result. 
few centuries later 

In the 14th century, the earliest examples of the use of Taylor series and closely related 
methods were given by Madhava of Sangamagrama
writings of later Indian mathematicians
Taylor series, including those for the 
arctangent. The Kerala school of astronomy and mathematics
with various series expansions and rational approximations until the 16th century.

In the 17th century, James Gregory
series. It was not until 1715 however that a general meth
all functions for which they exist was finally provided by 
series are now named. 

The Maclaurin series was named afte
published the special case of the Taylor result in the 18th century.

Analytic functions 
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exponential function ex at a = 0 is 

because the derivative of ex with respect to x is also e
1. This leaves the terms (x − 0)n in the numerator and n! in the denominator for each 

considered the problem of summing an infinite series to achieve 
a finite result, but rejected it as an impossibility: the result was Zeno's paradox

proposed a philosophical resolution of the paradox, but the mathematical content 
was apparently unresolved until taken up by Democritus and then Archimedes

method of exhaustion that an infinite number of progressive subdivisions could 
be performed to achieve a finite result. Liu Hui independently employed a similar method a 

In the 14th century, the earliest examples of the use of Taylor series and closely related 
Madhava of Sangamagrama Though no record of h

Indian mathematicians suggest that he found a number of special cases of the 
Taylor series, including those for the trigonometric functions of sine, cosine

Kerala school of astronomy and mathematics further expanded his works 
with various series expansions and rational approximations until the 16th century.

James Gregory also worked in this area and published several Maclaurin 
series. It was not until 1715 however that a general method for constructing these series for 
all functions for which they exist was finally provided by Brook Taylor

The Maclaurin series was named after Colin Maclaurin, a professor in Edinburgh, who 
published the special case of the Taylor result in the 18th century. 

 

with respect to x is also ex and e0 
! in the denominator for each 

considered the problem of summing an infinite series to achieve 
Zeno's paradox. Later, 

proposed a philosophical resolution of the paradox, but the mathematical content 
Archimedes. It was through 

that an infinite number of progressive subdivisions could 
independently employed a similar method a 

In the 14th century, the earliest examples of the use of Taylor series and closely related 
Though no record of his work survives, 

suggest that he found a number of special cases of the 
cosine, tangent, and 

further expanded his works 
with various series expansions and rational approximations until the 16th century. 

also worked in this area and published several Maclaurin 
od for constructing these series for 

Brook Taylor, after whom the 

, a professor in Edinburgh, who 



 

 

The function e−1/x² is not analytic at 
function is not. 

If f(x) is given by a convergent power series in an open disc (or interval in the real line) 
centered at b, it is said to be 
convergent power series 

Differentiating by x the above formula 

 

and so the power series expansion agrees with the Taylor series. Thus a function is analytic in 
an open disc centered at b if and only if its Taylor series converges to the value of the 
function at each point of the disc.

If f(x) is equal to its Taylor series everywhere it is called 
exponential function ex and the 
functions. Examples of functions that are not entire include the 
function tangent, and its inverse 
if x is far from a. Taylor series can be used to calculate the value of an enti
every point, if the value of the function, and of all of its derivatives, are known at a single 
point. 

 

 

4.0 CONCLUSION  

In this unit, you have been introduced to partial derivative in calculus and some higher order 
partial derivative. Clairauts theorem was stated and applied.You have been introduced to 
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is not analytic at x = 0: the Taylor series is identically 0, although the 

) is given by a convergent power series in an open disc (or interval in the real line) 
, it is said to be analytic in this disc. Thus for x in this disc, 

 

the above formula n times, then setting x=b gives: 

and so the power series expansion agrees with the Taylor series. Thus a function is analytic in 
if and only if its Taylor series converges to the value of the 

function at each point of the disc. 

) is equal to its Taylor series everywhere it is called entire. The polynomials and the 
and the trigonometric functions sine and cosine are examples of entire 

functions. Examples of functions that are not entire include the logarithm
tangent, and its inverse arctan. For these functions the Taylor series do not 

. Taylor series can be used to calculate the value of an enti
every point, if the value of the function, and of all of its derivatives, are known at a single 

In this unit, you have been introduced to partial derivative in calculus and some higher order 
uts theorem was stated and applied.You have been introduced to 

0: the Taylor series is identically 0, although the 

) is given by a convergent power series in an open disc (or interval in the real line) 
in this disc, f is given by a 

and so the power series expansion agrees with the Taylor series. Thus a function is analytic in 
if and only if its Taylor series converges to the value of the 

. The polynomials and the 
sine and cosine are examples of entire 

logarithm, the trigonometric 
. For these functions the Taylor series do not converge 

. Taylor series can be used to calculate the value of an entire function in 
every point, if the value of the function, and of all of its derivatives, are known at a single 

In this unit, you have been introduced to partial derivative in calculus and some higher order 
uts theorem was stated and applied.You have been introduced to 
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Maxima and minima,  functions of more than one variable and the relation of maxima and 
minima to set. 

5.0 SUMMARY  

In this unit you have studied : 

Partial derivatives in calculus 

Higher order partial derivative 

Clairauts theorem 

Maxima and manima 

 Taylor series of function of two variable 

Analytical function 
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As the degree of the Taylor polynomial rises, it approaches the correct function. This image 
shows sin x (in black) and Taylor approximations, polynomials of degree 1, 3, 5, 7, 9, 11 and 
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UNIT 2 :TAYLOR SERIES OF EXPANSION FOR FUNCTIONS OF  

polynomial rises, it approaches the correct function. This image 
(in black) and Taylor approximations, polynomials of degree 1, 3, 5, 7, 9, 11 and  



 

 
The exponential function (in blue), and the sum of the first 
(in red). 

In mathematics, a Taylor series
that are calculated from the values of the function's 

The concept of a Taylor series was formally introduced by the English mathematician 
Taylor in 1715. If the Taylor series is centered at zero, then that series is also called a 
Maclaurin series, named after the Scottish mathematician 
extensive use of this special case of Taylor series in the 18th century.

It is common practice to approximate a function by using a finite number of terms of its 
Taylor series. Taylor's theorem
approximation. Any finite number of initial terms of the Taylor series of a function is called a 
Taylor polynomial. The Taylor series of a function is the 
polynomials, provided that the limit exists. A function may not be equal to i
even if its Taylor series converges at every point. A function that is equal to its Taylor series 
in an open interval (or a disc in the 

OBJECTIVE 

At the end of this unit, you should be able to :

Definition taylor series of functions of two varables

Solve problems on analytical problem

Use the taylor series to solve analytic function

 Solve problems that involve approximation and convergence

The list of maclaurine series of some common functions

Calculation of taylor series 
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(in blue), and the sum of the first n+1 terms of its Taylor series at 0 

Taylor series is a representation of a function as an infinite sum
that are calculated from the values of the function's derivatives at a single point.

The concept of a Taylor series was formally introduced by the English mathematician 
in 1715. If the Taylor series is centered at zero, then that series is also called a 

, named after the Scottish mathematician Colin Maclaurin
extensive use of this special case of Taylor series in the 18th century. 

It is common practice to approximate a function by using a finite number of terms of its 
Taylor's theorem gives quantitative estimates on the error in this 

approximation. Any finite number of initial terms of the Taylor series of a function is called a 
. The Taylor series of a function is the limit of that function's Taylor 

polynomials, provided that the limit exists. A function may not be equal to i
even if its Taylor series converges at every point. A function that is equal to its Taylor series 

(or a disc in the complex plane) is known as an analytic function

At the end of this unit, you should be able to : 

taylor series of functions of two varables 

Solve problems on analytical problem 

Use the taylor series to solve analytic function 

Solve problems that involve approximation and convergence 

The list of maclaurine series of some common functions 

+1 terms of its Taylor series at 0 

infinite sum of terms 
at a single point. 

The concept of a Taylor series was formally introduced by the English mathematician Brook 
in 1715. If the Taylor series is centered at zero, then that series is also called a 

Colin Maclaurin, who made 

It is common practice to approximate a function by using a finite number of terms of its 
gives quantitative estimates on the error in this 

approximation. Any finite number of initial terms of the Taylor series of a function is called a 
of that function's Taylor 

polynomials, provided that the limit exists. A function may not be equal to its Taylor series, 
even if its Taylor series converges at every point. A function that is equal to its Taylor series 

analytic function. 



 

Taylors series in several variables

Fractional taylor series 

3.0  MAIN CONTENT 

Definition 

The Taylor series of a real 
neighborhood of a real or complex number

which can be written in the more compact 

where n! denotes the factorial
point a. The zeroth derivative of 
to be 1. In the case that a = 0, the series is also called a Maclaurin series.

 Examples 

The Maclaurin series for any polynomial

The Maclaurin series for (1 − 

so the Taylor series for x−1 at a

By integrating the above Maclaurin series we find the Maclaurin series for log(1 
log denotes the natural logarithm

and the corresponding Taylor series for log(
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Taylors series in several variables 

 or complex function ƒ(x) that is infinitely differentiable
complex number a is the power series 

which can be written in the more compact sigma notation as 

 

factorial of n and ƒ (n)(a) denotes the nth derivative of 
. The zeroth derivative of ƒ is defined to be ƒ itself and (x − a)0 and 0! are both defined 

= 0, the series is also called a Maclaurin series. 

polynomial is the polynomial itself. 

− x)−1 for |x| < 1 is the geometric series 

 

a = 1 is 

 

By integrating the above Maclaurin series we find the Maclaurin series for log(1 
logarithm: 

 

and the corresponding Taylor series for log(x) at a = 1 is 

infinitely differentiable in a 

 

of ƒ evaluated at the 
and 0! are both defined 

By integrating the above Maclaurin series we find the Maclaurin series for log(1 − x), where 

 



 

The Taylor series for the exponential function

The above expansion holds be
equals 1. This leaves the terms (
term in the infinite sum. 

Analytic functions 

 
The function e−1/x² is not analytic at 
function is not. 

If f(x) is given by a convergent power series in an open disc (or interval in the real line) 
centered at b, it is said to be 
convergent power series 

Differentiating by x the above formula 

 

and so the power series expansion agrees with the Taylor series. Thus a function is analytic in 
an open disc centered at b if and only if its Taylor series converges to the value of the 
function at each point of the disc.

If f(x) is equal to its Taylor ser
exponential function ex and the 
functions. Examples of functions that are not entire include the 
function tangent, and its inverse 
if x is far from a. Taylor series can be used to calculate the value of an entire function in 
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exponential function ex at a = 0 is 

The above expansion holds because the derivative of ex with respect to x is also e
1. This leaves the terms (x − 0)n in the numerator and n! in the denominator for each 

 

is not analytic at x = 0: the Taylor series is identically 0, although the 

) is given by a convergent power series in an open disc (or interval in the real line) 
, it is said to be analytic in this disc. Thus for x in this disc, 

 

the above formula n times, then setting x=b gives: 

and so the power series expansion agrees with the Taylor series. Thus a function is analytic in 
if and only if its Taylor series converges to the value of the 

function at each point of the disc. 

) is equal to its Taylor series everywhere it is called entire. The polynomials and the 
d the trigonometric functions sine and cosine are examples of entire 

functions. Examples of functions that are not entire include the logarithm
tangent, and its inverse arctan. For these functions the Taylor series do not 

. Taylor series can be used to calculate the value of an entire function in 

 

with respect to x is also ex and e0 
! in the denominator for each 

Taylor series is identically 0, although the 

) is given by a convergent power series in an open disc (or interval in the real line) 
in this disc, f is given by a 

and so the power series expansion agrees with the Taylor series. Thus a function is analytic in 
if and only if its Taylor series converges to the value of the 

. The polynomials and the 
sine and cosine are examples of entire 

logarithm, the trigonometric 
. For these functions the Taylor series do not converge 

. Taylor series can be used to calculate the value of an entire function in 



 

every point, if the value of the function, and of all of its derivatives, are known at a single 
point. 

Uses of the Taylor series for analytic functions include:

The partial sums (the Taylor polynomials
entire function. These approximations are good if sufficiently many terms are included.

Differentiation and integration of power series can be performed term by term and is hence 
particularly easy. 

An analytic function is uniquely extended to a 
complex plane. This makes the machinery of 

The (truncated) series can be used to compute function values numerically, (often by 
recasting the polynomial into the 
algorithm). 

Algebraic operations can be done readily on the power series representation; for instance the 
Euler's formula follows from Taylor series expansions for trigonometric and exponential 
functions. This result is of fundamental importance in such fields as 

Approximation and convergence

The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) 
for a full period centered at the origin.
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if the value of the function, and of all of its derivatives, are known at a single 

Uses of the Taylor series for analytic functions include: 

ylor polynomials) of the series can be used as approximations of the 
entire function. These approximations are good if sufficiently many terms are included.

Differentiation and integration of power series can be performed term by term and is hence 

is uniquely extended to a holomorphic function on an 
. This makes the machinery of complex analysis available. 

The (truncated) series can be used to compute function values numerically, (often by 
recasting the polynomial into the Chebyshev form and evaluating it with the 

Algebraic operations can be done readily on the power series representation; for instance the 
follows from Taylor series expansions for trigonometric and exponential 

functions. This result is of fundamental importance in such fields as harmonic analysis

Approximation and convergence 

 
The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) 
for a full period centered at the origin. 

if the value of the function, and of all of its derivatives, are known at a single 

) of the series can be used as approximations of the 
entire function. These approximations are good if sufficiently many terms are included. 

Differentiation and integration of power series can be performed term by term and is hence 

an open disk in the 

The (truncated) series can be used to compute function values numerically, (often by 
and evaluating it with the Clenshaw 

Algebraic operations can be done readily on the power series representation; for instance the 
follows from Taylor series expansions for trigonometric and exponential 

harmonic analysis. 

 

The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) 



 

The Taylor polynomials for log(
x ≤ 1. Note that, for x > 1, the Taylor polynomials of higher degree are 

Pictured on the right is an accurate approximation of sin(
curve is a polynomial of degree seven:

The error in this approximation is no more than |
is less than 0.000003. 

In contrast, also shown is a picture of the natural logarithm function 
its Taylor polynomials around 
the region −1 < x ≤ 1; outside of this region the higher
approximations for the function. This is similar to 

The error  incurred in approximating a function by its 
the remainder or residual and is d
to obtain a bound on the size of the remainder.

In general, Taylor series need not be 
convergent Taylor series is a meager set
Taylor series of a function f does converge
of the function f(x). For example, the function
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Taylor polynomials for log(1+x) only provide accurate approximations in the range 

> 1, the Taylor polynomials of higher degree are worse

Pictured on the right is an accurate approximation of sin(x) around the po
curve is a polynomial of degree seven: 

 

The error in this approximation is no more than |x|9/9!. In particular, for −1 < 

In contrast, also shown is a picture of the natural logarithm function log(1 + 
around a = 0. These approximations converge to the function only in 

 1; outside of this region the higher-degree Taylor polynomials are 
approximations for the function. This is similar to Runge's phenomenon. 

incurred in approximating a function by its nth-degree Taylor polynomial is called 
and is denoted by the function Rn(x). Taylor's theorem

to obtain a bound on the size of the remainder. 

In general, Taylor series need not be convergent at all. And in fact the set of functions with a 
meager set in the Fréchet space of smooth functions

does converge, its limit need not in general be equal to the value 
). For example, the function 

 

 

) only provide accurate approximations in the range −1 < 
worse approximations. 

) around the point x = 0. The pink 

−1 < x < 1, the error 

(1 + x) and some of 
to the function only in 

degree Taylor polynomials are worse 

degree Taylor polynomial is called 
Taylor's theorem can be used 

at all. And in fact the set of functions with a 
smooth functions. Even if the 

, its limit need not in general be equal to the value 



 

is infinitely differentiable at 
Taylor series of f(x) about x 
function, and so it is not equal to its Taylor series around the origin.

In real analysis, this example shows that there are 
whose Taylor series are not 
analysis there are no holomorphic functions
different from f(z). The complex function e
the imaginary axis, and its Taylor series is thus not defined there.

More generally, every sequence of real or complex numbers can appear as coefficients in the 
Taylor series of an infinitely differentiable function defined on the real line, a consequence of 
Borel's lemma (see also Non
result, the radius of convergence
differentiable functions defined on the real line whose Taylor series have a radius of 
convergence 0 everywhere.[5] 

Some functions cannot be written as Taylor series because they have a 
cases, one can often still achieve a series expansion if one allows also negative powers of the 
variable x; see Laurent series. For example, 

There is, however, a generalization
the function itself for any bounded
differences. Specifically, one has the following theorem, due to 

Here 
h is the n-th finite difference operator with step size 
series, except that divided differences appear in place of differentiation: the series is 
formally similar to the Newton series
the series converge to the terms of the Taylor series, and in this sense generalizes the 
usual Taylor series. 

