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INTRODUCTION 
 

Complex analysis is the study of complex number together with their 

derivatives, manipulation, and other properties. Complex analysis is an 

extremely powerful tool with large number of practical application to the 

solution of physical problems– contour integration which provides a 

means of computing difficult integrals by investigating the singularities 

of the functions in the region of complex plain near and between the 

limits of integration. Complex analysis is also very useful in Taylor 

series expansion, Laurent series, Bilinear transformations, 

hydrodynamics, and thermodynamics etc.  

 

ABOUT THE COURSE 
 

This course comprises a total of six units distributed across three 

modules as follows: 

 

Module 1 comprises two units 

Module 2 comprises two units  

Module 3 comprises one unit 

Module 4 comprises one unit. 

 

In Module one, we started with the preliminary concepts of complex 

numbers in unit one and in unit two we focused on complex functions. 

Module two has two units; while the first unit discussed Analytic 

functions in complex form, the second unit deals with the ideal of limits 

and continuity as it relates to complex analysis. Module three has only 

one unit and focused on Taylor and Laurent Series while the last, 

Module four has only one unit which presents the topic Bilinear 

Transformation. 

 

COURSE AIMS AND OBJECTIVES 
 

The objectives of this course is to teach you Complex Analysis while 

also acquainting you with the graphical and mathematical significance of 

Complex numbers and functions and their applications to “Taylor and 

Laurent Series and Bilinear Transformation” .All of the above are 

expected to motivate you towards further enquiry into this very 

interesting and highly specialised mathematical habitat. 

 

On your part, we expect you in turn to conscientiously and diligently 

work through this course upon completion of which you should be able 

to appreciate the basic concepts underlying complex numbers as well as: 

 

- investigate and explain geometry on complex plane 
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- treat  some polar  co-ordinates 

- look at Cauchy-Riemann Equation 

- work through a series of examples of transformations and 

conversions, and their solutions 

- explain derivatives of a function.  

- investigate and study functions of a complex variable 

-  investigate and study analytic functions  

-  explain Cauchy’s integral formular 

-  solve solutions on Liouville’s Theorem 

- explain how  |f(z)| must attain its maximum value somewhere in 

this domain D 

- define the limit and continuous functions 

- explain the concept of  series 

- explain power series 

- explain bilinear transformation 

- design of an IIR low-pass filter by the bilinear transformation 

method 

- explain higher order IIR digital filters 

- discuss IIR discrete time high-pass band-pass and band-stop filter 

design 

- compare IIR and FIR digital filters. 

 

WORKING THROUGH THE COURSE 
 

This course requires you to spend quality time to read. The course 

content is presented in clear mathematical language that you can easily 

relate to and the presentation style adequate and easy to assimilate. 

 

You should take full advantage of the tutorial sessions because this is a 

veritable forum for you to “rub minds” with your peers – which provides 

you valuable feedback as you have the opportunity of comparing 

knowledge with your course mates. 

 

COURSE MATERIAL 
 

You will be provided with your course materials prior to commencement 

of this course. It will comprise your Course Guide as well as your study 

units.  

 

You will receive a list of recommended textbooks which shall be an 

invaluable asset for your course material. These textbooks are however 

not compulsory. 
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STUDY UNITS 
 

You will find listed below the study units which are contained in this 

course and you will observe that there are four modules in the course. 

The first and second modules comprise two units each, while in the third 

and the last modules have one unit each. 

 

Module 1  

 

Unit 1  Complex Numbers 

Unit 2  Complex Functions 

 

Module 2  

 

Unit 1  Analytic Functions 

Unit 2  Limit and Continuity 

 

Module 3  

 

Unit 1  Taylor and Laurent Series 

 

Module 4  

 

Unit 1  Bilinear Transformation 

 

TEXTBOOKS 
 

There are more recent editions of some of the recommended textbooks 

and you are advised to consult the newer editions for further reading. 

 

Schum Series. Advance Calculus. 

 

Stroud, K. A. Engineering Mathematics. 

 

George, Arfken & Hans Weber. (2000). Mathematical Methods for 

Physicists. Harcourt: Academic Press.  

 

Andrei, D. Polyanin & Alexander V. Manzhirov (1998).  Handbook of 

Integral Equations.CRC Press: Boca Raton, 1998. 

 

Whittaker, E.T. & G. N. Watson. A Course of Modern Analysis. 

Cambridge: Mathematical Library. 
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ASSESSMENT 
 

The assessment of your performance is partly through the Tutor-Marked 

Assignment which you can refer to as TMA, and partly through the End-

of-Course Examination. 

 

TUTOR-MARKED ASSIGNMENT 
 

This is basically your continuous assessment which accounts for 30% of 

your total score. During this course, you will be given 4 Tutor-Marked 

Assignments and you must answer three of them to qualify to sit for the 

end-of-year examination. The Tutor-Marked Assignments are based on 

the electronic platform. 

 

END-OF-COURSE EXAMINATION 
 

You must sit for the End-of-Course Examination which accounts for 

70% of your score upon completion of this course. You will be notified 

in advance of the date, time and the venue for the examinations.  

 

SUMMARY 
 

Each of the four modules of this course has been designed to stimulate 

your interest in Complex number through associative conceptual 

building blocks in the study and application of Complex analysis to 

practical problem solving. 

 

By the time you complete this course, you should have acquired the 

skills and confidence to solve many Integral Equations more objectively 

than you might have thought possible at the commencement of this 

course. This however; is subject to this advise- make sure that you have 

enough referential and study materials available and at your disposal at 

all times, and-devote sufficient quality time to your study. 

 

I wish you the best in your academic pursuits. 
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Unit   1          Complex Numbers 

Unit   2          Complex Functions 

 

 

UNIT 1 COMPLEX NUMBERS 
 

CONTENTS  

 

1.0       Introduction 

2.0       Objectives 

3.0     Main Content 

3.1 Geometry 

3.2 Polar  Co-ordinates      

4.0      Conclusion 

5.0      Summary 

6.0      Tutor-Marked Assignment 

7.0      References/Further Reading 

 

1.0       INTRODUCTION 
 

It has been observed that when the only number you know is the 

ordinary everyday integers, you have no trouble solving problems in 

which you are, for instance, asked to find a variable x such that 3x = 6. 