In general, for any infinite sequence 

So in particular, 

The series on the right is the 
random variable that takes the value 
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at x = 0, and has all derivatives zero there. Consequently, the 
 = 0 is identically zero. However, f(x) is not equal to the zero 

function, and so it is not equal to its Taylor series around the origin. 

, this example shows that there are infinitely differentiable functions
 equal to f(x) even if they converge. By contrast in 

holomorphic functions f(z) whose Taylor series converges to a value 
). The complex function e−z−2 does not approach 0 as z approaches 0 along 

inary axis, and its Taylor series is thus not defined there. 

More generally, every sequence of real or complex numbers can appear as coefficients in the 
Taylor series of an infinitely differentiable function defined on the real line, a consequence of 

Non-analytic smooth function#Application to Taylor series
radius of convergence of a Taylor series can be zero. There are even infinitely 

efined on the real line whose Taylor series have a radius of 
 

Some functions cannot be written as Taylor series because they have a singularity
cases, one can often still achieve a series expansion if one allows also negative powers of the 

. For example, f(x) = e−x−2 can be written as a Laurent series.

There is, however, a generalization[6][7] of the Taylor series that does converge to the value of 
bounded continuous function on (0,∞), using the calculus of 
e has the following theorem, due to Einar Hille

 

th finite difference operator with step size h. The series is precisely the Taylor 
series, except that divided differences appear in place of differentiation: the series is 

Newton series. When the function f is analytic at 
the series converge to the terms of the Taylor series, and in this sense generalizes the 

In general, for any infinite sequence ai, the following power series identity holds:

 

 

The series on the right is the expectation value of f(a + X), where X is a 
that takes the value jh with probability e−t/h(t/h)j/j!. Hence,

erivatives zero there. Consequently, the 
) is not equal to the zero 

infinitely differentiable functions f(x) 
) even if they converge. By contrast in complex 

) whose Taylor series converges to a value 
approaches 0 along 

More generally, every sequence of real or complex numbers can appear as coefficients in the 
Taylor series of an infinitely differentiable function defined on the real line, a consequence of 

function#Application to Taylor series). As a 
of a Taylor series can be zero. There are even infinitely 

efined on the real line whose Taylor series have a radius of 

singularity; in these 
cases, one can often still achieve a series expansion if one allows also negative powers of the 

can be written as a Laurent series. 

of the Taylor series that does converge to the value of 
), using the calculus of finite 

Einar Hille, that for any t > 0, 

∆n 
. The series is precisely the Taylor 

series, except that divided differences appear in place of differentiation: the series is 
is analytic at a, the terms in 

the series converge to the terms of the Taylor series, and in this sense generalizes the 

, the following power series identity holds: 

is a Poisson distributed 
!. Hence, 



 

The law of large numbers 

 List of Maclaurin series of some common functions

 

 

The real part of the cosine function in the 

 

An 8th degree approximation of the cosine function in the 

 

The two above curves put together.

Several important Maclaurin series expansions follow.All these expansions are valid 
for complex arguments 

Exponential function: 
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 implies that the identity holds. 

List of Maclaurin series of some common functions 

 

The real part of the cosine function in the complex plane. 

 

An 8th degree approximation of the cosine function in the complex plane

 

The two above curves put together. 

Several important Maclaurin series expansions follow.All these expansions are valid 
for complex arguments x. 

 

 

complex plane. 

Several important Maclaurin series expansions follow.All these expansions are valid 



 

Natural logarithm

Finite geometric series: 

Infinite geometric series: 

Variants of the infinite geometric series:

Square root: 

Binomial series (includes the square root for 
−1): 

with generalized binomial coefficients
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: 

 

 

 

 

Variants of the infinite geometric series: 

 

 

 

(includes the square root for α = 1/2 and the infinite geometric series for 

binomial coefficients 

= 1/2 and the infinite geometric series for α = 

 



 

Trigonometric functions: 

where the Bs are Bernoulli numbers

Hyperbolic functions: 
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Bernoulli numbers. 

 

 

 

 

 

 

 

 

 

 



 

Lambert's W function: 

The numbers Bk appearing in the 
Bernoulli numbers. The Ek in te expansion of sec(

Calculation of Taylor series 

Several methods exist for the calculation of Taylor series of a large number of functions. One 
can attempt to use the Taylor series as
can use manipulations such as substitution, multiplication or divi
of standard Taylor series to construct the Taylor series of a function, by virtue of Taylor 
series being power series. In some cases, one can also derive the Taylor series by repeatedly 
applying integration by parts. Particularly convenient is the use of 
to calculate Taylor series. 

 First example 

Compute the 7th degree Maclaurin polynomial for the function

First, rewrite the function as

We have for the natural logarithm (by using the 

and for the cosine function 

The latter series expansion has a zero 
series into the first one and to easily o
the big O notation 
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ng in the summation expansions of tan(x) and tanh(
in te expansion of sec(x) are Euler numbers. 

 

Several methods exist for the calculation of Taylor series of a large number of functions. One 
can attempt to use the Taylor series as-is and generalize the form of the coefficients, or one 
can use manipulations such as substitution, multiplication or division, addition or subtraction 
of standard Taylor series to construct the Taylor series of a function, by virtue of Taylor 
series being power series. In some cases, one can also derive the Taylor series by repeatedly 

. Particularly convenient is the use of computer algebra systems

degree Maclaurin polynomial for the function 

. 

First, rewrite the function as 

. 

We have for the natural logarithm (by using the big O notation) 

 

 

The latter series expansion has a zero constant term, which enables us to substitute the second 
series into the first one and to easily omit terms of higher order than the 7

) and tanh(x) are the 

Several methods exist for the calculation of Taylor series of a large number of functions. One 
is and generalize the form of the coefficients, or one 

sion, addition or subtraction 
of standard Taylor series to construct the Taylor series of a function, by virtue of Taylor 
series being power series. In some cases, one can also derive the Taylor series by repeatedly 

computer algebra systems 

, which enables us to substitute the second 
mit terms of higher order than the 7th degree by using 



 

Since the cosine is an even function
have to be zero. 

Second example 

Suppose we want the Taylor series at 0 of the function

. 

We have for the exponential function

and, as in the first example, 

Assume the power series is 

Then multiplication with the denominator and substitution of the series o
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even function, the coefficients for all the odd powers 

Suppose we want the Taylor series at 0 of the function 

We have for the exponential function 

 

 

 

Then multiplication with the denominator and substitution of the series of the cosine yields

, the coefficients for all the odd powers x, x3, x5, x7, ... 

f the cosine yields 



 

Collecting the terms up to fourth order yields

      

Comparing coefficients with the above series of the exponential function yields the desired 
Taylor series 

Comparing coefficients with the above series of the exponential 
Taylor series 

 Third example 

Here we use a method called "Indirect Expansion" to expand the given function. This method 
uses the known function of Taylor series for expansion.

Q: Expand the following function as a power series

(1 + x)ex. 

We know the Taylor series of function 

Thus, 

. 
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Collecting the terms up to fourth order yields 

Comparing coefficients with the above series of the exponential function yields the desired 

 

Comparing coefficients with the above series of the exponential function yields the desired 

 

Here we use a method called "Indirect Expansion" to expand the given function. This method 
uses the known function of Taylor series for expansion. 

Q: Expand the following function as a power series of x 

We know the Taylor series of function ex is: 

 

Comparing coefficients with the above series of the exponential function yields the desired 

function yields the desired 

Here we use a method called "Indirect Expansion" to expand the given function. This method 

 

 



 

 Taylor series in several variables

The Taylor series may also be generalized to functions of more than one variable with

 

For example, for a function that depends on two variables, 
second order about the point (

where the subscripts denote the respective 

A second-order Taylor series expansion of a scalar
can be written compactly as 

 

ere is the gradient of 
Applying the multi-index notation

which is to be understood as a still more abbreviated 
of this paragraph, again in full analogy to the single variable case.

Example 
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Taylor series in several variables 

The Taylor series may also be generalized to functions of more than one variable with

For example, for a function that depends on two variables, x and y, the Taylor series to 
second order about the point (a, b) is: 

where the subscripts denote the respective partial derivatives. 

order Taylor series expansion of a scalar-valued function of more than one variable 

of evaluated at and is the 
index notation the Taylor series for several variables becomes

 

which is to be understood as a still more abbreviated multi-index version of the first equation 
of this paragraph, again in full analogy to the single variable case. 

The Taylor series may also be generalized to functions of more than one variable with 

 

, the Taylor series to 

 

valued function of more than one variable 

 

is the Hessian matrix. 
the Taylor series for several variables becomes 

sion of the first equation 



 

Second-order Taylor series approximation (in gray) of a function 
origin. 

Compute a second-order Taylor series expansion around point 

Firstly, we compute all partial derivatives we need

The Taylor series is

which in this case becomes 

Since log(1 + y) is analytic in |

Fractional Taylor series 

With the emergence of fractional calculus
Series expansion would be. Odibat and Shawagfeh answered this in 2007. By using the 
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order Taylor series approximation (in gray) of a function f(x,y) = e

order Taylor series expansion around point (a,b) = (0,0)

 

Firstly, we compute all partial derivatives we need 

 

 

 

 

 

The Taylor series is

is analytic in |y| < 1, we have 

 

for |y| < 1. 

fractional calculus, a natural question arises about what the Taylor 
Series expansion would be. Odibat and Shawagfeh answered this in 2007. By using the 

exlog (1 + y) around 

) = (0,0) of a function 

The Taylor series is

, a natural question arises about what the Taylor 
Series expansion would be. Odibat and Shawagfeh answered this in 2007. By using the 



 

Caputo fractional derivative, 
from the right, the fractional Taylor series ca

4.0  CONCLUSION  

In this unit, you have defined tailors series of function of two variable. You have studied 
analytical function and  have used tailors series to solve problem s that involve analytical 
functions. You have studied approximation and convergence. You have also studied the list 
of maclaurine series of some common functions and have done some calculation of tailors 
series. You have also studied tailors in several variables and the fractional taylor series.

5.0 SUMMARY 

In this unit, you have studied the following :

Definition taylor series of functions of two varables

Solve problems on analytical problem

Use the taylor series to solve analytic function

 Solve problems that involve approximation and convergence

The list of maclaurine series of some common functions

Calculation of taylor series 

Taylors series in several variables

Fractional taylor series 

TUTOR – MARKED ASSIGNMENT

1.Use the tailor series to expand F(z) = 

for which the expansion is valid.

2.Use the tailor series to expand F(x) = 

for which the expansion is valid.

3.Use the tailor series to expand F(x) = 

of z for which the expansion is valid.

4.Use the tailor series to expand F(x) = 

of z for which the expansion is valid.
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Caputo fractional derivative, , and indicating the limit as we approach 
from the right, the fractional Taylor series can be written as 

In this unit, you have defined tailors series of function of two variable. You have studied 
analytical function and  have used tailors series to solve problem s that involve analytical 

approximation and convergence. You have also studied the list 
of maclaurine series of some common functions and have done some calculation of tailors 
series. You have also studied tailors in several variables and the fractional taylor series.

n this unit, you have studied the following : 

Definition taylor series of functions of two varables 

Solve problems on analytical problem 

Use the taylor series to solve analytic function 

Solve problems that involve approximation and convergence 

maclaurine series of some common functions 

Taylors series in several variables 

MARKED ASSIGNMENT 

1.Use the tailor series to expand F(z) = 
1

1

+z
 about the point z = 1 ,and find 

for which the expansion is valid. 

2.Use the tailor series to expand F(x) = 
2

1

+x
  about the point x = 1 ,and find the values of z 

for which the expansion is valid. 

3.Use the tailor series to expand F(x) = 
)2(

2

1

−x
  about the point x = 2 ,and find the values 

of z for which the expansion is valid. 

4.Use the tailor series to expand F(x) = 
)4(

2

1

+x
  about the point x = 2 ,and find the values 

of z for which the expansion is valid. 

indicating the limit as we approach 

 

In this unit, you have defined tailors series of function of two variable. You have studied 
analytical function and  have used tailors series to solve problem s that involve analytical 

approximation and convergence. You have also studied the list 
of maclaurine series of some common functions and have done some calculation of tailors 
series. You have also studied tailors in several variables and the fractional taylor series. 

about the point z = 1 ,and find the values of z 

about the point x = 1 ,and find the values of z 

about the point x = 2 ,and find the values 

about the point x = 2 ,and find the values 
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5.Use the tailor series to expand F(b) = 
)2(

3

2

+b
  about the point b = 1 ,and find the values 

of z for which the expansion is valid. 
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UNIT 3 : APPLICATIONS OF TAYLOR SERIES  

CONTENT 

1.0 INTRODUCTION 
2.0 OBJECTIVES 
3.0 MAIN CONTENT 

 

     3.1 Evaluating definite integrals 

     3.2 Understanding the asymptotic behaviour 
    3.3 Understanding the growth of functions 
    3.4 Solving differential equations 
 
4.0  CONCLUSION 
5.0  SUMMARY 
6.0  TUTOR-MARKED ASSIGNMENT 
7.0 REFERENCES/FURTHER READINGS 

1.0 INTRODUCTION 

We started studying Taylor Series because we said that polynomial functions are easy and 
that if we could find a way of representing complicated functions as series ("infinite 
polynomials") then maybe some properties of functions would be easy to study too. In this 
section, we'll show you a few ways in Taylor series can make life easy.  

2.0 OBJECTIVES 

At the end of this unit, you should be able to : 

Evaluate definite integrals with taylors series 

 Understand the asymptotic behaviour  with taylors series 

Understand the growth of functions with taylors series 

Solve differential equations with taylors series 
 

3.0 MAIN CONTENT 

 
Evaluating definite integrals  

Remember that we've said that some functions have no antiderivative which can be expressed 
in terms of familiar functions. This makes evaluating definite integrals of these functions 
difficult because the Fundamental Theorem of Calculus cannot be used. However, if we have 
a series representation of a function, we can often times use that to evaluate a definite 
integral.  

Here is an example. Suppose we want to evaluate the definite integral  



 

 

The integrand has no antiderivative expressible in terms of famil
know how to find its Taylor series: we know that 

Now if we substitute , we have 

In spite of the fact that we cannot antidifferentiate the function, we can antidifferentiate the 
Taylor series:  

Notice that this is an alternating series so we know that it converges. If we add up the first 
four terms, the pattern becomes clear: the series converges to 

 
Understanding asymptotic behaviour 

Sometimes, a Taylor series can tell us useful information about how a function
important part of its domain. Here is an example which will demonstrate. 

A famous fact from electricity and magnetism says that a charge 
whose strength is inversely proportional to the square of the distance fr
at a distance r away from the charge, the electric field is 

 

where k is some constant of proportionality. 

Often times an electric charge is accompanied by an equal and opposite charge nearby. Such 
an object is called an electric dipole. To describe this, we will put a charge 

and a charge -q at 
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The integrand has no antiderivative expressible in terms of familiar functions. However, we 
know how to find its Taylor series: we know that  

 

, we have  

 

In spite of the fact that we cannot antidifferentiate the function, we can antidifferentiate the 

 

rnating series so we know that it converges. If we add up the first 
four terms, the pattern becomes clear: the series converges to 0.31026.  

Understanding asymptotic behaviour  

Sometimes, a Taylor series can tell us useful information about how a function
important part of its domain. Here is an example which will demonstrate.  

A famous fact from electricity and magnetism says that a charge q generates an electric field 
whose strength is inversely proportional to the square of the distance from the charge. That is, 

away from the charge, the electric field is  

is some constant of proportionality.  

times an electric charge is accompanied by an equal and opposite charge nearby. Such 
an object is called an electric dipole. To describe this, we will put a charge 

.  

iar functions. However, we 

In spite of the fact that we cannot antidifferentiate the function, we can antidifferentiate the 

rnating series so we know that it converges. If we add up the first 

Sometimes, a Taylor series can tell us useful information about how a function behaves in an 
 

generates an electric field 
om the charge. That is, 

times an electric charge is accompanied by an equal and opposite charge nearby. Such 
an object is called an electric dipole. To describe this, we will put a charge q at the point 



 

Along the x axis, the strength of the electric field
of the two charges. In particular, 

 

If we are interested in the electric field far away from the dipole, we can consider what 
happens for values of x much larger than 
behaviour in this region.  

Remember that the geometric series has the form 

If we differentiate this series, we obtain 

Into this expression, we can substitute 

 

In the same way, if we substitute 

Now putting this together gives 
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axis, the strength of the electric fields is the sum of the electric fields from each 
of the two charges. In particular,  

If we are interested in the electric field far away from the dipole, we can consider what 
much larger than d. We will use a Taylor series to study the 

 

Remember that the geometric series has the form  

 

If we differentiate this series, we obtain  

 

Into this expression, we can substitute to obtain  

In the same way, if we substitute , we have  

 

Now putting this together gives  

s is the sum of the electric fields from each 

If we are interested in the electric field far away from the dipole, we can consider what 
We will use a Taylor series to study the 

 



 

In other words, far away from the dipole where 
strength is proportional to the inverse 
one another out to produce a weaker electric field at a distance. 

 
Understanding the growth of functions 

This example is similar is spirit to the previous one. Several times in this course, we have 
used the fact that exponentials grow much more rapidly than polynomials. We recorded this 
by saying that  

 

for any exponent n . Let's think about this for a minute because it is an important property of 

exponentials. The ratio is measuring how large the expone
polynomial. If this ratio was very small, we would conclude that the polynomial is larger than 
the exponential. But if the ratio is large, we would conclude that the exponential is much 
larger than the polynomial. The fact that thi
exponential becomes larger than the polynomial by a factor which is as large as we would 
like. This is what we mean when we say "an exponential grows faster than a polynomial." 

To see why this relationship holds, we can write down the Taylor series for 

To see why this relationship holds, we can write down the Taylor series for 

Notice that this last term becomes arbitrarily large as 
are interested in does as well: 

 

Basically, the exponential 
infinite polynomial whose coefficients are all positive. 

 
Solving differential equations 

Some differential equations cannot be solved in terms of familiar functions (just as some 
functions do not have antiderivatives which can be expressed in terms of familiar functions). 
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In other words, far away from the dipole where x is very large, we see that the electric field 
strength is proportional to the inverse cube of the distance. The two charges partially cancel 
one another out to produce a weaker electric field at a distance.  

Understanding the growth of functions  

This example is similar is spirit to the previous one. Several times in this course, we have 
he fact that exponentials grow much more rapidly than polynomials. We recorded this 

. Let's think about this for a minute because it is an important property of 

is measuring how large the exponential is compared to the 
polynomial. If this ratio was very small, we would conclude that the polynomial is larger than 
the exponential. But if the ratio is large, we would conclude that the exponential is much 
larger than the polynomial. The fact that this ratio becomes arbitrarily large means that the 
exponential becomes larger than the polynomial by a factor which is as large as we would 
like. This is what we mean when we say "an exponential grows faster than a polynomial." 

holds, we can write down the Taylor series for 

To see why this relationship holds, we can write down the Taylor series for 

 

Notice that this last term becomes arbitrarily large as . That implies that the ratio we 
are interested in does as well:  

grows faster than any polynomial because it behaves like an 
infinite polynomial whose coefficients are all positive.  

Solving differential equations  

Some differential equations cannot be solved in terms of familiar functions (just as some 
functions do not have antiderivatives which can be expressed in terms of familiar functions). 

is very large, we see that the electric field 
of the distance. The two charges partially cancel 

This example is similar is spirit to the previous one. Several times in this course, we have 
he fact that exponentials grow much more rapidly than polynomials. We recorded this 

. Let's think about this for a minute because it is an important property of 

ntial is compared to the 
polynomial. If this ratio was very small, we would conclude that the polynomial is larger than 
the exponential. But if the ratio is large, we would conclude that the exponential is much 

s ratio becomes arbitrarily large means that the 
exponential becomes larger than the polynomial by a factor which is as large as we would 
like. This is what we mean when we say "an exponential grows faster than a polynomial."  

holds, we can write down the Taylor series for .  

To see why this relationship holds, we can write down the Taylor series for .  

. That implies that the ratio we 

grows faster than any polynomial because it behaves like an 

Some differential equations cannot be solved in terms of familiar functions (just as some 
functions do not have antiderivatives which can be expressed in terms of familiar functions). 



 

However, Taylor series can come to the rescue again. Here we will presen
give you the idea.  

Example 1: We will solve the initial value problem 

 

Of course, we know that the solution is 
different way. First, we will write out the solution in terms of its Taylor ser

Since this function satisfies the condition 

We also have  

Since the differential equation says that 

If we now equate the coefficients, we obtain: 

This means that 

Of course, this is an intial value problem we know how to solve. The real value of this 
method is in studying initial value problems that we do not know how to solve. 

Example 2: Here we will study 
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However, Taylor series can come to the rescue again. Here we will presen

We will solve the initial value problem  

Of course, we know that the solution is , but we will see how to discover this in a 
different way. First, we will write out the solution in terms of its Taylor ser

 

Since this function satisfies the condition , we must have 

 

Since the differential equation says that , we can equate these two Taylor series: 

 

If we now equate the coefficients, we obtain:  

 

as we expect. 

Of course, this is an intial value problem we know how to solve. The real value of this 
method is in studying initial value problems that we do not know how to solve. 

Here we will study Airy's equation with initial conditions:  

However, Taylor series can come to the rescue again. Here we will present two examples to 

, but we will see how to discover this in a 
different way. First, we will write out the solution in terms of its Taylor series:  

.  

, we can equate these two Taylor series:  

as we expect.  

Of course, this is an intial value problem we know how to solve. The real value of this 
method is in studying initial value problems that we do not know how to solve.  



 

 

This equation is important in optics. In fact, it explains why a rainbow appears the way in 
which it does! As before, we will write the solution as a series: 

Since we have the initial conditions, 

Now we can write down the derivatives: 

The equation then gives  

Again, we can equate the coefficients of 

 

This gives us the first few terms of the solution: 

If we continue in this way, we can write down many terms of the series (perhaps you see the 
pattern already?) and then draw a graph of the solution. This looks like this: 

 

Notice that the solution oscillates to the left of the origin and grows like an exp
right of the origin. Can you explain this by looking at the differential equation

4.0 CONCLUSION 
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is important in optics. In fact, it explains why a rainbow appears the way in 
which it does! As before, we will write the solution as a series:  

 

Since we have the initial conditions, and . 

Now we can write down the derivatives:  

 

Again, we can equate the coefficients of x to obtain  

 

This gives us the first few terms of the solution:  

 

If we continue in this way, we can write down many terms of the series (perhaps you see the 
pattern already?) and then draw a graph of the solution. This looks like this: 

Notice that the solution oscillates to the left of the origin and grows like an exp
right of the origin. Can you explain this by looking at the differential equation

is important in optics. In fact, it explains why a rainbow appears the way in 

 

 

If we continue in this way, we can write down many terms of the series (perhaps you see the 
pattern already?) and then draw a graph of the solution. This looks like this:  

Notice that the solution oscillates to the left of the origin and grows like an exponential to the 
right of the origin. Can you explain this by looking at the differential equation 



 

In this unit, you have been introduced to the application of taylors series and
some basic ways of using taylors series such as the evaluating 
understanding the asymptotic behaviour, understanding the growth of functions and solving 
differential equations. Some examples where used to illustrate the applications.
 
5 SUMMARY 
Having gone through this unit, you now know that;
In this section, we show you  ways in which Taylor series can make life easy : 

i. In evaluating definite integrals , we used series representation of a function to 
evaluate some functions that have no antiderivative .

 Suppose we want to evaluate the definite

 

The integrand has no antiderivative expressible in terms of familiar functions. However, we 
know how to find its Taylor series: we know that 

Now if we substitute , we have 

In spite of the fact that we cannot antidifferentiate the function, we can antidifferentiate the 
Taylor series:  

(ii) We used taylors series to understand asymptotic behaviour  of functions that behave in 
the important part of the domain . And some example

(iii) Taylors series is used to understand the growth of functions. Because   we know the fact 
that exponentials grow much more rapidly than polynomials. We recorded this by saying that 

 
for any exponent n .  
(iv) We used taylors series to solve problems which could not be solved ordinarily through  
differential equations. 
 
 
Tutor-Marked Assignment 
 

1. Compute a second
a function 
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In this unit, you have been introduced to the application of taylors series and
some basic ways of using taylors series such as the evaluating of definite integrals, 
understanding the asymptotic behaviour, understanding the growth of functions and solving 
differential equations. Some examples where used to illustrate the applications.

Having gone through this unit, you now know that; 
n this section, we show you  ways in which Taylor series can make life easy : 

In evaluating definite integrals , we used series representation of a function to 
evaluate some functions that have no antiderivative . 

Suppose we want to evaluate the definite integral  

The integrand has no antiderivative expressible in terms of familiar functions. However, we 
know how to find its Taylor series: we know that  

 

, we have  

 

In spite of the fact that we cannot antidifferentiate the function, we can antidifferentiate the 

(ii) We used taylors series to understand asymptotic behaviour  of functions that behave in 
the important part of the domain . And some examples are shown to demonstrate ,

understand the growth of functions. Because   we know the fact 
that exponentials grow much more rapidly than polynomials. We recorded this by saying that 

taylors series to solve problems which could not be solved ordinarily through  

Compute a second-order Taylor series expansion around point (

In this unit, you have been introduced to the application of taylors series and 
of definite integrals, 

understanding the asymptotic behaviour, understanding the growth of functions and solving 
differential equations. Some examples where used to illustrate the applications. 

n this section, we show you  ways in which Taylor series can make life easy :  

In evaluating definite integrals , we used series representation of a function to 

The integrand has no antiderivative expressible in terms of familiar functions. However, we 

In spite of the fact that we cannot antidifferentiate the function, we can antidifferentiate the 

(ii) We used taylors series to understand asymptotic behaviour  of functions that behave in 
s are shown to demonstrate , 

understand the growth of functions. Because   we know the fact 
that exponentials grow much more rapidly than polynomials. We recorded this by saying that  

taylors series to solve problems which could not be solved ordinarily through  

order Taylor series expansion around point (a,b) = (0,0) of 
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F(x,y)= e
x
log(2+y) 

2. Show that the taylor series expansion of  f(x,y) = e
xy

 about the point (2,3) . 
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MODULE 7    MAXIMA AND MINIMA OF FUNCTIONS OF SEVER AL 
VARIABLES, STATIONARY POINT, LAGRANGE’S METHOD OF M ULTIPLIERS  
 

Unit 1: MAXIMISATION AND MINIMISATION OF FUNCTIONS OF SEVERAL 
VARIABLES 

 

CONTENTS 

1.0 INTRODUCTION 
2.0 OBJECTIVES 
3.0 MAIN CONTENT 
     3.1 Recognise problems on maximum and minimum functions of several variables 
     3.2 Necessary condition for a maxima or minima function of  several variable 
     3.3 Sufficient condition for a maxima or minima function of several variable 
     3.4 Maxima and minima of functions subject to constraints 
     3.5 Method of finding maxima and minima of functions subject to constraints 
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    3.7Solve problems on   maxima and minima functions of several variables 
4.0CONCLUSION 
5.0SUMMARY 
6.0TUTOR-MARKED ASSIGNMENT 
7.0REFERENCES/FURTHER READINGS 

 
1.0  INTRODUCTION 

Def. Stationary (or critical) point. For a function y = f(x) of a single variable, a stationary 
(or critical) point is a point at which dy/dx = 0; for a function u = f(x1, x2, ... , xn) of n 
variables it is a point at which 
 

 
 
In the case of a function y = f(x) of a single variable, a stationary point corresponds to a point 
on the curve at which the tangent to the curve is horizontal. In the case of a function y = f(x, 
y) of two variables a stationary point corresponds to a point on the surface at which the 
tangent plane to the surface is horizontal. 
  
In the case of a function y = f(x) of a single variable, a stationary point can be any of the 
following three: a maximum point, a minimum point or an inflection point. For a function y = 
f(x, y) of two variables, a stationary point can be a maximum point, a minimum point or a 
saddle point. For a function of n variables it can be a maximum point, a minimum point or a 
point that is analogous to an inflection or saddle point.  
 
2.0  OBJECTIVE 
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At the end of this unit, you should be able to : 
- recognise problems on maximum and minimum functions of several variables 
- know the necessary condition for a maxima or minima function of  several variable 
- know the Sufficient condition for a maxima or minima function of several variable 
- identify the maxima and minima of functions subject to constraints 
- know the method of finding maxima and minima of functions subject to constraints 
- identify the different types of examples of  maxima and minima functions of several 

variables 
- solve problems on   maxima and minima functions of several variables 

 
 
 
Maxima and minima of functions of several variables.  
A function f(x, y) of two independent variables has a maximum at a point (x0, y0) if f(x 0, y0) 

f(x, y) for all points (x, y) in the neighborhood of (x0, y0). Such a function has a minimum  
at a point (x0, y0) if f(x 0, y0) f(x, y) for all points (x, y) in the neighborhood of (x0, y0).  
 
A function f(x1, x2, ... , xn) of n independent variables has a maximum at a point (x1', x2', ... , 
xn') if f(x1', x2', ... , xn') f(x1, x2, ... , xn) at all points in the neighborhood of (x1', x2', ... , xn'). 
Such a function has a minimum  at a point (x1', x2', ... , xn') if f(x1', x2', ... , xn') f(x1, x2, ... , 
xn) at all points in the neighborhood of (x1', x2', ... , xn').  
 

Necessary condition for a maxima or minima. A necessary condition for a function f(x, y) 
of two variables to have a maxima or minima at point (x0, y0) is that 
 

              
 
at the point (i.e. that the point be a stationary point). 
 
In the case of a function f(x1, x2, ... , xn) of n variables, the condition for the function to have 
a maximum or minimum at point (x1

', x2', ... , xn') is that 
 

              
 
at that point (i.e. that the point be a stationary point). 
 

To find the maximum or minimum points of a function we first locate the stationary points 
using 1) above. After locating the stationary points we then examine each stationary point to 
determine if it is a maximum or minimum. To determine if a point is a maximum or 
minimum we may consider values of the function in the neighborhood of the point as well as 
the values of its first and second partial derivatives. We also may be able to establish what it 
is by arguments of one kind or other. The following theorem may be useful in establishing 
maximums and minimums for the case of functions of two variables. 
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Sufficient condition for a maximum or minimum of a function z = f(x, y). Let z = f(x, y) 
have continuous first and second partial derivatives in the neighborhood of point (x0, y0). If at 
the point (x0, y0) 
 

                          
 
and 
 

              
 
then there is a maximum at (x0, y0) if  
 

              
 
and a minimum if  
 

              
 
If ∆ > 0 , point (x0, y0) is a saddle point (neither maximum nor minimum). If ∆ = 0 , the 
nature of point (x0, y0) is undecided. More investigation is necessary. 
 

Example. Find the maxima and minima of function z = x2 + xy + y2 - y . 
 
Solution..  
 

              
 

              
 

2x + y = 0 
x + 2y = 1 
 
x = -1/3 , y = 2/3 
 
This is the stationary point. At this point ∆ > 0 and  
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and the point is a minimum. The minimum value of the function is - 1/3. 
 
 

 
 
Maxima and minima of functions subject to constraints. Let us set ourselves the following 
problem: Let F(x, y) and G(x, y) be functions defined over some region R of the x-y plane. 
Find the points at which the function F(x, y) has maximums subject to the side condition G(x, 
y) = 0. Basically we are asking the question: At what points on the solution set of G(x, y) = 0 
does F(x, y) have maximums? The solution set of G(x, y) = 0 corresponds to some curve in 
the plane. See Figure 1. The solution set (i.e. locus) of G(x, y) = 0 is shown in red. Figure 2 
shows the situation in three dimensions where function z = F(x, y) is shown rising up above 
the x-y plane along the curve G(x, y) = 0. The problem is to find the maximums of z = F(x, y) 
along the curve G(x, y) = 0. 
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Let us now consider the same problem in three variables. Let F(x, y, z) and G(x, y, z) be 
functions defined over some region R of space. Find the points at which the function F(x, y, 
z) has maximums subject to the side condition G(x, y, z) = 0. Basically we are asking the 
question: At what points on the solution set of G(x, y, z) = 0 does F(x, y, z) have maximums? 
G(x, y, z) = 0 represents some surface in space. In Figure 3, G(x, y, z) = 0 is depicted as a 
spheroid in space. The problem then is to find the maximums of the function F(x, y, z) as 
evaluated on this spheroidal surface.                                                              
Let us now consider another problem. Suppose instead of one side condition we have two. 
Let F(x, y, z), G(x, y, z) and H(x, y, z) be functions defined over some region R of space. 
Find the points at which the function F(x, y, z) has maximums subject to the side conditions  
 
2)        G(x, y, z) = 0  
3)        H(x, y, z) = 0. 
 