You will be quick to answer ‘2’. Then, find a number x such that 3x = 

8.You become stumped—there was no such ‘number’! You perhaps 

explained that 3(2)= 6 and 3(3)= 9, and since 8 is between 6 and 9, you 

would somehow need a number between 2 and 3, but there isn’t any 

such number. Thus one is introduced to ‘fractions’. 

 

These fractions, or rational or quotient numbers, are defined to be 

ordered pairs of integers, for instance, (8, 3)is a rational number. Two 

rational numbers (n,m) and (p,q) are defined to be equal whenever 

nq=pm. (More precisely, in other words, a rational number is an 

equivalence class of ordered pairs, etc.) Recall that the arithmetic of 

these pairs was then introduced: the sum of (n,m) and (p,q) was defined 

by 

 

(n,m)+(p,q)=(nq+pm,mq), 

and the product by 

(n,m)(p,q)=(np,mq). 

 

Subtraction and division are defined, as usual, simply as the inverses of 

the two operations. 
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You probably felt at first like you had thrown away the familiar integers 

and were starting over. But no, you noticed that (n,1)+(p,1)=(n +p,1)and 

also (n,1)(p,1)=(np,1). Thus, the set of all rational numbers whose 

second coordinate is one behaves just like the integers. If we simply 

abbreviate the rational number (n,1) by n, there is absolutely no danger 

of confusion: 2 + 3 = 5 stands for (2,1)+(3,1)=(5,1). The equation 3x = 8 

that started this all may then be interpreted as shorthand for the equation 

(3,1)(u, v)=(8,1),  and one easily verifies that x =(u, v)=(8,3) is a 

solution. Now, if someone runs at you in the night and hands you a note 

with 5 written on it, you do not know whether this is simply the integer 5 

or whether it is shorthand for the rational number(5,1).  

 

What we see is that it really does not matter. What we have really done 

is expanding the collection of integers to the collection of rational 

numbers. In other words, we can think of the set of all rational numbers 

as including the integers–they are simply the rationals with second 

coordinate 1. One last observation about rational numbers: it is, as 

everyone must know, traditional to write the ordered pair (n,m)as nm. 

Thus n stands simply for the rational number n1, etc. 

 

Now why have we spent this time on something everyone learned in the 

grade? Because this is almost a paradigm for what we do in constructing 

or defining the so-called complex numbers. Euclid showed us there is no 

rational solution to the equation x
2
= 2. We are thus led to defining even 

more new numbers, the so-called real numbers, which, of course, include 

the rationals. This is hard, and you likely did not see it done in 

elementary school, but we shall assume you know all about it and move 

along to the equation   x
2
=-1.  

 

2.0          OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 investigate complex numbers 

 explain geometry on complex plane 

  explain some polar  co-ordinates. 
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3.0            MAIN CONTENT 
 

3.1          Complex Numbers 
 

We define complex numbers as simply ordered pairs (x, y) of real 

numbers, just as the rationals are ordered pairs of integers. Two complex 

numbers are equal only when they are actually the same–that is (x, y)=(u, 

v) precisely when x =u and y =v. We define the sum and product of two 

complex numbers: 

 

(x, y)+(u, v)=(x +u, y +v) 

 

and 

(x, y)(u, v)=(xu-yv, xv +yu) 

 

As always, subtraction and division are the inverses of these operations. 

Now let us consider the arithmetic of the complex numbers with second 

coordinate 0: 

 

(x,0)+(u,0)=(x +u,0), 

 

and 

(x,0)(u,0)=(xu,0). 

 

 

Note that what happens is completely analogous to what happens with 

rationals with second coordinate 1. We simply use x as an abbreviation 

for (x,0) and there is no danger of  confusion: x +u is short-hand for 

(x,0)+(u,0)=(x +u,0)and xuis short-hand for(x,0)(u,0). We see that our 

new complex numbers include a copy of the real numbers, just as the 

rational numbers include a copy of the integers. 

 

Notice that x (u, v)=(u, v)x =(x,0)(u, v)=(xu, xv). Now then, any complex 

number z =(x, y) may be written 

 

z = (x, y)= ( x, 0) + (0,y) 

 

z = x +y ( x, 0)  

 

When, we let α= (0,1), then we have 

 

z =(x, y) = x +αy 

 

Now, suppose z = (x, y) = x +αy and w= (u, v) = u +αv. Then we have 
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z w=( x +αy) (u +αv) 

 

           =xu+α(xv+yu)+ α
2
yv 

 

We need only see what α
2
 is: α

2
=(0, 1)(0, 1)=(-1,0), and we have agreed 

that we can safely abbreviate (-1, 0)  as -1. Thus,  α
2
= -1 and so  

 

zw=( xu-yv)+α(xv+yu)+ α
2
yv 

 

and we have reduced the fairly complicated definition of complex 

number arithmetic simply to ordinary real arithmetic together with the 

fact that  α
2
= -1. 

3. 2 Geometry 
 

We now have this collection of all ordered pairs of real numbers, and so 

there is an uncontrollable urge to plot them on the usual coordinate axes. 

We see at once then there is a one-to-one correspondence between the 

complex numbers and the points in the plane. In the usual way, we can 

think of the sum of two complex numbers, the point in the plane 

corresponding to z + w is the diagonal of the parallelogram having z and 

w as sides: 

z+w 

 

 

 

 

 

 

The geometric interpretation of the product of two complex numbers. 

The modulus of a complex number z = x + iy is defined to be the non-

negative real number  

 

√x
2
+y

2
, which is, of course, the length of the vector interpretation of z. 

This modulus is traditionally denoted |z|, and is sometimes called the 

length of z. Note that |(x,0)| = √x
2
 = |x|, and so |•|is an excellent choice of 

notation for the modulus. 

 

The conjugate z of a complex number z = x + iy is defined by z = x - iy. 