 
Here we wish to find the maximum values of F(x, y, z) on that set of points that satisfy both 
equations 2) and 3). Thus if D represents the solution set of G(x, y, z) = 0 and E represents 
the solution set of H(x, y, z) = 0 we wish to find the maximum points of F(x, y, z) as 
evaluated on set F = D E (i.e. the intersection of sets D and E). In Fig. 4 G(x, y, z) = 0 is 
depicted as an ellipsoid and H(x, y, z) = 0 as a plane. The intersection of the ellipsoid and the 
plane is the set F on which F(x, y, z) is to be evaluated.                                             
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The above can be generalized to functions of n variables F(x1, x2, ... , xn), G(x1, x2, ... , xn), 
etc. and m side conditions.   
  
 

Methods for finding maxima and minima of functions subject to constraints.  
 
1. Method of direct elimination. Suppose we wish to find the maxima or minima of a 
function F(x, y) with the constraint Φ(x, y) = 0. Suppose we are so lucky that Φ(x, y) = 0 can 
be solved explicitly for y, giving y = g(x). We can then substitute g(x) for y in F(x, y) and 
then find the maximums and minimums of F(x, g(x)) by standard methods. In some cases, it 
may be possible to do this kind of thing. We express some of the variables in the equations of 
constraint in terms of other variables and then substitute into the function whose extrema are 
sought, and find the extrema by standard methods. 
 
2. Method of implicit functions. Suppose we wish to find the maxima or minima of a 
function u = F(x, y, z) with the constraint Φ(x, y, z) = 0. We note that Φ(x, y, z) = 0 defines z 
implicitly as a function of x and y i.e. z = f(x, y). We thus seek the extrema of the quantity  
 
            u = F(x, y, f(x, y)) . 
 
The necessary condition for a stationary point, as given by 1) above, becomes 
  

 
  
(where F1 represents the partial of F with respect to x, etc.) 
 
Taking partials of Φ with respect to x and y it follows that  
 

 
  
(since the partial derivative of a function that is constant is zero).                                           
From the pair of equations consisting of the first equation in 4) and 5) we can eliminate 

giving 
  
6)        F1Φ3 - F3Φ1 = 0 
 
From the pair of equations consisting of the second equation in 4) and 5) we can eliminate 

giving 
  
7)        F2Φ3 - F3Φ2 = 0 
 
Equations 6) and 7) can be written in determinant form as  
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Equations 8) combined with the equation Φ(x, y, z) = 0 give us three equations which we 
can solve simultaneously for x, y, z to obtain the stationary points of function F(x, y, z). 
The maxima and minima will be among the stationary points. 
 
This same method can be used for functions of an arbitrary number of variables and an 
arbitrary number of side conditions (smaller than the number of variables).  
 
Extrema for a function of four variables with two auxiliary equations. Suppose we wish 
to find the maxima or minima of a function  
 
            u = F(x, y, z, t)  
 
with the side conditions  
 
9)        Φ(x, y, z, t) = 0            ψ(x, y, z, t) = 0.  
 
Equations 9) define variables z and t implicitly as functions of x and y i.e. 
 
10)      z = f1(x,y)       t = f2(x, y) . 
 
We thus seek the extrema of the quantity  
 
            u = F(x, y, f1(x, y), f2(x, y)) . 
 

The necessary condition for a stationary point, as given by 1) above, becomes 
  

 
  
Taking partials of Φ with respect to x and y it follows that  
 

 
  
Taking partials of ψ with respect to x and y it follows that  
 

 
  
From 12) and 13) we can derive the conditions 
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Equations 14) combined with the auxiliary equations Φ(x, y, z, t) = 0 and ψ(x, y, z, t) = 0 
give us four equations which we can solve simultaneously for x, y, z, t to obtain the 
stationary points of function F(x, y, z, t). The maxima and minima will be among the 
stationary points. 
 

Extrema for a function of n variables with p auxiliary equations.  
The p equations corresponding to equation 14) above for the case of a function of n variables 
 
                        u = F(x1, x2, ... .xn) 
 
and p auxiliary equations (i.e. side conditions)  
 
            Φ(x1, x2, ... , xn) = 0  
            Ψ(x1, x2, ... , xn) = 0 
            ................................. 
 
            Ω(x1, x2, ... , xn) = 0  
 
are  
 
  

 
 
These p equations along with the p auxiliary equations  
 
            Φ(x1, x2, ... , xn) = 0  
            Ψ(x1, x2, ... , xn) = 0 
            ................................. 
 
            Ω(x1, x2, ... , xn) = 0  
 
can be solved simultaneously for the n variables x1, x2, ... .xn to obtain the stationary 
points of F(x1, x2, ... .xn). The maxima and minima will be among the stationary points. 
 
 

*********************************                                                                                
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Geometrical interpretation for extrema of function F(x, y, z) with a constraint. We shall 
now present a theorem that gives a geometrical interpretation for the case of extremal values 
of functions of type F(x, y, z) with a constraint. 
 
Theorem 1. Suppose the functions F(x, y, z) and Φ(x, y, z) have continuous first partial 
derivatives throughout a certain region R of space. Let the equation Φ(x, y, z) = 0 define a 
surface S, every point of which is in the interior of R, and suppose that the three partial 
derivatives Φ1, Φ2, Φ3 are never simultaneously zero at a point of S. Then a necessary 
condition for the values of F(x, y, z) on S to attain an extreme value (either relative or 
absolute) at a point of S is that F1, F2, F3 be proportional to Φ1, Φ2, Φ3 at that point. If C is the 
value of F at the point, and if the constant of proportionality is not zero, the geometric 
meaning of the proportionality is that the surface S and the surface F(x, y, z) = C are tangent 
at the point in question. 
 
Rationale behind theorem. From 8) above, a necessary condition for F(x, y, z) to attain a 
maxima or minima (i.e. a condition for a stationary point) at a point P is that  
 
            F1Φ3 - F3Φ1 = 0                      F2Φ3 - F3Φ2 = 0  
 
or  
 

 
 
Thus at a stationary point the partial derivatives F1, F2, F3 and Φ1, Φ2, Φ3 are proportional. 
Now the partial derivatives F1, F2, F3 and Φ1, Φ2, Φ3 represent the gradients of the functions F 
and Φ; and the gradient, at any point P, of a scalar point function ψ(x, y, z) is a vector that is 
normal to that level surface of ψ(x, y, z) that passes through point P. If C is the value of F at 
the stationary point P, then the vector (F1, F2, F3) at point P is normal to the surface F(x, y, z) 
= C at P. Similarly, the vector (Φ1, Φ2, Φ3) at point P is normal to the surface Φ(x, y, z) = 0 at 
P. Since the partial derivatives F1, F2, F3 and Φ1, Φ2, Φ3 are proportional, the normals to the 
two surfaces point in the same direction at P and the surfaces must be tangent at point P. 
 
Example. Consider the maximum and minimum values of F(x, y, z) = x2 + y2 + z2 on the 
surface of the ellipsoid  
 

              
 
Since F(x, y, z) is the square of the distance from (x, y, z) to the origin, it is clear that we are 
looking for the points at maximum and minimum distances from the center of the ellipsoid. 
The maximum occurs at the ends of the longest principal axis, namely at ( 8, 0, 0). The 
minimum occurs at the ends of the shortest principal axis, namely at (0, 0, 5). Consider the 
maximum point (8, 0, 0). The value of F at this point is 64, and the surface F(x, y, z) = 64 is a 
sphere. The sphere and the ellipsoid are tangent at (8, 0, 0) as asserted by the theorem. In this 
case the ratios G1:G2:G3 and F1:F2:F3 at (8, 0, 0) are 1/4 : 0 : 0 and 16 : 0 : 0 respectively. 
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This example brings out the fact that the tangency of the surfaces (or the proportionality of 
the two sets of ratios), is a necessary but not a sufficient condition for a maximum or 
minimum value of F, for we note that the condition of proportionality exists at the points (0, 

6, 0), which are the ends of the principal axis of intermediate length. But the value of F in 
neither a maximum nor a minimum at this point. 
  
 
Case of extrema of function F(x, y) with a constraint. A similar geometrical interpretation 
can be given to the problem of extremal values for F(x, y) subject to the constraint Φ(x, y) = 
0. Here we have a curve defined by the constraint, and a one-parameter family of curves F(x, 
y) = C. At a point of extremal value of F the curve F(x, y) = C through the point will be 
tangent to the curve defined by the constraint. 
3. Lagrange’s Method of Multipiers. Let F(x, y, z) and Φ(x, y, z) be functions defined over 
some region R of space. Find the points at which the function F(x, y, z) has maximums and 
minimums subject to the side condition Φ(x, y, z) = 0. Lagrange’s method for solving this 
problem consists of forming a third function G(x, y, z) given by  
 
17)      G(x, y, z) = F(x, y, z) + λΦ(x, y, z) , 
 
where λ is a constant (i.e. a parameter) to which we will later assign a value, and then finding 
the maxima and minima of the function G(x, y, z). A reader might quickly ask, “Of what 
interest are the maxima and minima of the function G(x, y, z)? How does this help us solve 
the problem of finding the maxima and minima of F(x, y, z)?” The answer is that examination 
of 17) shows that for those points corresponding to the solution set of Φ(x, y, z) = 0 the 
function G(x, y, z) is equal to the function F(x, y, z) since at those points equation 17) 
becomes  
 
            G(x, y, z) = F(x, y, z) + λ·0 . 
Thus, for the points on the surface Φ(x, y, z) = 0, functions F and G are equal so the maxima 
and minima of G are also the maxima and minima of F. The procedure for finding the 
maxima and minima of G(x, y, z) is as follows: We regard G(x, y, z) as a function of three 
independent variables and write down the necessary conditions for a stationary point using 1) 
above: 
 
18)      F1 + λΦ1 = 0                F2 + λΦ2 = 0                F3 + λΦ3 = 0 
 
We then solve these three equations along with the equation of constraint Φ(x, y, z) = 0 to 
find the values of the four quantities x, y, z, λ. More than one point can be found in this way 
and this will give us the locations of the stationary points. The maxima and minima will be 
among the stationary points thus found. 
 
Let us now observe something. If equations 18) are to hold simultaneously, then it follows 
from the third of them that λ must have the value  
 

              
 
If we substitute this value of λ into the first two equations of 18) we obtain 
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            F1Φ3 - F3Φ1 = 0                      F2Φ3 - F3Φ2 = 0  
 
or 
 

   
 
We note that the two equations of 19) are identically the same conditions as 8) above for the 
previous method. Thus using equations 19) along with the equation of constraint Φ(x, y, z) = 
0 is exactly the same procedure as the previous method in which we used equations 8) and 
the same constraint.  
 
One of the great advantages of Lagrange’s method over the method of implicit functions or 
the method of direct elimination is that it enables us to avoid making a choice of independent 
variables. This is sometimes very important; it permits the retention of symmetry in a 
problem where the variables enter symmetrically at the outset. 
 
Lagrange’s method can be used with functions of any number of variables and any number of 
constraints (smaller than the number of variables). In general, given a function F(x1, x2, ... , 
xn) of n variables and h side conditions Φ1 = 0, Φ2 = 0, .... , Φh = 0, for which this function 
may have a maximum or minimum, equate to zero the partial derivatives of the auxiliary 
function F + λ1Φ1 + λ2Φ2 + ...... + λhΦh with respect to x1, x2, ... , xn , regarding λ1, λ2, ..... ,λh 
as constants, and solve these n equations simultaneously with the given h side conditions, 
treating the λ’s as unknowns to be eliminated. 
 
The parameter λ in Lagrange’s method is called Lagrange’s multiplier. 
Further examples 

Example  1. 

Let us find the critical points of  

 

The partial derivatives are  

 

 

f_x=0 if 1-x^2=0 or the exponential term is 0. f_y=0 if -2y=0 or the exponential term is 0. 
The exponential term is not 0 except in the degenerate case. Hence we require 1-x^2=0 and -
2y=0, implying x=1 or x=-1 and y=0. There are two critical points (-1,0) and (1,0) 

The Second Derivative Test for Functions of Two Variables  
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How can we determine if the critical points found above are relative maxima or minima? We 
apply a second derivative test for functions of two variables.  

Let (x_c,y_c) be a critical point and define  

 

We have the following cases:  

• If D>0 and  ,0),( 〈yxf
ccxx

 then f(x,y) has a relative maximum at yx cc
, .  

• If D>0 and  ,0),( 〈yxf
ccxx

 then f(x,y) has a relative minimum at yx cc
, . 

• If D<0, then f(x,y) has a saddle point at yx cc
, .   

• If D=0, the second derivative test is inconclusive.  

An example of a saddle point is shown in the example below.  

Example: Continued  

For the example above, we have  

 

 

 

For x=1 and y=0, we have D(1,0)=4exp(4/3)>0 with f_xx(1,0)=-2exp(2/3)<0. Hence, (1,0) is 
a relative maximum. For x=-1 and y=0, we have D(-1,0)=-4exp(-4/3)<0. Hence, (-1,0) is a 
saddle point.  

Example 2: Maxima and Minima in a Disk  

Another example of a bounded region is the disk of radius 2 centered at the origin. We 
proceed as in the previous example, determining in the 3 classes above. (1,0) and (-1,0) lie in 
the interior of the disk.  

The boundary of the disk is the circle x^2+y^2=4. To find extreme points on the disk we 
parameterize the circle. A natural parameterization is x=2cos(t) and y=2sin(t) for 
0<=t<=2*pi. We substitute these expressions into z=f(x,y) and obtain  
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On the circle, the original functions of 2 variables is reduced to a function of 1 variable. We 
can determine the extrema on the circle using techniques from calculus of on variable.  

In this problem there are not any corners. Hence, we determine the global max and min by 
considering points in the interior of the disk and on the circle. An alternative method for 
finding the maximum and minimum on the circle is the method of Lagrange multipliers.  

4.0     CONCLUSION 
 
You have been introduced to  maximum and minimum functions of several variables, 
necessary condition for a maxima or minima function of  several variables, problems on 
maximum and minimum functions of several variables  e.t.c 
 
5.0  SUMMARY 
A summary of  maximum and minimum functions of several variables are as follows : 
 A function f(x, y) of two independent variables has a maximum at a point (x0, y0) if f(x 0, y0) 

f(x, y) for all points (x, y) in the neighborhood of (x0, y0). Such a function has a minimum  
at a point (x0, y0) if f(x 0, y0) f(x, y) for all points (x, y) in the neighborhood of (x0, y0).  
 Solve the following problem, Find the maxima and minima of function z = x2 + xy + y2 - y . 
Solution..  
 

             .   
 

2x + y = 0   ,  x + 2y = 1 
 
x = -1/3 , y = 2/3 
 
This is the stationary point. At this point ∆ > 0 and  
 

              
 
and the point is a minimum. The minimum value of the function is - 1/3. 
 
 
6.0  TUTOR-MARKED ASSIGNMENT  

1.Determine the critical points and locate any relative minimum, maxima and saddle points of 
functions f defined by 

F(x,y) = 2 xxy yx 622
42 −+−  

2.Determine the critical points and locate any relative minimum, maxima and saddle points of 
functions f defined by 

F(x,y) = 2 44
34 ++− yx xy  
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3.Determine the critical points and locate any relative minimum, maxima and saddle points of 
functions f defined by 

F(x,y)= xyyx 4
44 +−  

Determine the critical points of the functions below and find out whether each point 
corresponds to a relative minimum, maximum and saddle point, or no conclusion can be 
made 

4.F(x,y)= xxyyx 823
22 −−+  

5. F(x,y)= yx yyx 9312
233 −+++
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INTRODUCTION  

 

 
Figure 1: Find x and y to maximize 

 
Figure 2: Contour map of Figure 1. The red line shows the constraint 
lines are contours of f(x,y). The point where the red line tangentially touches a blue contour is 
our solution. 

In mathematical optimization
Louis Lagrange) provides a strategy for finding the maxima and minima of a 
to constraints. 

For instance (see Figure 1), consider the optimization problem

maximize  

subject to 

We introduce a new variable (
function defined by 
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to maximize f(x,y) subject to a constraint (shown in red) 

 

Figure 2: Contour map of Figure 1. The red line shows the constraint g(
). The point where the red line tangentially touches a blue contour is 

mathematical optimization, the method of Lagrange multipliers (named after 
) provides a strategy for finding the maxima and minima of a 

For instance (see Figure 1), consider the optimization problem 

 

We introduce a new variable (λ) called a Lagrange multiplier, and study the Lagrange 

 

) subject to a constraint (shown in red) g(x,y) = c. 

(x,y) = c. The blue 
). The point where the red line tangentially touches a blue contour is 

(named after Joseph 
) provides a strategy for finding the maxima and minima of a function subject 

) called a Lagrange multiplier, and study the Lagrange 



 

where the λ term may be either added or subtracted. If 
constrained problem, then there exists 
function (stationary points are those points where the partial derivatives of 
However, not all stationary points yield a solution of the original problem. Thus, the method 
of Lagrange multipliers yields a 

2.0  OBJECTIVES 
 
After studying this unit, you should be to correctly:
i. Identify problem which could be solve by langranges multiplier
ii.  Know single and multiple constraints
iii.  Know the interpretation of lagrange multiplier
iv. Solve problems with the use of langranges multiplier    
 

3.0  MAIN CONTENT 

One of the most common problems in calculus is that of finding maxima or minima (in 
general, "extrema") of a function, but it is often difficult to find a closed form for the function 
being extremized. Such difficulties often arise when one wishes to maximize or minimize a 
function subject to fixed outside conditions or constraints. The method of Lag
multipliers is a powerful tool for solving this class of problems without the need to explicitly 
solve the conditions and use them to eliminate extra variables.

Consider the two-dimensional problem introduced above:

maximize  

subject to 

We can visualize contours of f

 

for various values of d, and the contour of 

Suppose we walk along the contour line with 
may be distinct, so following the contour line for 
contour lines of f. This is equivalent to saying that while moving along the contour line for 
= c the value of f can vary. Only when the contour line f
tangentially, do we not increase or decrease the value of 
touch but do not cross 

The contour lines of f and g touch when the 
Since the gradient of a function is perpendicular to the contour lines, this is the same as 
saying that the gradients of f 
and 
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 term may be either added or subtracted. If f(x,y) is a maximum for the original 
constrained problem, then there exists λ such that (x,y,λ) is a stationary point
function (stationary points are those points where the partial derivatives of 
However, not all stationary points yield a solution of the original problem. Thus, the method 
of Lagrange multipliers yields a necessary condition for optimality in constrained problems

After studying this unit, you should be to correctly: 
Identify problem which could be solve by langranges multiplier
Know single and multiple constraints 
Know the interpretation of lagrange multiplier 
Solve problems with the use of langranges multiplier     

One of the most common problems in calculus is that of finding maxima or minima (in 
trema") of a function, but it is often difficult to find a closed form for the function 

being extremized. Such difficulties often arise when one wishes to maximize or minimize a 
function subject to fixed outside conditions or constraints. The method of Lag
multipliers is a powerful tool for solving this class of problems without the need to explicitly 
solve the conditions and use them to eliminate extra variables. 

dimensional problem introduced above: 

 

f given by 

, and the contour of g given by g(x,y) = c. 

Suppose we walk along the contour line with g = c. In general the contour lines of 
may be distinct, so following the contour line for g = c one could intersect with or cross the 

. This is equivalent to saying that while moving along the contour line for 
can vary. Only when the contour line for g = c meets contour lines of 

, do we not increase or decrease the value of f — that is, when the contour lines 

touch when the tangent vectors of the contour lines are parallel. 
of a function is perpendicular to the contour lines, this is the same as 

f and g are parallel. Thus we want points (x,y

, 

) is a maximum for the original 
stationary point for the Lagrange 

function (stationary points are those points where the partial derivatives of Λ are zero). 
However, not all stationary points yield a solution of the original problem. Thus, the method 

for optimality in constrained problems 

Identify problem which could be solve by langranges multiplier 

One of the most common problems in calculus is that of finding maxima or minima (in 
trema") of a function, but it is often difficult to find a closed form for the function 

being extremized. Such difficulties often arise when one wishes to maximize or minimize a 
function subject to fixed outside conditions or constraints. The method of Lagrange 
multipliers is a powerful tool for solving this class of problems without the need to explicitly 

. In general the contour lines of f and g 
one could intersect with or cross the 

. This is equivalent to saying that while moving along the contour line for g 
meets contour lines of f 

that is, when the contour lines 

of the contour lines are parallel. 
of a function is perpendicular to the contour lines, this is the same as 

y) where g(x,y) = c 



 

where 

and 

are the respective gradients. The constant 
vectors are parallel, the magnitudes of the gradient vectors are generally not equal.

To incorporate these conditions into one equation, we introduce an auxili

and solve 

This is the method of Lagrange multipliers. Note that 
c. 

 Not necessarily extrema 

The constrained extrema of f 
extrema of Λ (see Example 2 

One may reformulate the Lagrangian
minima for the Hamiltonian. This is done in 
Pontryagin's minimum principle

The fact that solutions of the Lagrangian are not necessarily extrema also poses difficulties 
for numerical optimization. This can be addressed by computing the 
gradient, as the zeros of the magnitude are necessarily local minima, as illustrated in the 
numerical optimization example

 Handling multiple constraints
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are the respective gradients. The constant λ is required because although the two gradient 
vectors are parallel, the magnitudes of the gradient vectors are generally not equal.

To incorporate these conditions into one equation, we introduce an auxiliary function

 

 

This is the method of Lagrange multipliers. Note that 

f are critical points of the Lagrangian Λ, but they are not 
 below). 

reformulate the Lagrangian as a Hamiltonian, in which case the solutions are local 
minima for the Hamiltonian. This is done in optimal control theory, in the form of 
Pontryagin's minimum principle. 

The fact that solutions of the Lagrangian are not necessarily extrema also poses difficulties 
zation. This can be addressed by computing the 

gradient, as the zeros of the magnitude are necessarily local minima, as illustrated in the 
numerical optimization example. 

Handling multiple constraints 

is required because although the two gradient 
vectors are parallel, the magnitudes of the gradient vectors are generally not equal. 

ary function 

implies g(x,y) = 

, but they are not local 

, in which case the solutions are local 
theory, in the form of 

The fact that solutions of the Lagrangian are not necessarily extrema also poses difficulties 
zation. This can be addressed by computing the magnitude of the 

gradient, as the zeros of the magnitude are necessarily local minima, as illustrated in the 



 

 

A paraboloid, some of its level sets (aka contour lines) and 2 line constraints.

 

Zooming in on the levels sets and constraints, we see that the two constraint lines intersect to 
form a "joint" constraint that is a point. Since there is only one point to analyze, the 
corresponding point on the paraboloid is automatically a minimum and maximum. Yet the 
simplified reasoning presented in sections above seems to fail because the level set def
appears to "cross" the point and at the same time its gradient is not parallel to the gradients of 
either constraint. This shows we must refine our explanation of the method to handle the 
kinds of constraints that are formed when we have more than 

The method of Lagrange multipliers
this is done, we need to reexamine the problem in a slightly different manner because the 
concept of “crossing” discussed above becomes 
of constraints that are created when we have more than one constraint acting together.

As an example, consider a paraboloid
created if we had 2 line constraints that intersect). The 
appears to “cross” that point and its 
the two line constraints. Yet, it is obviously a maximum 
one point on the paraboloid that meets the constrain
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A paraboloid, some of its level sets (aka contour lines) and 2 line constraints.

 

Zooming in on the levels sets and constraints, we see that the two constraint lines intersect to 
"joint" constraint that is a point. Since there is only one point to analyze, the 

corresponding point on the paraboloid is automatically a minimum and maximum. Yet the 
simplified reasoning presented in sections above seems to fail because the level set def
appears to "cross" the point and at the same time its gradient is not parallel to the gradients of 
either constraint. This shows we must refine our explanation of the method to handle the 
kinds of constraints that are formed when we have more than one constraint acting at once.

Lagrange multipliers can also accommodate multiple constraints. To see how 
this is done, we need to reexamine the problem in a slightly different manner because the 
concept of “crossing” discussed above becomes rapidly unclear when we consider the types 
of constraints that are created when we have more than one constraint acting together.

paraboloid with a constraint that is a single point (as might be 
created if we had 2 line constraints that intersect). The level set (i.e., contour line) clearly 
appears to “cross” that point and its gradient is clearly not parallel to the gradients of either of 
the two line constraints. Yet, it is obviously a maximum and a minimum because there is only 
one point on the paraboloid that meets the constraint. 

A paraboloid, some of its level sets (aka contour lines) and 2 line constraints. 

Zooming in on the levels sets and constraints, we see that the two constraint lines intersect to 
"joint" constraint that is a point. Since there is only one point to analyze, the 

corresponding point on the paraboloid is automatically a minimum and maximum. Yet the 
simplified reasoning presented in sections above seems to fail because the level set definitely 
appears to "cross" the point and at the same time its gradient is not parallel to the gradients of 
either constraint. This shows we must refine our explanation of the method to handle the 

one constraint acting at once. 

can also accommodate multiple constraints. To see how 
this is done, we need to reexamine the problem in a slightly different manner because the 

rapidly unclear when we consider the types 
of constraints that are created when we have more than one constraint acting together. 

hat is a single point (as might be 
(i.e., contour line) clearly 

is clearly not parallel to the gradients of either of 
a minimum because there is only 



 

While this example seems a bit odd, it is easy to understand and is representative of the sort 
of “effective” constraint that appears quite often when we deal with multiple constraints 
intersecting. Thus, we take a slightly different approach below to e
Lagrange Multipliers method with any number of constraints.

Throughout this section, the independent variables will be denoted by 

as a group, we will denote them as 

analyzed will be denoted by 

The basic idea remains essentially the same: if we consider only the points that satisfy the 

constraints (i.e. are in the constraints), then a point 
point in a “flat” region) of f if and only if the constraints at that point do not allow movement 
in a direction where f changes value.

Once we have located the stationary points, we need to do further tests to see if we have 
found a minimum, a maximum or just a stationar

We start by considering the level set of 
the directions in which we can move and still remain in the same level set are the directions 
where the value of f does not change (i.e. the change equ

, the following relation must hold:

where the notation above means the 
can be rewritten in a more compact geometric form that helps our intuition:

This makes it clear that if we are at 

the value of f must be perpendicular

Now let us consider the effect of the constraints. Each constraint limits the directions that we 
can move from a particular point and still satisfy the constraint. We can use the same 

procedure, to look for the set of vectors 
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While this example seems a bit odd, it is easy to understand and is representative of the sort 
of “effective” constraint that appears quite often when we deal with multiple constraints 
intersecting. Thus, we take a slightly different approach below to explain and derive the 
Lagrange Multipliers method with any number of constraints. 

Throughout this section, the independent variables will be denoted by 

as a group, we will denote them as . Also, the function being 

analyzed will be denoted by and the constraints will be represented by the equations 

. 

The basic idea remains essentially the same: if we consider only the points that satisfy the 

the constraints), then a point is a stationary point (i.e. a 
if and only if the constraints at that point do not allow movement 

changes value. 

Once we have located the stationary points, we need to do further tests to see if we have 
found a minimum, a maximum or just a stationary point that is neither. 

We start by considering the level set of f at . The set of vectors 
the directions in which we can move and still remain in the same level set are the directions 

does not change (i.e. the change equals zero). Thus, for every vector 

, the following relation must hold: 

 

above means the xK-component of the vector v. The equation above 
can be rewritten in a more compact geometric form that helps our intuition:

lear that if we are at p, then all directions from this point that do 

must be perpendicular to (the gradient of f at p). 

Now let us consider the effect of the constraints. Each constraint limits the directions that we 
can move from a particular point and still satisfy the constraint. We can use the same 

procedure, to look for the set of vectors containing the directions in 

While this example seems a bit odd, it is easy to understand and is representative of the sort 
of “effective” constraint that appears quite often when we deal with multiple constraints 

xplain and derive the 

and, 

. Also, the function being 

and the constraints will be represented by the equations 

The basic idea remains essentially the same: if we consider only the points that satisfy the 

is a stationary point (i.e. a 
if and only if the constraints at that point do not allow movement 

Once we have located the stationary points, we need to do further tests to see if we have 

. The set of vectors containing 
the directions in which we can move and still remain in the same level set are the directions 

als zero). Thus, for every vector v in 

. The equation above 
can be rewritten in a more compact geometric form that helps our intuition: 

 

directions from this point that do not change 

Now let us consider the effect of the constraints. Each constraint limits the directions that we 
can move from a particular point and still satisfy the constraint. We can use the same 

containing the directions in which we can 



 

move and still satisfy the constraint. As above, for every vector 
relation must hold: 

From this, we see that at point 

constraint must be perpendicular to 

Now we are ready to refine our idea further and complete the method: 
constrained stationary point if and only if the direction that changes
the constraints. (We can see that this is true because if a direction 
violate any constraints, then there would a “legal” point nearby with a higher or lower value 
for f and the current point would then not be a stationary point.)

 Single constraint revisited 

For a single constraint, we use the stateme
direction that changes f is in the same direction that violates the constraint. To determine if 
two vectors are in the same direction, we note that if two vectors start from the same point 
and are “in the same direction”, then one vector can always “reach” the other by changing its 
length and/or flipping to point the opposite way along the same direction line. In this way, we 
can succinctly state that two vectors point in the same direction if and only if one of
be multiplied by some real number such that they become equal to the other. So, for our 
purposes, we require that: 

If we now add another simultaneous equation to guarantee that we only perform this test 
when we are at a point that satisfies the
that when solved, identify all constrained stationary points:

Note that the above is a succinct way of writing the equations. Fully expanded, there are 
1 simultaneous equations that need to be solv

: 
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move and still satisfy the constraint. As above, for every vector v in 

From this, we see that at point p, all directions from this point that will still satisfy this 

constraint must be perpendicular to . 

Now we are ready to refine our idea further and complete the method: 
constrained stationary point if and only if the direction that changes f violates at least one of 

. (We can see that this is true because if a direction that changes 
violate any constraints, then there would a “legal” point nearby with a higher or lower value 

and the current point would then not be a stationary point.) 

For a single constraint, we use the statement above to say that at stationary points the 
is in the same direction that violates the constraint. To determine if 

two vectors are in the same direction, we note that if two vectors start from the same point 
direction”, then one vector can always “reach” the other by changing its 

length and/or flipping to point the opposite way along the same direction line. In this way, we 
can succinctly state that two vectors point in the same direction if and only if one of
be multiplied by some real number such that they become equal to the other. So, for our 

If we now add another simultaneous equation to guarantee that we only perform this test 
when we are at a point that satisfies the constraint, we end up with 2 simultaneous equations 
that when solved, identify all constrained stationary points: 

Note that the above is a succinct way of writing the equations. Fully expanded, there are 
simultaneous equations that need to be solved for the N + 1 variables which are 

, the following 

 

, all directions from this point that will still satisfy this 

Now we are ready to refine our idea further and complete the method: a point on f is a 
violates at least one of 
that changes f did not 

violate any constraints, then there would a “legal” point nearby with a higher or lower value 

nt above to say that at stationary points the 
is in the same direction that violates the constraint. To determine if 

two vectors are in the same direction, we note that if two vectors start from the same point 
direction”, then one vector can always “reach” the other by changing its 

length and/or flipping to point the opposite way along the same direction line. In this way, we 
can succinctly state that two vectors point in the same direction if and only if one of them can 
be multiplied by some real number such that they become equal to the other. So, for our 

 

If we now add another simultaneous equation to guarantee that we only perform this test 
constraint, we end up with 2 simultaneous equations 

 

Note that the above is a succinct way of writing the equations. Fully expanded, there are N + 
variables which are λ and 



 

 Multiple constraints 

For more than one constraint, the same reasoning applies. If there is more than one constraint 
active together, each constraint contributes a direction that will violate it. Together, these 
“violation directions” form a “violation space”, where infinitesim
direction within the space will violate one or more constraints. Thus, to satisfy multiple 
constraints we can state (using this new terminology) that at the stationary points, the 
direction that changes f is in the “violation space” crea

The violation space created by the constraints consists of all points that can be reached by 
adding any combination of scaled and/or flipped versions of the individual violation direction 
vectors. In other words, all 
violation directions as the basis of the space. Thus, we can succinctly state that 
space defined by 

such that: 

 

which for our purposes, translates to stating that the direction that changes 
“violation space” defined by the constraints 

 

As before, we now add simultaneous equation to guarantee that we only perform this test 
when we are at a point that satisfies every constraint, we end up with simultaneous equations 
that when solved, identify all constrained stationary points:

 

 

The method is complete now (from the standpoint of solving the 
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For more than one constraint, the same reasoning applies. If there is more than one constraint 
active together, each constraint contributes a direction that will violate it. Together, these 
“violation directions” form a “violation space”, where infinitesimal movement in any 
direction within the space will violate one or more constraints. Thus, to satisfy multiple 
constraints we can state (using this new terminology) that at the stationary points, the 

is in the “violation space” created by the constraints acting jointly.

created by the constraints consists of all points that can be reached by 
adding any combination of scaled and/or flipped versions of the individual violation direction 
vectors. In other words, all the points that are “reachable” when we use the individual 
violation directions as the basis of the space. Thus, we can succinctly state that 

if and only if there exists a set of “multipliers” 

ses, translates to stating that the direction that changes 
“violation space” defined by the constraints if and only if:

As before, we now add simultaneous equation to guarantee that we only perform this test 
satisfies every constraint, we end up with simultaneous equations 

that when solved, identify all constrained stationary points: 

method is complete now (from the standpoint of solving the 

For more than one constraint, the same reasoning applies. If there is more than one constraint 
active together, each constraint contributes a direction that will violate it. Together, these 

al movement in any 
direction within the space will violate one or more constraints. Thus, to satisfy multiple 
constraints we can state (using this new terminology) that at the stationary points, the 

ted by the constraints acting jointly. 

created by the constraints consists of all points that can be reached by 
adding any combination of scaled and/or flipped versions of the individual violation direction 

the points that are “reachable” when we use the individual 
violation directions as the basis of the space. Thus, we can succinctly state that v is in the 

if and only if there exists a set of “multipliers” 

ses, translates to stating that the direction that changes f at p is in the 
if and only if: 

 

As before, we now add simultaneous equation to guarantee that we only perform this test 
satisfies every constraint, we end up with simultaneous equations 

method is complete now (from the standpoint of solving the 



 

problem of finding stationary points) but as mathematicians d
can be further condensed into an even more elegant and succinct form. Lagrange must have 
cleverly noticed that the equations above look like partial derivatives of some larger scalar 
function L that takes all the 
he might then have noticed that setting every equation equal to zero is exactly what one 
would have to do to solve for the 
Finally, he showed that a larger function 
we require can be constructed very simply as below:

Solving the equation above for its 
stationary points as solving for the 

. 