Thus |z|
2
 = z z. Geometrically, the conjugate of z is simply the reflection 

of z in the horizontal axis: 

    z 

 

 

    z 
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Observe that if z = x + iy and w = u + iv, then 

 

(z+w) = (x+u)- i(y+v) 

 

= (x - iy) + (u - iv) 

 

= z+w. 

 

In other words, the conjugate of the sum is the sum of the conjugates. 

It is also true that  

 

zw = zw. If z = x + iy, then x is called the real part of z, and y is called 

the imaginary part of z. These are usually denoted Rez and Imz, 

respectively. Observe then that z + z = 2Rez and z- z = 21mz. 

 

Now, for any two complex numbers z and w consider 

|z + w|
2
= (z+w) (z+w) = (z+w) (z +w) 

= z z + (w z + wz) + ww 

= |z|
2
+ 2Re (wz) + |w|

2
 

≤ |z|
2
+ 2|z||w|+ |w|

2
 = (|z| + |w|)

2
 

In other words, 

|z + 

w| ≤ 

|z| + 

|w| 

the so-called triangle inequality.  

 

3.3 Polar Coordinates 
 

 Now let us look at polar coordinates (r, 8) of complex numbers.  

Then we may write z = r (  + i ). In complex analysis, we do 

not allow r to be negative; thus r is simply the modulus of z. The 

number 9 is called an argument of z, and there are, of course, many 

different possibilities for 9. Thus a complex number has an infinite 

number of arguments, any two of which differ by an integral multiple 

o f  2 . We usually write = argz. The principal argument of z is the 

unique argument that lies on the interval (- , ). 

 

SELF-ASSESSMENT EXERCISE  

 

If 1- i, we have 
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Each of the numbers ,- , and is an 

argument 

of 1 - i, but the principal argument is - . 

 

Suppose  

z = r (cos  + i sin ) and w = s(cosζ 

+ i sinζ).Th 

 

zw = r(cos  + i sin )s(cos ζ +isinζ) 

= rs[(cos cosζ - sin sin~) + i(sin cosζ + sin ζ 

cos )]  

= rs(cos(  + ζ) + i sin(  + ζ) )  

 

We have the nice result that the product of two complex numbers is 

the complex number whose modulus is the product of the module of 

the two factors and an argument is the sum of arguments of the 

factors. A picture: 

          

     zw     

          

          

                           

      + ζ        

  w         

  ζ z       

       

 

 

We now define exp (i ), or e
i by 

 

e
i  = cos  + i sin   

 

We shall see later as the drama of the term unfolds that this very 

suggestive notation is an excellent choice. Now, we have in polar form 
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z = re
i , 

 

where r = |z| and   is any argument of z. Observe we have just shown 

that  

 

e
i e

iζ
= e

i( +ζ)
. 

 

It follows from this that e
i e

-i  = 1.Thus 

 

    = e
-i  

It is easy to see that 

 

 =  = (cos ( - ζ) + i sin ( - ζ))9 

 

4.0  CONCLUSION 
 

In this closing unit, the achievement resulting from this unit are 

highlighted in the summary. 

 

5.0   SUMMARY  
 

The summary of the work carried out in this unit are highlighted below. 

 

 we  introduced you to fraction or rational or quotient numbers, 

which was defined to be ordered pairs of integers 

 we showed you that there is no rational solution to the equation x
2
 

= 2. We were thus led to defining even more new numbers, the 

so-called real numbers, which, of course, include the rationals. 

  complex numbers were also defined on modules, length 

conjugate, triangle inequality, argument and principal argument 

using examples to illustrate these definitions. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i.  Find the following complex 

numbers in the form x + iy: 

 

 

 

ii.  Find all complex z = (x,y) such that 

 

z
2
+z+ 1 = 0 

iii.  Prove that if wz = 0, then w = 0 or z = 0. 

iv. (a) Prove that for any two complex numbers, zw= z w.  
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b)  Prove that ( ) = . 

c)  Prove that ||z| 

- |w|| ≤|w|. 

v.        Prove that |zw| = |z||w| and that |  | = . 

 

vi.  Sketch the set of points satisfying 

a) |z – 2 + 3i| = 2   b) |z + 2i| ≤ 1 

c) Re(z + i) = 4   d) |z - 1 + 2i| =  | z  + 3 + i| 

e) |z + 1| + |z – 1| = 4  f) |z + 1| - |z – 1| = 4 

 

vii.  Write in polar form re
i : 

          a)i b) 1 + i 

       c) -2 d) -3i 

       e) √3 + 3i 

 

viii. Write in rectangular form-no decimal approximations, no trig 

functions:  

 

      a) 2e
i3π

    b) e
i100π

 

       c) 10e
3π/6

                                    d) √2 e
i5π/4 

 

ix.  a) Find a polar form of (1 + i)(1 + i√3). 

b) Use the result of a) to find cos ( ) and sin ( ). 

 

x.  Find the rectangular form of (-1 + i)
 100

 

 

xi.  Find all z such that z
3
= 1. (Again, rectangular form, no trig 

functions.)  

 

xii.  Find all z such that z
4
= 16i. (Rectangular form etc.). 

 

7.0 REFERENCES/FURTHER READING 
 

Schum Series, Advance Calculus. 

 

Stroud, K. A.  Engineering Mathematics. 
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1.0   INTRODUCTION 
 

A function y: I → C from a set I of real’s into the complex  numbers C is 

actually a familiar concept from elementary calculus. It is simply a 

function from a subset of the reals into the plane, what we sometimes 

call a vector-valued function.  

 

Assuming the function y is nice, it provides a vector, or parametric, 

description of a curve. Thus, the set of all {y(t) : y(t) = e
it
 = cos t + i sin t 

= (cos t, sin t), 0 ≤ t ≤ 2 } is the circle of radius one, centered at the 

origin. 