In Lagrange’s honor, the function above is called a 
are called 

called The Method of Lagrange Multipliers

The method of Lagrange multipliers is generalized by the 
which can also take into account inequality 

 Interpretation of the Lagrange multipliers

Often the Lagrange multipliers have an interpretation as some quantity of interest. To see 
why this might be the case, observe that:

 

So, λk is the rate of change of the quantit
variable. As examples, in Lagrangian mechanics
finding stationary points of the 
potential energy. Thus, the force on a particle due to a scalar potential, 
interpreted as a Lagrange multiplier determining the change in action (transfer of potential to 
kinetic energy) following a variation in the particle's constrained trajectory. In economics, the 
optimal profit to a player is calculated subject to a constrained space of actions, 
Lagrange multiplier is the increase in the value of the objective function due to the relaxation 
of a given constraint (e.g. through an increase in income or bribery or other means) 
marginal cost of a constraint, called the 

In control theory this is formulated instead as 
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problem of finding stationary points) but as mathematicians delight in doing, these equations 
can be further condensed into an even more elegant and succinct form. Lagrange must have 
cleverly noticed that the equations above look like partial derivatives of some larger scalar 

and all the 
he might then have noticed that setting every equation equal to zero is exactly what one 
would have to do to solve for the unconstrained stationary points of that larger function. 
Finally, he showed that a larger function L with partial derivatives that are exactly the ones 
we require can be constructed very simply as below: 

 

Solving the equation above for its unconstrained stationary points generates exactly the same 
stationary points as solving for the constrained stationary points of f under the constraints 

In Lagrange’s honor, the function above is called a Lagrangian
are called Lagrange Multipliers and this optimization method itself is 

The Method of Lagrange Multipliers. 

The method of Lagrange multipliers is generalized by the Karush–Kuhn–
which can also take into account inequality constraints of the form h(x) ≤ c

Interpretation of the Lagrange multipliers 

Often the Lagrange multipliers have an interpretation as some quantity of interest. To see 
why this might be the case, observe that: 

is the rate of change of the quantity being optimized as a function of the constraint 
Lagrangian mechanics the equations of motion are derived by 
he action, the time integral of the difference between kinetic and 

potential energy. Thus, the force on a particle due to a scalar potential, 
nge multiplier determining the change in action (transfer of potential to 

kinetic energy) following a variation in the particle's constrained trajectory. In economics, the 
optimal profit to a player is calculated subject to a constrained space of actions, 
Lagrange multiplier is the increase in the value of the objective function due to the relaxation 
of a given constraint (e.g. through an increase in income or bribery or other means) 

of a constraint, called the shadow price. 

In control theory this is formulated instead as costate equations. 

elight in doing, these equations 
can be further condensed into an even more elegant and succinct form. Lagrange must have 
cleverly noticed that the equations above look like partial derivatives of some larger scalar 

as inputs. Next, 
he might then have noticed that setting every equation equal to zero is exactly what one 

stationary points of that larger function. 
l derivatives that are exactly the ones 

stationary points generates exactly the same 
under the constraints 

Lagrangian, the scalars 
and this optimization method itself is 

–Tucker conditions, 
c. 

Often the Lagrange multipliers have an interpretation as some quantity of interest. To see 

y being optimized as a function of the constraint 
the equations of motion are derived by 

, the time integral of the difference between kinetic and 
, can be 

nge multiplier determining the change in action (transfer of potential to 
kinetic energy) following a variation in the particle's constrained trajectory. In economics, the 
optimal profit to a player is calculated subject to a constrained space of actions, where a 
Lagrange multiplier is the increase in the value of the objective function due to the relaxation 
of a given constraint (e.g. through an increase in income or bribery or other means) – the 



 

 

Examples 

 Example 1 

 

 

 

 

 

 

 

Fig. 3. 
optimization problem 

Suppose one wishes to maximize 
feasible set is the unit circle, and the 

can see graphically that the maximum occurs at 

at . 

Formally, set g(x,y) − c = x2 + 

Λ(x,y,λ) = f(x,y) + λ(g(

Set the derivative dΛ = 0, which yields the system of equations:

As always, the equation ((iii) here) is the original constraint.

Combining the first two equations yields 
so one has x = − 1 / (2λ) = y). 
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Illustration of the constrained 

Suppose one wishes to maximize f(x,y) = x + y subject to the constraint 
feasible set is the unit circle, and the level sets of f are diagonal lines (with slope 

can see graphically that the maximum occurs at , and the minimum occurs 

+ y2 − 1, and 

(x,y) − c) = x + y + λ(x2 + y2 − 1) 

which yields the system of equations: 

 

equation ((iii) here) is the original constraint. 

Combining the first two equations yields x = y (explicitly, , otherwise (i) yields 1 = 0, 
 

Illustration of the constrained 

subject to the constraint x2 + y2 = 1. The 
are diagonal lines (with slope -1), so one 

, and the minimum occurs 

, otherwise (i) yields 1 = 0, 



 

Substituting into (iii) yields 2

the stationary points are 
objective function 

thus the maximum is , which is attained at 

, which is attained at 

 Example 2 

problem 

 

Suppose one wants to find the maximum values of

 

with the condition that the x and 
√3, that is, subject to the constraint

As there is just a single constraint, we will use only one multiplier, say 

The constraint g(x, y)-3 is identically zero on the circle of radius 
g(x, y)-3 may be added to f(x, 
circle where our original constraint is satisfied). Let

The critical values of Λ occur where its gradient is zero. The partial derivatives are
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2x2 = 1, so and 

and 
objective function f on these yields

 

, which is attained at , and the minimum is 

. 

 

 

 

 

 

 

 

Fig. 4. Illustration of 
constrained optimization 

Suppose one wants to find the maximum values of 

and y coordinates lie on the circle around the origin with radius 
3, that is, subject to the constraint 

 

raint, we will use only one multiplier, say λ. 

3 is identically zero on the circle of radius √3. So any multiple of 
 y) leaving f(x, y) unchanged in the region of interest (above the 

original constraint is satisfied). Let 

occur where its gradient is zero. The partial derivatives are

, showing 

. Evaluating the 
on these yields

, and the minimum is 

Fig. 4. Illustration of the 
constrained optimization 

coordinates lie on the circle around the origin with radius 

√3. So any multiple of 
) unchanged in the region of interest (above the 

 

occur where its gradient is zero. The partial derivatives are 



 

Equation (iii) is just the original constraint. Equation (i) implies 

case, if x = 0 then we must have 
case, if λ = −y and substituting into equation (ii) we have that,

 

Then x2 = 2y2. Substituting into equation (iii) and solving for 

 

Thus there are six critical points:

Evaluating the objective at these points, we find

Therefore, the objective function attains the 

and the global minimum

and is a local maximum
matrix of Λ. 

Note that while 

, we can choose a small positive 
both greater and less than 2. 

Example: entropy 

Suppose we wish to find the 

with maximal 

wish to find the least biased 
other words, we wish to maximize the 
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Equation (iii) is just the original constraint. Equation (i) implies x = 0 or 

have by (iii) and then by (ii) λ 
and substituting into equation (ii) we have that, 

. Substituting into equation (iii) and solving for y gives this value of 

Thus there are six critical points: 

ating the objective at these points, we find 

Therefore, the objective function attains the global maximum (subject to the constraints) at 

global minimum at The point is a 

local maximum, as may be determined by consideration of the 

is a critical point of Λ, it is not a local extremum. We have 

. Given any neighborhood of 

, we can choose a small positive and a small δ of either sign to get 

Suppose we wish to find the discrete probability distribution

with maximal information entropy. This is the same as saying that we 

 probability distribution on the points 
other words, we wish to maximize the Shannon entropy equation: 

 λ = −y. In the first 

 = 0. In the second 

gives this value of y: 

 

 

(subject to the constraints) at 

is a local minimum 

, as may be determined by consideration of the Hessian 

, it is not a local extremum. We have 

. Given any neighborhood of 

of either sign to get Λ values 

discrete probability distribution on the points 

. This is the same as saying that we 

. In 



 

For this to be a probability distribution the sum of the pro

equal 1, so our constraint is 

maximum entropy, 

. We require that:

which gives a system of n equations, 

Carrying out the differentiation of these 

This shows that all are equal (because they depend on 
pj = 1, we find 

 

Hence, the uniform distribution is the distribution with the greatest entropy, among 
distributions on n points. 

 Example: numerical optimization
Lagrange multipliers cause the critical points to occur at saddle points.
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For this to be a probability distribution the sum of the probabilities pi at each point 

= 1: 

We use Lagrange multipliers to find the point of 

maximum entropy, , across all discrete probability distributions 

. We require that: 

 

equations, , such that: 

 

Carrying out the differentiation of these n equations, we get 

 

are equal (because they depend on λ only). By using the constraint 

Hence, the uniform distribution is the distribution with the greatest entropy, among 

Example: numerical optimization 
Lagrange multipliers cause the critical points to occur at saddle points. 

at each point xi must 

We use Lagrange multipliers to find the point of 

, across all discrete probability distributions on 

 only). By using the constraint ∑j 

Hence, the uniform distribution is the distribution with the greatest entropy, among 



 

 

The magnitude of the gradient can 
minima. 

With Lagrange multipliers, the critical points occur at 
maxima (or minima). Unfortu
climbing, gradient descent, some of t
to find local maxima (or minima) and not saddle points. For this reason, one must either 
modify the formulation to ensure that it's a minimization problem (for example, by 
extremizing the square of the 
optimization technique that finds 
extremum seeking line search) and not necessarily extrema.

As a simple example, consider the problem of finding the value of 
constrained such that x2 = 1. (This problem is somewhat pathological because there are only 
two values that satisfy this constraint, but it is useful for illustra
corresponding unconstrained function can be visualized in three dimensions.)

Using Lagrange multipliers, this problem can be converted into an unconstrained 
optimization problem: 

Λ(x,λ) = x2 + λ(x2 − 1)

The two critical points occur at saddle points where 

 

In order to solve this problem with a numerical optimization technique, we must first 
transform this problem such that the critical points occur at local minima. This is done by 
computing the magnitude of the gradient of the unconstrained optimization problem.

First, we compute the partial derivative of the unconstrained problem with respect to each 
variable: 
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The magnitude of the gradient can be used to force the critical points to occur at local 

With Lagrange multipliers, the critical points occur at saddle points, rather than at local 
maxima (or minima). Unfortunately, many numerical optimization techniques, such as 

, some of the quasi-Newton methods, among others, are designed 
to find local maxima (or minima) and not saddle points. For this reason, one must either 
modify the formulation to ensure that it's a minimization problem (for example, by 
extremizing the square of the gradient of the Lagrangian as below), or else use an 
optimization technique that finds stationary points (such as Newton's method

) and not necessarily extrema. 

As a simple example, consider the problem of finding the value of x that minimizes 
. (This problem is somewhat pathological because there are only 

two values that satisfy this constraint, but it is useful for illustration purposes because the 
corresponding unconstrained function can be visualized in three dimensions.)

Using Lagrange multipliers, this problem can be converted into an unconstrained 

− 1) 

The two critical points occur at saddle points where x = 1 and x = − 1. 

In order to solve this problem with a numerical optimization technique, we must first 
transform this problem such that the critical points occur at local minima. This is done by 

ting the magnitude of the gradient of the unconstrained optimization problem.

First, we compute the partial derivative of the unconstrained problem with respect to each 

be used to force the critical points to occur at local 

, rather than at local 
nately, many numerical optimization techniques, such as hill 

, among others, are designed 
to find local maxima (or minima) and not saddle points. For this reason, one must either 
modify the formulation to ensure that it's a minimization problem (for example, by 

of the Lagrangian as below), or else use an 
Newton's method without an 

that minimizes f(x) = x2, 
. (This problem is somewhat pathological because there are only 

tion purposes because the 
corresponding unconstrained function can be visualized in three dimensions.) 

Using Lagrange multipliers, this problem can be converted into an unconstrained 

In order to solve this problem with a numerical optimization technique, we must first 
transform this problem such that the critical points occur at local minima. This is done by 

ting the magnitude of the gradient of the unconstrained optimization problem. 

First, we compute the partial derivative of the unconstrained problem with respect to each 



 

 

 

If the target function is not easily differentiable, the differential wit
can be approximated as 

where is a small value. 

Next, we compute the magnitude of the gradient, which is the square root of the sum of the 
squares of the partial derivatives:

(Since magnitude is always non
equivalent to optimizing over the magnitude. Thus, the ``square root" may be omitted from 
these equations with no expected difference in the results of optimization.)

The critical points of h occur at 
however, the critical points in 
can be used to find them. 

CONCLUSION 

In this unit,  you have studied  how to 
multiplier. You studied single and multiple constraints. You have studied  the interpretation 
of lagranges multiplier.You couls solve problems with the use of langranges multiplier.

Summary 

In this unit, you have : 

i. identified problem which co
ii.  known single and multiple constraints
iii.  known the interpretation of lagrange multiplier
iv. solved problems with the use of langranges multiplier    

 Problems  
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If the target function is not easily differentiable, the differential with respect to each variable 

, 

, 

Next, we compute the magnitude of the gradient, which is the square root of the sum of the 
squares of the partial derivatives: 

(Since magnitude is always non-negative, optimizing over the squared
equivalent to optimizing over the magnitude. Thus, the ``square root" may be omitted from 
these equations with no expected difference in the results of optimization.) 

occur at x = 1 and x = − 1, just as in Λ. Unlike the critical points in 
however, the critical points in h occur at local minima, so numerical optimization techniques 

In this unit,  you have studied  how to identify problem which could be solve 
multiplier. You studied single and multiple constraints. You have studied  the interpretation 
of lagranges multiplier.You couls solve problems with the use of langranges multiplier.

identified problem which could be solved by langranges multiplier
known single and multiple constraints 
known the interpretation of lagrange multiplier 
solved problems with the use of langranges multiplier     

h respect to each variable 

Next, we compute the magnitude of the gradient, which is the square root of the sum of the 

zing over the squared-magnitude is 
equivalent to optimizing over the magnitude. Thus, the ``square root" may be omitted from 

 

. Unlike the critical points in Λ, 
occur at local minima, so numerical optimization techniques 

identify problem which could be solve by langranges 
multiplier. You studied single and multiple constraints. You have studied  the interpretation 
of lagranges multiplier.You couls solve problems with the use of langranges multiplier. 

uld be solved by langranges multiplier 



 

Problem 1. Let 

coefficients are decimals 0 .3 and 0 .4 and not 3 and 4.) Let and the ellipse 

our constraint. Find the maximum and the minimum values of 

following the steps below. 

(a) Plot the 3d graph of the fun

the curve on the graph 
in one coordinate system. Use a parametric representation of the ellipse that you should know 
from last semester. How many solutions you wi
to have. Explain your reasoning. 

  

(b) Define the Lagrangian function for the optimization problem and set up the corresponding 
system of equations.  

(c) Find solutions to the system using the solve command. Check that you didn't obtain any 
extraneous solutions. Is the number of solutions what you expected? 

(d) Using results of (c), find the minimum and the maximum values of 

the constraint .  

 

TUTOR-MARKED ASSIGNMENT

3. Find the maximum and minimum of

constraint 

4. Find the maximum and minimum values of 

that

5. Find the maximum and minimum values of

the disk 

6. Find the maximum and minimum 
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be our objective function. (Note that the 

coefficients are decimals 0 .3 and 0 .4 and not 3 and 4.) Let and the ellipse 

our constraint. Find the maximum and the minimum values of 

following the steps below.  

(a) Plot the 3d graph of the function , the ellipse in the xy

corresponding to the values of 
in one coordinate system. Use a parametric representation of the ellipse that you should know 
from last semester. How many solutions you will expect the Lagrangian system of equations 
to have. Explain your reasoning.  

(b) Define the Lagrangian function for the optimization problem and set up the corresponding 

(c) Find solutions to the system using the solve command. Check that you didn't obtain any 
extraneous solutions. Is the number of solutions what you expected?  

(d) Using results of (c), find the minimum and the maximum values of 

 

MARKED ASSIGNMENT  

Find the maximum and minimum of

 

Find the maximum and minimum values of 

subject to the constraint

 

Find the maximum and minimum values of

 

Find the maximum and minimum of 
subject to the constraints 

and . 

be our objective function. (Note that the 

coefficients are decimals 0 .3 and 0 .4 and not 3 and 4.) Let and the ellipse be 

subject to 

in the xy-plane, and 

along the ellipse 
in one coordinate system. Use a parametric representation of the ellipse that you should know 

ll expect the Lagrangian system of equations 

(b) Define the Lagrangian function for the optimization problem and set up the corresponding 

(c) Find solutions to the system using the solve command. Check that you didn't obtain any 

subject to 

subject to the 

  Assume 

on 

subject to the constraints 
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1.0 Introduction 

Optimization problems, which seek to minimize or maximize a real function, play an 
important role in the real world. It can be classified into unconstrained op timization 
problems and constrained optimization problems. Many practical uses in science, 
engineering, economics, or even in our everyday life can be formulated as constrained 



223 

 

optimization problems, such as the minimization of the energy of a particle in physics;[1] 
how to maximize the profit of the investments in economics.[2]In unconstrained problems, 
the stationary points theory gives the necessary condition to find the extreme points of the 
objective function f (x1; ¢ ¢ ¢ ; xn). The stationary points are the points where the gradient rf 
is zero, that is each of the partial derivatives is zero. All the variables in f (x1; ¢ ¢ ¢ ; xn)are 
independent, so they can be arbitrarily set to seek the extreme of f. However when it comes to 
the constrained optimization problems, the arbitration of the variables does not exist. The 
constrained optimization problems can be formulated into the standard form. 

2.0 Objectives 

At the end of this unit, you should be able to : 

i. Apply the lagranges multiplier on a pringle surface 
ii.  Apply lagranges multiplier on Economics 
iii.  Apply lagranges multiplier on control theory 
iv. Solve problems with the application of lagrange multiplier 

3.0 Main content 

There are many cool applications for the Lagrange multiplier method. For example, we 
will show you how to find the extrema on the world famous Pringle surface. The Pringle 
surface can be given by the equation  

 
Let us bound this surface by the unit circle, giving us a very happy pringle. :) In this 
case, the boundary would be  

 

The first step is to find the extrema on an unbounded f.  

. Economics 

Constrained optimization plays a central role in economics. For example, the choice problem 
for a consumer is represented as one of maximizing a utility function subject to a budget 
constraint. The Lagrange multiplier has an economic interpretation as the shadow price 
associated with the constraint, in this example the marginal utility of income. 

 Control theory 

In optimal control theory, the Lagrange multipliers are interpreted as costate variables, and 
Lagrange multipliers are reformulated as the minimization of the Hamiltonian, in Pontryagin's 
minimum principle. 
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Example 1  Find the dimensions of the box with largest volume if the total surface area is 64 
cm2. 

 We first need to identify the function that we’re going to optimize as well as the constraint.  
Let’s set the length of the box to be x, the width of the box to be y and the height of the box to 
be z.  Let’s also note that because we’re dealing with the dimensions of a box it is safe to 
assume that x, y, and z are all positive quantities. 

 We want to find the largest volume and so the function that we want to optimize is given by, 

                                                            

 Next we know that the surface area of the box must be a constant 
64.  So this is the constraint.  The surface area of a box is simply the sum of the areas of each 
of the sides so the constraint is given by, 

                      

 

 Note that we divided the constraint by 2 to simplify the equation a little.  Also, we get the 

function from this. 

                                                     

 Here are the four equations that we need to solve. 

 
(1) 
 
 
(2) 

   
 

 
 
(3)            
 
(4)There are many ways to solve this system.  We’ll solve it in the following way.  Let’s 
multiply equation (1) by x, equation (2) by y and equation (3) by z.  This gives, 
                                                           

  

 (5)   
 

(6)  
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(7)Now notice that we can set equations (5) and (6) equal.  Doing this 
gives,                   

 

 This gave two possibilities.  The first,  is not possible since if this 
was the case equation (1) would reduce to  

 

Since we are talking about the dimensions of a box neither of these are possible so we can 
discount This leaves the second possibility. 

                                                                  

 Since we know that  (again since we are talking about the dimensions of a box) 
we can cancel the z from both sides.  This gives,   (8) 

Next, let’s set equations (6) and (7) equal.  Doing this gives, 

                          

 

As already discussed we know that won’t work and so this leaves, 

                                                        

We can also say that since we are dealing with the dimensions of a box so we 
must have, 

                                                                                                                                  
(9) 

 Plugging equations (8) and (9) into equation (4) we get, 
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 However, we know that y must be positive since we are talking about the dimensions of a 
box.  Therefore the only solution that makes physical sense here is  

                          

 So, it looks like we’ve got a cube here. 

 We should be a little careful here.  Since we’ve only got one solution we might be tempted to 
assume that these are the dimensions that will give the largest volume.  The method of 
Lagrange Multipliers will give a set of points that will either maximize or minimize a given 
function subject to the constraint, provided there actually are minimums or maximums.   

 The function itself,  will clearly have neither minimums or 
maximums unless we put some restrictions on the variables.  The only real restriction that 
we’ve got is that all the variables must be positive.  This, of course, instantly means that the 
function does have a minimum, zero. 

 The function will not have a maximum if all the variables are allowed to increase without 
bound.  That however, can’t happen because of the constraint,  

                                    

 Here we’ve got the sum of three positive numbers (because x, y, and z are positive) and the 
sum must equal 32.  So, if one of the variables gets very large, say x, then because each of the 
products must be less than 32 both y and z must be very small to make sure the first two terms 
are less than 32.  So, there is no way for all the variables to increase without bound and so it 

should make some sense that the function, , will have a maximum. 

This isn’t a rigorous proof that the function will have a maximum, but it should help to 
visualize that in fact it should have a maximum and so we can say that we will get a 

maximum volume if the dimensions are : . 

 

Notice that we never actually found values for  in the above example.  This is fairly 

standard for these kinds of problems.  The value of  isn’t really important to determining 
if the point is a maximum or a minimum so often we will not bother with finding a value for 
it.  On occasion we will need its value to help solv 
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Example 2 

Find the maximum and minimum of subject to the constraint 

 

 Solution 

This one is going to be a little easier than the previous one since it only has two variables.  
Also, note that it’s clear from the constraint that region of possible solutions lies on a disk of 

radius which is a closed and bounded region and hence by the Extreme Value 
Theorem  we know that a minimum and maximum value must exist. 

 Here is the system that we need to solve. 

                                                             

 Notice that, as with the last example, we can’t have   since that would not satisfy the 
first two equations.  So, since we know that  we can solve the first two equations 
for x and y respectively.  This gives, 

                

 Plugging these into the constraint gives, 

                   

 We can solve this for  

                  

Now, that we know we can find the points that will be potential maximums and/or 
minimums. 

 If   we get, 
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and if  

                                           

 To determine if we have maximums or minimums we just need to plug these into the 
function.  Also recall from the discussion at the start of this solution that we know these will 
be the minimum and maximums because the Extreme Value Theorem tells us that minimums 
and maximums will exist for this problem. 

 Here are the minimum and maximum values of the function. 

                                     
 

Example 3 

• Set up equations for the volume and the cost of building the silo.  
• Using the Lagrange multiplier method, find the cheapest way to buld the silo.  
• Do these dimensions seem reasonable? Why?  

Next, we will look at the cost of building a silo of volume 1000 cubic meters. The curved 
surface on top of the silo costs $3 per square meter to build, while the walls cost $1 per 
square meter. 

Of course, if all situations were this simple, there would be no need for the Lagrange 
multiplier method, since there are other methods for solving 2 variable functions that are 
much nicer. However, with a greater number of variables, the Lagrange multiplier method is 
much more fun.  

For the next example, imagine you are working at the State Fair (since you're so desperate for 
money that you can't even buy a bagel anymore). You find yourself at the snowcone booth, 
and your boss, upon hearing that you are good at math, offers you a bonus if you can design 
the most efficient snowcone. You assume the snowcone will be modelled by a half-ellipsoid 
perched upon a cone.  

Your boss only wants to use 84 square centimeters of paper per cone, and wants to have it 
hold the maximum amount of snow. This can be represented in 3 variables: r (the radius of 
the cone), h (the height of the cone), and s (the height of the half-ellipsoid). In order to keep 
the snow from tumbling off the cone, s cannot be greater than 1.5*r. We have provided hints 
for the equations if you need them.  

CONCLUSION: 
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In this unit, you should be able to apply the lagranges multiplier on a pringle surface, apply 
lagranges multiplier on Economics, apply lagranges multiplier on control theory and solve 
problems with the application of lagrange multiplier 

 
SUMMARY 
The Lagrange multipliers method is a very sufficient tool for the nonlinear optimization 
problems,which is capable of dealing with both equality constrained and inequality 
constrained nonlinear optimization problems.Many computational programming methods, 
such as the barrier and interior point method, penalizing and augmented Lagrange 
method,The lagrange multipliers method and its extended methods are widely applied in 
science, engineering, economics and our everyday life. 
 
TUTOR-MARKED ASSIGNMENT 
1. Find the dimensions of the box with largest volume if the total surface area is 64 cm2. 

2.Consider two curves on the xy-plane: y = e
x
 and y = -( )2

2−x . Find two points (x,y), 

(X,Y) on each of the two curves, respectively, whose distance apart is as small as possible. 
Use the method of Lagrange multipliers. Make a graph that illustrates your solution  
  

3. Find the maximum and minimum values of subject to the constraint 

  Assume that  

 4.Find the maximum and minimum values of on the disk 

 

5.Find the maximum and minimum of subject to the constraints 

 and  
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1.0 INTRODUCTION 

    Jacobian  

The Jacobian of functions ƒi(x
of the matrix whose ith row lists all the first
…,xn). Also known as Jacobian determinant.

 (or functional determinant), a determinant 
., xn), 1 ≤ i ≤ n, are functions that have continuous partial derivatives in some region 
denoted by 

 

The Jacobian was introduced by K. Jacobi in 1833 and 1841. If, for example, 
system of functions 

(1) yl = f1(x1, x2) y2 = f2(x1, x2) 

defines a mapping of a region ∆
The role of the Jacobian for the mapping is largely analogous to that of the derivative for a 
function of a single variable. Thus, the absolute value of the Jac
equal to the local factor by which areas at the point are altered by the mapping; that is, it is 
equal to the limit of the ratio of the area of the image of the neighborhood of 
the neighborhood as the dimensions of
positive if mapping (1) does not change the orientation in the neighborhood of 
negative otherwise. 

 

 

 

OBJECTIVE 

At the end of this unit, you should be able to :

  recognise the Jacobian rule 

  how to use rhe Jacobian 

 

MAIN CONTENT 
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3.1 Recognise the Jacobian rule 

3.2 How to use the Jacobian 

MARKED ASSIGNMENT  
REFERENCES/FURTHER READINGS 

x1,x2, …,xn),i= 1, 2, …,n, of real variables x
th row lists all the first-order partial derivatives of the function ƒ

). Also known as Jacobian determinant. 

(or functional determinant), a determinant with elements aik = ∂yi/∂xk

, are functions that have continuous partial derivatives in some region 

The Jacobian was introduced by K. Jacobi in 1833 and 1841. If, for example, 

 

defines a mapping of a region ∆, which lies in the plane x1x2, onto a region of the plane 
The role of the Jacobian for the mapping is largely analogous to that of the derivative for a 
function of a single variable. Thus, the absolute value of the Jacobian at some point 
equal to the local factor by which areas at the point are altered by the mapping; that is, it is 
equal to the limit of the ratio of the area of the image of the neighborhood of 
the neighborhood as the dimensions of the neighborhood approach zero. The Jacobian at 
positive if mapping (1) does not change the orientation in the neighborhood of 

At the end of this unit, you should be able to : 

i is the determinant 
order partial derivatives of the function ƒi(x1,x2, 

k where yi = fi(x1, . . 
, are functions that have continuous partial derivatives in some region ∆. It is 

The Jacobian was introduced by K. Jacobi in 1833 and 1841. If, for example, n = 2, then the 

, onto a region of the plane y1y2. 
The role of the Jacobian for the mapping is largely analogous to that of the derivative for a 

obian at some point M is 
equal to the local factor by which areas at the point are altered by the mapping; that is, it is 
equal to the limit of the ratio of the area of the image of the neighborhood of M to the area of 

the neighborhood approach zero. The Jacobian at M is 
positive if mapping (1) does not change the orientation in the neighborhood of M, and 



 

If the Jacobian does not vanish in the region 
region ∆1 (the image of ∆), then

(the formula for change of variables in a double integral). An analogous formula obtain
multiple integrals. If the Jacobian of mapping (1) does not vanish in region 
exists the inverse mapping 

x1 = ψ(y1, y2) x2 = ψ2(y1, y2) 

and 

 

(an analogue of the formula for differentiation of an inverse function). This assertion finds 
numerous applications in the theory of implicit functions.

In order for the explicit expression, in the neighborhood of the point 

equations 

(2) Fk (x1. . . .,xn, y1. . .,ym) = 0 

to be possible, it is sufficient that the coordinates of 
Fk have continuous partial 

 

be nonzero at M. The Jacobian is been classified into two :

The Jacobian matrix and the Jacobian determinant.

Examples  

1.Let F: RR
22 →  be the mapping defined by 

F(x,y) = 















 +
,(

,(
22

xg

xf

e
yx

xy

Find the Jacobian matrix (J f
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If the Jacobian does not vanish in the region ∆ and if φ(y1, y2) is a function defined in the 
∆), then 

 

(the formula for change of variables in a double integral). An analogous formula obtain
multiple integrals. If the Jacobian of mapping (1) does not vanish in region 

(an analogue of the formula for differentiation of an inverse function). This assertion finds 
numerous applications in the theory of implicit functions. 

In order for the explicit expression, in the neighborhood of the point 

, of the functions y1, . . . . ym that are implicitly defined by the 

) = 0 I ≤ k ≤ m 

to be possible, it is sufficient that the coordinates of M satisfy equations (2), that the functions 
derivatives, and that the Jacobian

. The Jacobian is been classified into two : 

Jacobian matrix and the Jacobian determinant. 

be the mapping defined by  






)

)

y

y
 

)( p  for p = (1,1) 

) is a function defined in the 

(the formula for change of variables in a double integral). An analogous formula obtains for 
multiple integrals. If the Jacobian of mapping (1) does not vanish in region ∆, then there 

(an analogue of the formula for differentiation of an inverse function). This assertion finds 

In order for the explicit expression, in the neighborhood of the point 

that are implicitly defined by the 

satisfy equations (2), that the functions 
derivatives, and that the Jacobian 
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The Jacobian matrix at an arbitrary point (x,y) is 



















dy

dg

dx

dy
dy

df

dx

df

  =  










xeye xyxy

yx 22
 

Hence when x=1 ,y=1 ,we find J f
( 1, 1) = 









ee

22
 

2.Let F : RR
32 →  be the mapping defined by 

    F(x,y) = 
















y

x

xy

x
2

sin  

Find J F
 (P) at the point P = (

2
,
ΠΠ ) . 

The Jacobian matrix at an arbitrary point(x,y) is  

















=

x
J

x

xy

x

y

yx
F
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cos),(  

Hence, )
2
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ΠΠJ F

 =
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CONCLUSION 

In this unit, you have been able to recognise the Jacobian rule and how to use the formular. 

 



 

SUMMARY 

In this unit, you have studied the basic concept of Jacobian with the identification of the 
formular below as : 

 

be nonzero at M. 