We also already know about the derivative of such functions. If y(t) = 

x(t) + iy(t), then the derivative of y is simply y
1
(t) = x'(t) + iy’(t), 

interpreted as a vector in the plane, it is tangent to the curve described by 

y at the point y(t) 

 

SELF-ASSESSMENT EXERCISE 1 

  

Let y (t) = t + it
2
,-1 < t < 1. One easily sees that this function describes 

that part of the curve y = x
2
 between x = -1  
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SELF-ASSESSMENT EXERCISE 2 

 

Suppose there is a body of mass "fixed" at the origin-perhaps the sun-

end, there is a body of mass m which is free to move-perhaps a planet.  

Let the location of this second body at time t be given by the complex-

valued function z(t). We assume the only force on this mass is the 

gravitational force of the fixed body. This force f is thus 

  

 

 

 

Where G is the universal gravitational constant. Sir Isaac Newton tells 

us that 

 

\ 

Hence, 

 

Next, let us write this in polar form, z =re
i0 

 

 

 

Where we have GM = k. now, let us see what we have 

 

 

                                                                                                                                                                                                                                                                                                

 

 

Now,  

 

 

 

 

 

(additional evidence that our notation e
i0 

=cos  +  is reasonable.) 

 

Thus, 



 

Now, 

 

 

 

Now,  
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Now the equation                 becomes 

 

  

 

 

 

 

This gives us the two equations 

 

And, 

 

 

 

Multiply by r and thus second equation becomes 

 

 

tells us that 

 

 

  

is a constant. (This constant is called the Angular 

momentum.)Thisresult allows us to get rid of "' in the first of the two 

differential equations above: 

 

 

Or, 

 

 

 

 

Although this now involves only the one unknown function r, as it 

stands it is tough to solve. Let us change variables and think of r as a 

function of o. Let us also write things in terms of the function s =1   

Then 

 

                                  R    

 

Hence  

 

 

And so  

and our differential equation looks like: 
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or,  

 

 

 

 

This one is easy. From high school differential equations class, we 

remember that 

 

 

 

 

where A and (p are constants which depend on the initial conditions. At 

long last, 

 

 

 

where we have set є = Aa
2
/k. The graph of this equation is, of  course, a 

conic section of eccentricity є. 

 

2.0  OBJECTIVES 

 
At the end of this unit, you should be able to: 

 

 investigate and study  functions of a complex variable 

 explain derivatives of a function 

 explain at Cauch-Riemann Equation 

 

3.0       MAIN CONTENT 

3.1     Functions of a Complex Variable 
 

The real excitement begins when we consider function f: D - C in which 

the domain D is a subset of the complex numbers. In some sense, these 

too are familiar to us from elementary calculus. They are simply 

functions from a subset of the plane into the plane:     

 

f(z) = f(x, y)= u(x, y)+iv(x, y)= ((x,y),v(x, y)) 

 

Thus,  f(z) = z
2   

looks like f(z) = z
2 
= (x + iy)

2
= z

2
 – y

2
2xyi. In other words, 

u(x, y) = x
2 

– y
2 

and v(x,y) = 2xy. The complex perspective, as we shall 

see, generally provides richer and more profitable insights into these 

functions. 
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The definition of the limit of a function f at a point z = z0 is essentially 

the same as that which we learned in elementary calculus: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And,   

 

 

 

 

 

 

Provided, of course, that lim g (z) ≠ 0 
                                                           z – z0 

It now follows at once from these properties that the sum, difference, 

product, and quotient of two functions continuous at z0 are also 

continuous at z0. (We must, as usual, accept the dreaded 0 in the 

denominator.) 

 

It should not be too difficult to convince yourself that if 

z =(x,y), z0 =(x0,y0) 

 

and 

 

f (z) = u (x,y) + iv (x,y), then 

 

 

 

Thus,  f is continuous at z0 = (x0,y0) precisely when u and v are. 

Our next step is the definition of the derivative of a complex function f. 

It is the obvious thing. Suppose f is a function and zo is an interior 

point of the domain of f the derivative f  (zo) off is 
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SELF-ASSESSMENT EXERCISE 1 

 

Suppose f (z)= z
2
.  Then, letting ∆z = z – z0, we have 

 

 

 

 

 

 

 

 

 

 

No surprise here-the function f (z) =z
2
has a derivative at every z, and it's 

simply 2z. 

 

SELF-ASSESSMENT EXERCISE 2 

 

 

 

 

 

 

 

 

 

 

 

Suppose this limit exists, and  choose ∆z = ( ∆x, 0). Then, 

 

 

 

 

 

 

 

 

 

Now, choose     ∆z = (0,    y). Then, 
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Thus, we must have z0 + z0 =z0 – z0 = 0. In other words, there is no chance 

of this limit's existing, except possibly at z0 = 0. So, this function does not 

have a derivative at most places. 

 

Now, take another look at the first of these two examples.  Meditate on this 

and you will be convinced that all the "usual" results for real-valued functions 

also hold for these new complex functions: the derivative of a constant is zero, 

the derivative of the sum of two functions is the sum of the derivatives, the 

"product" and "quotient" rules for derivatives are valid, the chain rule for the 

composition of functions holds, etc., etc. For proofs, you only need to go back 

to your elementary calculus book and change x's to z's. 

 

If  f  has a derivative at  zo, we say that f is differentiable at zo. If f is 

differentiable at every point of a neighborhood of  zo, we say that is analytic at 

z0. (A set S is a neighborhood of z0 if there is a disk D = {: │z—z0 │ <r, r> 0} 

so that  D   S. ( If f is analytic at every point of some set S, we say that f is 

analytic on S. A function that is analytic on the set of all complex numbers is 

said to be an entire function.   

 

3.3.     Derivatives 
 

Suppose the function f given by f (z) = u(x, y) + iv(x, y) has a derivative at z 

= z0= (x0,y0).  

 

We know this means there is a number f (z0) so that 

 

 

 

 

Choose     ∆z = (∆x, 0) = Ax. Then, 
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Next, choose     ∆z=(0, ∆y) = i ∆ y. Then,  

 

 

 

 

 

 

 

 

 

 

 

We have two different expressions for the derivative f (z0), and so 

 

 

 

Or 

 

 

 

 

 

These equations are called the Cauchy Riemann Equations. 