Tutor – Marked  Assignment 

1.Define the Jacobian matrix and the Jacobian determinant.

2.Compute the Jacobian matrix  of the following cases below :

a. 

b. 

c. 

REFERENCE 

D.K. Arrowsmith and C.M. Place, 
London, 1992. ISBN 0-412-39080

Taken from http://www.sjcrothers.plasmaresources.com/schwarzschild.pdf
Gravitational Field of a Mass Point according to Einstein’s Theory by K. Schwarzschild 
arXiv:physics/9905030 v1 (text of the original paper, in Wikisource
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In this unit, you have studied the basic concept of Jacobian with the identification of the 

 

the Jacobian matrix and the Jacobian determinant. 

2.Compute the Jacobian matrix  of the following cases below : 

 F(x,y) = (x+y, yx
2

) 

 F(x,y) = (sinx,cosxy) 

 F(x,y,z) = (xyz,x
2
 z) 

D.K. Arrowsmith and C.M. Place, Dynamical Systems, Section 3.3, Chapman & Hall, 
39080-9.  

rothers.plasmaresources.com/schwarzschild.pdf
Gravitational Field of a Mass Point according to Einstein’s Theory by K. Schwarzschild 

text of the original paper, in Wikisource). 

In this unit, you have studied the basic concept of Jacobian with the identification of the 

, Section 3.3, Chapman & Hall, 

rothers.plasmaresources.com/schwarzschild.pdf - On the 
Gravitational Field of a Mass Point according to Einstein’s Theory by K. Schwarzschild - 
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3.0  MAIN CONTENT

    3.1 apply the Jacobean concept
    3.2 know the Jacobean matrix
    3.3 apply the inverse transformation
    3.4 solve problems on Jacobean determinant

        4.0 CONCLUSION 
5.0 SUMMARY 
6.0 TUTOR-MARKED ASSIGNMENT
7.0 REFERENCES/FURTHER READINGS

 

INTRODUCTION 

The Jacobian of functions ƒ
determinant of the matrix whose 
function ƒi(x1, x2, …, xn). Also known as Jacobian determinant. 

In vector calculus, the Jacobian matrix
a vector- or scalar-valued function
function from Euclidean n-space
valued component functions, 
functions (if they exist) can be organized in an 
follows: 

This matrix is also denoted by 

usual orthogonal Cartesian coordinates, the 

the gradient of the i th component function 
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UNIT 2 : JACOBIAN DETERMINANT  

INTRODUCTION 
 

MAIN CONTENT 

apply the Jacobean concept 
3.2 know the Jacobean matrix 
3.3 apply the inverse transformation 
3.4 solve problems on Jacobean determinant 

MARKED ASSIGNMENT 
7.0 REFERENCES/FURTHER READINGS 

ƒi(x1, x2, …, xn), i = 1, 2, …, n, of real variables 
determinant of the matrix whose ith row lists all the first-order partial derivatives of the 

). Also known as Jacobian determinant.  

Jacobian matrix : is the matrix of all first-order partial derivatives
function with respect to another vector. Suppose 
space to Euclidean m-space. Such a function is given by 

valued component functions, y1(x1,...,xn), ..., ym(x1,...,xn). The partial derivatives of all these 
functions (if they exist) can be organized in an m-by-n matrix, the Jacobian matrix 

 

This matrix is also denoted by and . If (

usual orthogonal Cartesian coordinates, the i th row (i = 1, ..., n) of this matrix corresponds to 

onent function yi: . Note that some books define the 

, of real variables xi is the 
order partial derivatives of the 

partial derivatives of 
with respect to another vector. Suppose F : Rn → Rm is a 

space. Such a function is given by m real-
). The partial derivatives of all these 
matrix, the Jacobian matrix J of F, as 

. If (x1,...,xn) are the  

) of this matrix corresponds to 

. Note that some books define the  



 

Jacobian as the transpose of the matrix given above.

The Jacobian determinant 
Jacobian matrix (if m = n). 

These concepts are named after the 

OBJECTIVE 

After reading through this unit, you should be able to :

i. apply the jacobian concept
ii.  know the Jacobian matrix
iii.  apply the inverse transformation
iv. solve problems on Jacobian determinant

 

 

MAIN CONTENT 

Jacobian matrix 

The Jacobian of a function describes the 
given point. In this way, the Jacobian generalizes the 
multiple variables which itself generalizes the derivative of a scalar
scalar. Likewise, the Jacobian can also be thought of as describing the amount of "stretching" 
that a transformation imposes. For example, if (
the Jacobian of f, J(x1,y1) describes how much 
stretched in the x and y directions.

If a function is differentiable at a point, its derivative is given in coordinates by the Jacobian, 
but a function doesn't need to be differentiable for the Jacobian to be def
partial derivatives are required to exist.

The importance of the Jacobian lies in the fact that it represents the best 
to a differentiable function near a given point. In this sense, the Jacobian is the derivative of a 
multivariate function. 

If p is a point in Rn and F is 
case, the linear map described by 
in the sense that 

for x close to p and where o is the 
between x and p. 
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Jacobian as the transpose of the matrix given above. 

 (often simply called the Jacobian) is the 

These concepts are named after the mathematician Carl Gustav Jacob Jacobi

After reading through this unit, you should be able to : 

apply the jacobian concept 
know the Jacobian matrix 
apply the inverse transformation 
solve problems on Jacobian determinant 

The Jacobian of a function describes the orientation of a tangent plane t
given point. In this way, the Jacobian generalizes the gradient of a scalar valued function of 
multiple variables which itself generalizes the derivative of a scalar-valu
scalar. Likewise, the Jacobian can also be thought of as describing the amount of "stretching" 
that a transformation imposes. For example, if (x2,y2) = f(x1,y1) is used to transform an image, 

) describes how much the image in the neighborhood of (
directions. 

If a function is differentiable at a point, its derivative is given in coordinates by the Jacobian, 
but a function doesn't need to be differentiable for the Jacobian to be defined, since only the 

are required to exist. 

The importance of the Jacobian lies in the fact that it represents the best linear
to a differentiable function near a given point. In this sense, the Jacobian is the derivative of a 

is differentiable at p, then its derivative is given by 
described by JF(p) is the best linear approximation of 

 

is the little o-notation (for ) and 

) is the determinant of the 

Carl Gustav Jacob Jacobi. 

to the function at a 
of a scalar valued function of 

valued function of a 
scalar. Likewise, the Jacobian can also be thought of as describing the amount of "stretching" 

) is used to transform an image, 
the image in the neighborhood of (x1,y1) is 

If a function is differentiable at a point, its derivative is given in coordinates by the Jacobian, 
ined, since only the 

linear approximation 
to a differentiable function near a given point. In this sense, the Jacobian is the derivative of a 

, then its derivative is given by JF(p). In this 
of F near the point p, 

is the distance 



 

In a sense, both the gradient
derivative of a scalar function
function of several variables. In general, the 
the Jacobian: it is the Jacobian

The Jacobian of the gradient 
"second derivative" of the scalar function of several variables in question.

Inverse     

According to the inverse function theorem
invertible function is the Jacobian matrix of the 
F : Rn → Rn and a point p in R

It follows that the (scalar) inverse of the Jacobian determinant of a 
Jacobian determinant of the inverse transformation.

Examples 

Example 1. The transformation from 
(x1, x2, x3) , is given by the function 

 

The Jacobian matrix for this coordinate change is

 
The determinant is r2 sin θ. As an example, since 
that the differential volume element
varies with coordinates. To avoid any variation the new coordinates can be defined as 

element becomes 

Example 2. The Jacobian matrix of the function 
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gradient and Jacobian are "first derivatives"  — the former the first 
scalar function of several variables, the latter the first derivative of a 

of several variables. In general, the gradient can be regarded as a special version of 
the Jacobian: it is the Jacobian of a scalar function of several variables. 

has a special name: the Hessian matrix, which in a sense is the 
" of the scalar function of several variables in question. 

inverse function theorem, the matrix inverse of the Jacobian matrix of an 
is the Jacobian matrix of the inverse function. That is, for some function 

Rn, 

 

It follows that the (scalar) inverse of the Jacobian determinant of a transformation is the 
Jacobian determinant of the inverse transformation. 

The transformation from spherical coordinates (r, θ, φ) to Cartesian coordinates
) , is given by the function F : R+ × [0,π] × [0,2π) → R3 with components:

 
 

coordinate change is 

. As an example, since dV = dx1 dx2 dx3 this determinant implies 
differential volume element dV = r2 sin θ dr dθ dϕ. Nevertheless this determinant 

rdinates. To avoid any variation the new coordinates can be defined as 

[2] Now the determinant equals to 1 and volume 

. 

The Jacobian matrix of the function F : R3 → R4 with components

the former the first 
everal variables, the latter the first derivative of a vector 

can be regarded as a special version of 

which in a sense is the 
 

of the Jacobian matrix of an 
function. That is, for some function 

transformation is the 

Cartesian coordinates 
with components: 

 

this determinant implies 
. Nevertheless this determinant 

rdinates. To avoid any variation the new coordinates can be defined as 

Now the determinant equals to 1 and volume 

with components 



 

 

 
 

This example shows that the Jacobian need not be a square matrix.

Example 3. 

 
 

The Jacobian determinant is equal to 
coordinate system is transformed into an integral in the 

Example 4. The Jacobian determinant of the function 
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is 

This example shows that the Jacobian need not be a square matrix. 

The Jacobian determinant is equal to r. This shows how an integral in the 
is transformed into an integral in the polar coordinate system

. 

The Jacobian determinant of the function F : R3 → R3 with components

 

is 

 

 

. This shows how an integral in the Cartesian 
polar coordinate system: 

with components 

 



 

From this we see that F reverses orientation near those points where 
sign; the function is locally invertible everywhere except near points where 
Intuitively, if you start with a tiny object around the point (1,1,1) and apply 
you will get an object set with approximately 40 times the volume of the original one.

CONCLUSION 

In this unit, you have studied the application of the Jacobian concept. You have known the 
Jacobian matrix and the application of  the inverse transformation of Jacobian 
You have solved problems on Jacobian determinant.

SUMMARY 

In this unit ; 

i  you have studied application of the Jacobian concept

ii you have known the Jacobian matrix

iii you have known the inverse transformation of Jacobian determinant

iv you have solve problems on Jacobian determinant such as ;

. The Jacobian matrix of the function 

 
 

 
 

This example shows that the Jacobian need not be a square matrix.

Tutor-Marked Assignment 

1.In each of the following cases, compute the Jacobian matrix of F, and evaluate at the 
following points; 
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reverses orientation near those points where x1 and 
invertible everywhere except near points where 

Intuitively, if you start with a tiny object around the point (1,1,1) and apply 
set with approximately 40 times the volume of the original one.

In this unit, you have studied the application of the Jacobian concept. You have known the 
Jacobian matrix and the application of  the inverse transformation of Jacobian 
You have solved problems on Jacobian determinant. 

i  you have studied application of the Jacobian concept 

ii you have known the Jacobian matrix 

iii you have known the inverse transformation of Jacobian determinant 

you have solve problems on Jacobian determinant such as ; 

The Jacobian matrix of the function F : R3 → R4 with components 

is 

This example shows that the Jacobian need not be a square matrix. 

cases, compute the Jacobian matrix of F, and evaluate at the 

and x2 have the same 
invertible everywhere except near points where x1 = 0 or x2 = 0. 

Intuitively, if you start with a tiny object around the point (1,1,1) and apply F to that object, 
set with approximately 40 times the volume of the original one. 

In this unit, you have studied the application of the Jacobian concept. You have known the 
Jacobian matrix and the application of  the inverse transformation of Jacobian determinants. 

 

cases, compute the Jacobian matrix of F, and evaluate at the 
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F(x,y) = (sinx,cosxy) at points (1,2) 

F(x,y,z) = (sinxyz,xz) at points (2,-1,-1) 

F(x,y,z) =(xz,xy,yz) at points (1,1,-1) 

2. Transform the following from spherical coordinates (r, ),φθ  to Cartesian coordinate (

),,
321 xxx  by the function F: RR

3
)2,0(),0( →∏×∏×+  with components : 

θtan
1

rr = cosθ  

θθ tansin
2

rr =  

θsin 1rr =  

3.The Jacobian matrix of the function F: RR
43 →  with components 

xy 21
=  

xy 12
4=  

xxy 4 3

2

23
5 −=  

xxy 314
sin=  

4.The Jacobian matrix of the function F: RR
33 →  with components 

xxxy 32

2

11
sin34 −=  

xy 22
3=  

xxy 323
3=  

The Jacobian matrix of the function F:  RR
33 →  with components 

x=rtanφ  

y=rcosφ  
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INTRODUCTION 

If m = n, then F is a function from m-space to n-space and the Jacobian matrix is a square 
matrix. We can then form its determinant, known as the Jacobian determinant. The 
Jacobian determinant is sometimes simply called "the Jacobian." 

OBJECTIVE 

MAIN CONTENT 

Dynamical systems 

Consider a dynamical system of the form x' = F(x), where x' is the (component-wise) time 
derivative of x, and F : Rn → Rn is continuous and differentiable. If F(x0) = 0, then x0 is a 
stationary point (also called a fixed point). The behavior of the system near a stationary point 
is related to the eigenvalues of JF(x0), the Jacobian of F at the stationary point.Specifically, if 
the eigenvalues all have a negative real part, then the system is stable in the operating point, 
if any eigenvalue has a positive real part, then the point is unstable.             

. 

The Jacobian determinant at a given point gives important information about the behavior of 
F near that point. For instance, the continuously differentiable function F is invertible near a 
point p ∈ Rn if the Jacobian determinant at p is non-zero. This is the inverse function 
theorem. Furthermore 

if the Jacobian determinant at p is positive, then F preserves orientation near p; if it is 
negative, F reverses orientation. The absolute value of the Jacobian determinant at p gives us 
the factor by which the function F expands or shrinks volumes near p; this is why it occurs in 
the general substitution rule. 

 Uses 

The Jacobian determinant is used when making a change of variables when evaluating a 
multiple integral of a function over a region within its domain. To accommodate for the 
change of coordinates the magnitude of the Jacobian determinant arises as a multiplicative 
factor within the integral. Normally it is required that the change of coordinates be done in a 
manner which maintains an injectivity between the coordinates that determine the domain. 
The Jacobian determinant, as a result, is usually well defined. 



 

Newton's method 

A system of coupled nonlinear equations can be solved iteratively by 
method uses the Jacobian matrix of the system of equations

CONCLUSION 

In this unit, you have known the application of 
application of Jacobian matrix. You have used Jacobian in in the application of inverse 
transformation and have also solved problems on Jacobian determinant.

SUMMARY 

In this unit, you have studied the following :

Application of the Jacobian concept

Application of Jacobian on the Jacobian matrix

Application of the Jacobian on the inverse concept

Application of the Jacobian to solve problems on Jacobian determinant

TUTOR – MARK ASSIGNMENTS 

1.Find the Jacobian determinan
Jacobian determinants is equal to zero(0).

a.F(x,y,z) = (xy,y,xz) 

b.F(x,y) = (e
xy

,x) 

c.F(x,y) = (xy, )
2

x  

2.The transformation from spherical coordinates
is given by the function F : R+

 

 
3.The Jacobian determinant of the function 
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A system of coupled nonlinear equations can be solved iteratively by Newton's method
method uses the Jacobian matrix of the system of equations 

In this unit, you have known the application of Jacobian concept. You have studied the 
application of Jacobian matrix. You have used Jacobian in in the application of inverse 
transformation and have also solved problems on Jacobian determinant. 

In this unit, you have studied the following : 

ication of the Jacobian concept 

Application of Jacobian on the Jacobian matrix 

Application of the Jacobian on the inverse concept 

Application of the Jacobian to solve problems on Jacobian determinant 

MARK ASSIGNMENTS  

1.Find the Jacobian determinant of the map below, and determine all the points where the 
Jacobian determinants is equal to zero(0). 

spherical coordinates (r, θ, φ) to Cartesian coordinates
+ × [0,π] × [0,2π) → R3 with components: 

 

 

3.The Jacobian determinant of the function F : R3 → R4 with components 

Newton's method. This 

Jacobian concept. You have studied the 
application of Jacobian matrix. You have used Jacobian in in the application of inverse 

t of the map below, and determine all the points where the 

Cartesian coordinates (x1, x2, x3) , 

 



 

 

 

 

4.The Jacobian determinant of the function 

 
 

5.The Jacobian determinant of the function 
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4.The Jacobian determinant of the function F : R3 → R4 with components 

5.The Jacobian determinant of the function F : R3 → R3 with components 
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