 

We have shown that if f has a derivative at a point z0, then its real and 

imaginary parts satisfy these equations. Even more exciting is the fact that if 

the real and imaginary parts of  f satisfy these equations and if in addition, 

they have continuous first partial derivatives, then the function  f  has a 

derivative. Specifically, suppose u(x, y) and v(x, y) have partial derivatives in a 

neighborhood of z0 = (x0,y0), suppose these derivatives are continuous at z0, 

and suppose 

 

 

 

  

 

 

 

 

We shall see that fis differentiable at z0. 
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Observe that 

 

 

 

 

 

Thus, 

 

 

 

 

and, 

 

 

Where   

 

 

 

Thus  

 

 

Proceeding similarly, we get  

 

 

 

 

 

 

 

 

 

Where ɛ→ 0 ∆z→ 0. Now, unleash the Cauchy-Riemann equation on 

this quotient and obtain  

 

 

 

 

 

 

 

 

 

Here, 

 

It is easy to show that 
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and so, 

 

 

 

 

In particular, we have, as promised, shown that f is differentiable at z0. 

 

SELF-ASSESSMENT EXERCISE 3 

 

 Let us find all points at which the function f given by f (z) = x
3
 - i(I 

-

y)
3 

is differentiable. Here we have u = x
3
and v = -(1 -y)

3
.The Cauchy-

Riemann equations thus look like 

 

 

 

 

The partial derivatives of u and v are nice and continuous everywhere, so 

f will be differentiable everywhere the C-R equations are satisfied That 

is, everywhere. 

 

This is simply the set of all points on the cross formed by the two 

straight lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0 CONCLUSION 
 

To end the unit, we now give the summary of what we have covered in 

it. 

 

5.0 SUMMARY 

 
We can summarise this unit as follow: 
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We discussed complex number on functions of a real variable as a 

function  f : I → C from a set of real numbers into the complex number 

C while functions of a complex variable was defined as a function  f : D 

→ C in which the domain D is a subset of the complex number. 

 

We also showed that if  f  has a derivative at a point z0, then its real and 

imaginary  parts satisfied the following equations 

 

 

 

 

 

 

 

These equations are called the Cauchy-Riemann equations. 

 If the real and imaginary parts of  f satisfy these equations and if in addition, 

they have continuous first partial derivatives, then the function  f  has a 

derivative. 

 

 

 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. (a). What curve is described by the function  

y(t) = (3t + 4) + i(t - 6), 0 ≤ t ≤ 1 ? 

 

b). Suppose z and w are complex numbers. What is the curve 

described by y(t) =(1- t)w+tz,0 ≤ t ≤ 1 

 

ii.  Find a function y that describes that part of the curve y = 4x
3
+ 1 

between x = 0 and x = 10. 

 

iii.  Find a function y that describes the circle of radius 2 centered at 

z = 3 - 2i. 

 

iv.  Note that in the discussion of the motion of a body in a central 

gravitational force field, it was assumed that the angular 

momentum a is non-zero. Explain what happens in case α =0 

v.  Suppose f (z0 = 3xy + i(x-y2). Find limf(z). Or explain carefully 

why it does not exist  
Z-3+2i

 

 

vi.  Prove that if f has a derivative at z, then f is continuous at z  
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vii. . Find all points at which the valued function f defined by f(z) = z has a 

derivative. 

 

viii. Find all points at which the valued function f defined by f 

 f(z) = (2+i)z
3
- iz

2
+ 4z- (1+7i) 

has a derivative 

 

 ix.  Is the function f given by 

 

 

 

 

 

differentiable at z = 0?  Explain. 

x.  At what points is the function f given by f (z) = x
3 

+ i(1 -y)3 

analytic? Explain. 

xi.  Do the real and imaginary parts of the function f in question 9 

satisfy the Cauchy-Riemann equations at z = 0? What do you 

make of your answer? 

 xii.  Find all points at which f (z) = 2y - ix is differentiable. 

xiii.  Suppose f is analytic on a connected open set D, and f (z) = 0 for 

all zєD. Prove that f is constant. 

 

xiv . Find all points at which 

 

 

 

is differentiable. At what points is f analytic?  

 

xv.  Suppose f  is analytic on the set D, and supposes Re f is constant 

on D. Is f necessarily constant on D? Explain. 

 

xvi.  Suppose f is analytic on the set D, and suppose f (z) I is constant on 

D. Is f necessarily constant on D? Explain. 
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1.0 INTRODUCTION  
 

A function f (z) is analytic at a point z0 if its derivatives f’(z)    exist 

not only at z0 but at every point z in a neighborhood of z0.  Suppose f is 

entire and bounded; that is, f is analytic in the entire plane and there is 

a constant M such that |f (z)| ≤ M for all z. They say that the derivative 

of an analytic function is also analytic. Now suppose f is continuous on a 

domain D in which every point of D is an interior point and suppose that    

f(z)dz= 0 for every close curve in D. 

 

Even more exciting is the fact that if the real and imaginary parts of f satisfy 

these equations and if in addition, they have continuous first partial 

derivatives, then the function f has a derivative. 

 

2.0   OBJECTIVES 
 

 At the end of this unit, you should be able to: 

 

 investigate and explain analytic functions  

 study Cauchy’s integral formular 

 look at solutions on Liouville’s Theorem to see how  |f(z)| must 

attain its maximum value somewhere in this domain D. 
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3.0      MAIN CONTENT 

 

3.1      Cauchy’s Integral Formula 

 

Suppose f is analytic in a region containing a simple closed contour 

C with the usual positive orientation and its 'inside, and suppose zo is 

inside C. Then it turns out that 

 

 

 

 

This is the famous Cauchy Integral Formula.  

 

Let є > 0 be any positive number. We know that f is continuous at 

zoand so there is a number δ such that |f(z)─ f(zo) |<є whenever |z - 

zo|<δ.  

 

Now let p > 0 be a number such that p <δ and the circle Co = {z :|z–

zo| = p} is also inside C. Now, the function  is analytic in the 

region  

between C and Co; thus 

 

 

 

 

We know that dz = 2πi, so we can write 

 

 

 

 

 

 

For zєC0 we have 

 

 

 

 

 

Thus, 
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But is any positive number, and so 

  

 

Or, 

 

 

 

Which is exactly what we set out to show. 

 

It says that if f is analytic on and inside a simple closed curve and we 

know the values f (z) for every z on the stipple closed curve, then we 

know the value for the function at every point inside the curve. 

 

SELF-ASSESSMENT EXERCISE 

 

Let C be the circle |z |= 4 traversed once in the counter clockwise 

direction. 

 Let's evaluate the integral 

 

 

 

 

We simply write the integrand as 

 

 

 

 

 

where 

 

Observe that f is analytic on and inside C, and so, 

  

 

 

 

 

  

 

3.2    Functions Defined by Integral 
 

Suppose C is a curve (not necessarily a simple closed curve, just a curve) 

and suppose the function g is continuous on C (not necessarily analytic, 

just continuous). Let the function G be defined by 
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For all z є C. We shall show that G is analytic. Here we go. C 

 

Consider, 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Now we want to show that 

 

 

 

 

 

 

To that end, let M = max{|g(s)| : s є C}, and let d be the shortest distance 

from z to C.  

 

Thus, for s є C, we have | s - z | ≥ d > 0 and also 

| s - z - ∆ z | ≥ | s - z | - | ∆ z | ≥d-|∆z|. 

 

Putting all this together, we can estimate the integrand above: 

 

 

 

 

For all sє  C. Finally, 
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And it is clear that 

 

 

 

 

 

Just as we set out to show. Hence G has a derivative at z, and 

 

 

 

 

we see that G` has a derivative and it is just what you think it should be.  

 

Consider 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, 
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Hence, 

 

 

 

 

 

 

 

Where m = max{|s – z| : s є C}. It should be clear then that 

 

 

 

 

Or in other words, 

 

 

 

 

Suppose f is analytic in a region D and suppose C is a positively oriented 

simple closed curve in D.  

 

Suppose also the inside of C is in D. Then from the Cauchy Integral 

formula, we know that 

 

 

 

and so with g = f in the formulas just derived, we have 

 

 

 

For all z inside the closed curve C. They say that the derivative of an 

analytic function is also analytic. Now suppose f is continuous on a 

domain D in which every point of D is an interior point and suppose that 

dz = 0 for every closed curve in D. Then we know that f  has an 

anti-derivative in D─ in other words f is the derivative of an analytic 

function. We now know this means that f is itself analytic. We thus have 

the celebrated Morera’s Theorem: 

 

If f.D →C is continuous and such that f(z)dz = 0 for every  

closed curve in D, then f is analytic in D. 

 

SELF-ASSESSMENT EXERCISE 
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Let us evaluate the integral 

 

 

 

 

Where C is any positively oriented closed curve around the  

origin. We simply use the equation 

 

 

 

 

With z = 0 and f(s) = e
s
. Thus, 

 

 

 

 

 

3.3     Liouville’s Theorem 
 

Suppose f is entire and bounded; that is, f is analytic in the entire plane 

and there is a constant M such that |f (z)|≤M for all z. Then it must be 

true that f (z) = 0 identically. To see this, suppose that f (w): ≠ 0 for 

some w.  

 

Choose R large enough to insure that < |f (w)|. Now let C be a circle 

centered at 0 and with radiusp > max{R, 1w 1}.  

 

Then we have: 

 

 

 

 

 

 

 

a contradiction. It must therefore be true that there is now for which, f' (w) * 

0; or, in other words, f (z) = 0 for all z. This, of course, means that f is a 

constant function. We have shown Liouville's Theorem: 

 

The only bounded entire functions are the constant function. 

Let us put this theorem to some good use.  

Let p(z) = anz
n
+ an-iz

n-l 
+….+a lz+ aobe apolynomial. Then 
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Now choose R large enough to insure that for each j = 1, 2,...., n, we have 

| |< whenever |z|>R. (We are assuming that an ≠ 0.) Hence, for |z|> R,  

 

We know that 

 

 

 

 

 

Hence, for |z| > R, 

 

 

 

 

Now suppose-p (z) ≠ 0 for all z. Then r is also bounded on the disk IzI<_ 

R. Thus,  is a bounded entire function, and hence, by Liouville's Theorem, 

constant! Hence the polynomial is constant if it has no zeros. In other words, 

if p(z) is of degree at least one, there must be at least one zo for which p(zo) = 

0.  

 

This is, of course, the celebrated fundamental theorem of algebra. 

 

3.4         Maximum Moduli 
 

Suppose f is analytic on a closed domain D. Then, being continuous, 

|f(z)| must attain its maximum value somewhere in this domain. Suppose 

this happens at an interior point. That is, suppose |f(z)|≤ M for all zє D 

and suppose that (zo)| = M for some zo in the interior of D. Now zo is an 

interior point of D, so there is a number R such that the disk Λ centered 

at zo having radius R is included in D. Let C be a positively oriented 

circle of radius p ≤ R centered at zo. From Cauchy's formula, we know 

 

   

 

Hence, 

  

 

 

and so, 
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Since |f(zo  + pe
i t

) | ≤ M. This means 

 

 

 

 

Thus, 

 

 

 

 

This integrand is continuous and non-negative, and so must be zero. In other 

words, |f(z) |= M for all z є C. There was nothing special about C except its 

radius p ≤ R, and so we have shown that f must be constant on the disk Λ. 

 

I hope it is easy to see that if D is a region (=connected and open), then the 

only way in which the modulus | f  (z) |of the analytic function f can attain a 

maximum on D is for f  to be constant. 

 

4.0       CONCLUSION 
  

In this unit, the achievement resulting from this unit is highlighted in the 

summary. 

 

5.0       SUMMARY 
 

The famous Cauchy integral formula was well defined in the beginning 

of the unit. We have observed that if f is analytic on and inside a simple 

closed curve and we know the values f (z) for every z on the stipple 

closed curve, then we know the value for the function  at every point 

inside the curve. 

 

We also knew that the derivative of an analytic function is  also analytic. 

Suppose f is continuous on a domain D in which every point of  D is an 

interior point and suppose that   dz = 0 for every closedcurve in D.  

 

Then we knew that F  has an anti-derivative in D─in other words f is the 

derivative of an analytic function. We said that f is itself analytic. We 

thus have the celebrated Morera’s Theorem. 

 

If f is entire and bounded; that is, f is analytic in the entire plane and 

there is a constant M such that |f (z)| ≤ M for all z. 
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Then it must be true that f’ (z)=0 identically. Suppose f is analytic on a 

closed domain D. Then, being continuous, |f(z)| must attain its maximum 

value somewhere in the domain. Suppose this happens at an interior 

point.  

 

That is, suppose |f(z)| ≤ M for all z є D and suppose that |f(zo)| = M for  

some zo in the interior of D. Now zo is an interior point of D, so there is a 

number R such that the disk Λ centered at zo having radius R is included 

in D. Let C be a positively oriented circle of radius p ≤ R centered at zo. 

 

6.0    TUTOR- MARKED ASSIGNMENT 
 

i. Suppose f and g are analytic on and inside the simple closed  

curve C, and suppose moreover that f (z) = g(z) for all z on C. 

Prove that f (z) = g(z) for all z inside C. 

 

ii.  Let C be the ellipse 9x
2
 + 4y

2
= 36 traversed once in the  

Counter-clockwise direction.  Define the function g by 

 

 

 

 

Find (a) g(i)     (b) g(4i)  

 

iii. Find 

 

 

 

Where C is the closed curve in the picture: 

 

 

 

 

 

 

 

 

 

iv.  Find   where Г is the contour in the picture: 
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v. Evaluate 

 

 

 

Where C is a positively oriented closed curve around the origin. 

 

vi.  Let C be the circle |z – i| = 2 with the positive orientation.  

Evaluate 

 

 

vii. Suppose f is analytic inside and on the simple closed curve C. 

Show that 

 

  

 

for every w є C. 

 

viii. (a) Let a be a real constant, and let C be the circle y(t) = e
it
, -π ≤ 

t ≤ π. Evaluate 

 

 

 

b) Use your answer in part (a) to show that 

 

 

 

ix.  Suppose f is an entire function, and suppose there is an M such 

that Ref (z) ≤ M for all z. Prove that f is a constant function. 

 

x.  Suppose w is a solution of 5z
&

z
2 
-7z + 14 = 0. Prove that (w J < 3. 

xi. Prove that if p is a polynomial of degree n, and if p(a) = 0, then 

p(z) = (z - a)q(z), where q is a polynomial of degree n - 1. 

 

xii.  Prove that if p is a polynomial of degree n > 1, then 

 

 

xiii.  Suppose p is a polynomial with real coefficients. Prove that p can 

be expressed as a product of linear and quadratic factors, each 

with real coefficients. 
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xiv.  Suppose f  is analytic and not constant on a region D and suppose f (z) 

≠ 0 for all z є D.      Explain why |f(z) |  does not have a minimum in 

D. 

 

xv. Suppose f (z) = u(x, y) + iv(x, y) is analytic on a region D. Prove that if 

u (x, y) attains a maximum value in D, then u must be constant. 
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1.0   INTRODUCTION 
 

The basic definitions for complex sequences and series are essentially 

the same as for the real case. A sequence of complex numbers is a 

function g: Z+ → C from the positive integers into the complex 

numbers. It is traditional to use subscripts to indicate the values of the 

function. Thus, we write g(n) = zn and an explicit name for the 

sequence is seldomly used; we write simply (zn) to stand for the 

sequence g which is such that g(n) = zn. 

 

2.0      OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 define limit and continuous functions 

 explain what series means 

 explain the concept of  power series. 

 

3.0      MAIN CONTENT 
 

3.1    Limit 
 

The number L is a limit of the sequence (zn)  if given an є > 0, there is 

an integer  Nє  such that |zn – L| < є for all n ≥Nє.If Lis a limit of (zn), 

we sometimes say that (zn) converges to L. 
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We frequently write lim (zn) = L. It is relatively easy to see that if the 

complex sequence (zn) =   (un + ivn) converges to L,then the two real 

sequences (un) and (vn) each have a limit: (un) converges to ReL and 

(vn) converges to ImL. Conversely, if the two real sequences (un) and 

(vn) each have a limit, then so also does the complex sequence (un+ 

ivn). 

 

All the usual properties of limits of sequences are  

 

Lim (zn ± wn) = Lim(zn) ± lim(wn); 

 

Lim(znwn) = Lim(zn) lim(wn); and 

 

 

 

 

 

Provided that lim(zn) and lim(wn)exist. (And in the last equation, we 

must, of course, insist that lim(wn) ≠ 0.). 

 

A necessary and sufficient condition for the convergence of a  

sequence (an) is the celebrated  Cauchy criterion: given є > 0, there is 

an integer Nє so that |an - an| < є whenever n, m >Nє. 

 

A sequence (fn) of functions on a domain D is the obvious thing a 

function from the positive integers into the set of complex functions on 

D. Thus, for each zєD, we have an ordinary sequence (fn(z)).   If each 

of the sequences (fn(z)) converges, then we say the sequence of 

functions (fn) converges to the function f defined by f(z) = lim(fn(z)).   

The sequence (fn) is said to converge to f uniformly on a set S if given 

an є > 0, there is an integer Nє so that |fn(z) -f(z)| < є for all n ≥ Nє and 

all z є S. 

 

Note that it is possible for a sequence of continuous functions to have a 

limit function that is not continuous. This cannot happen if the 

convergence is uniform. To see this, suppose the sequence (fn) of 

continuous functions converges uniformly to f on a domain D, let z0єD, 

and let є > 0. We need to show there is a δ so that |f(z0)-f(z)| < є 

whenever|z0  - z)|< δ.  

  

Choose N so that | fN(z) ─ f(z)| <  . We can do this because of the 

uniform convergence of the sequence (fn). Next, choose δ so that 
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| fN(z0)─fN(z)| <  whenever |z0  – z| <δ. This is possible because, fN 

is continuous. 

Now then, when |z0  – z |  < δ, we have 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Now suppose we have a sequence (fn) of continuous functions which 

converges uniformly on a contour C to the function f .   

 

 Then the sequence converges to 

 

This is easy to see. Let є > 0. Now let N be so that |fn(z)–f(z)| < for 

n >N, where A is the length of C. Then, 

 

 

 

 

 

 

whenever n > N. 

 

Now suppose (fn) is a sequence of functions each analytic on some 

region  

D, and suppose the sequence converges uniformly on D to the 

function f .  Then f is analytic. This result is in marked contrast to 

what happens with real functions ─ examples of uniformly 

convergent sequences of differentiable functions with a non-

differentiable limit abound in the real case. To see that this uniform 

limit is analytic, let z0єD, and let S = {z: | z  ─  z 0 |  < r} ⊂ D. Now 

consider any simple closed curve C ⊂ S. Each fn, is analytic, and so = 

0 for every n. 
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 From the uniform convergence of (fn), we know that                 is the 

limit and so f(z)dz = 0. 

 

Morera’s theorem now tells us that f is analytic on S, and  

 

hence at z0.  

 

 

 

3.2       Series 
 

A series is simply a sequence (sn) in which sn = a1 + a2 + …... +an, In 

other words, there is sequence (an) so that sn = sn + an. The sn are usually 

called the partial sums.  

 

if the series               has a limit, then it must be true that 

 

lim(an) = 0.    

 

Consider an→∞ of functions. Chances are this series will converge for 

some values  

 

of z and not converge for others. A useful result is the celebrated  

 

Weierstrass M-test:  Suppose (Mj) is a sequence of real numbers such 

that Mj ≥ 0 for all j>J, where J is some numbers, and suppose that the 

series converges. If for a ll zє D, we have |fj(z)| ≤ Mj for all j > J, then, 

the series  

converges uniformly on D. 

 

 

 

To prove this, begin by letting є > 0 and choosing N > J so that 

 

 

 

 

For all n, m > N (We can do this because of the famous Cauchy 

criterion.) Next we observe that 
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This shows that                    converges. To see the uniform convergence, 

observe tha 

 

 

 

 

 

 

 

 

 

for all zєD and n > m > N. Thus, 

 

 

 

 

for m > N.(The limit of a              series is almost always written as  

 

 

 

3.3  Power Series 
 

We are particularly interested in series of functions in which the partial 

sums are polynomials of increasing degree: 

 

sn(z) = c0 +c1(z-z0)+c2(z-z0)
2
 +...+cn(z-z0)

n
. 

 

(We start with n = 0 for aesthetic reasons.)  

 

These are the so-called power series. Thus, a power series is a series of 

functions of the form 

 

 

 

Let us look first at a very special power series, the so-called Geometric 

series. 

 

 

 

 

Here 

sn= 1 + z + z
2
 +... +z

n
, and 

zsn = z + z
2
 +z

3
 +... +z

n+l
. 

 

Subtracting the second of these from the first gives us 



 

MTH 304                                   MODULE 4 
 

 

99 

 

 

(1 – z)sn = 1- z
n+1

 

 

If z = 1, then we cannot go any further with this, but I hope it is clear 

that the series does not have a limit in case z = 1. Suppose now z ≠ 1. 

Then we have 

 

 

 

 

 

 

Now if |z| < 1, it should be clear that lim(z
n+1

) = 0, and so 

 

 

 

 

 

Or, 

 

 

 

Note that if |z| > 1, then the Geometric Series does not have a limit. 

Next, note that if |z| ≤ p < 1, then the Geometric series converges 

uniformly to . To see this, note that 

 

 

 

 

has a limit and appeal to the Weierstrass M-test. 

 

Clearly a power series will have a limit for some values of z and perhaps 

not for others. First, note that any power series has a limit when z = z0. 

Let us see what else we can say. Consider a power series 

                              .  

 

 

 

  Let 

 

 

(Recall that lim sup (ak) = lim(sup{ak : k ≥ n}. ) Now let R = . (We shall 

say R = 0 if=∞, and R = ∞, if     = 0.). We are going to show that the 
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series converges uniformly for all (z – z0 |  ≤ p < R and diverges for all 

| z  –  z0 |  > R. 

 

First, let us show that the series does not converge for |z – z0|  > R. To 

begin, let k be so that 

There is an infinite number of cj. For which > k, otherwise lim sup              

< k. For each of these cj we have 

 

 

 

 

 

It is thus not possible for lim |c
n
(z – z

0
)

n
|  = 0, and so the series does not 

converge. 

 

We show that the series does converge uniformly for 

| z - z0 |  ≤  p < R. Let k be so that 

 

 

 

Now, for j large enough, we have     < k. Thus   f or |z – z0| ≤ p, we have 

 

 

 

 

 

The geometric series                 converges because kp< 1 and the 

uniform convergence 

 

of                        follows from the M-test. 

 

 

SELF-ASSESSMENT EXERCISE 

 

Consider the series             . Let us compute  

 

R = 1/lim sup             = lim sup. Let 

 

K be any positive integer and choose an integer m large enough  

 

to ensure that 2
m
> 

 

 

Now consider      , where n = 2K + m: 
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Thus, > K. Reflect on what we have just shown: given any number K, 

there is a number n 

 

such that                  is bigger than it. In other words,  

 

R = lim sup             = ∞, and so the series 

 

converges for all z. 

 

Let us summarise what we have. For any power series                            

there is a number  

 

 

R =        such that the series converges uniformly for | z - z 0 |  ≤  p  

 

< R and does not converge for | z - z0 |  > R. (Note that we may have R = 

0 or R = ∞.) The number R is called the radius of convergence of the 

series, and the set | z - z 0 |  = R is called the circle of convergence. 

Observe also that the limit of a power series is a function analytic inside 

the circle of convergence. 

 

3.4     Integration of Power Series  
 

Inside the circle of convergence, the limit 

 

 

 

 

is an analytic function. We shall show that this series may be integrated 

“term-by-term”─that is, the integral of the limit is the limit of the 

integrals. Specifically, if C is any contour inside the circle of 

convergence, and the function g is continuous on C,  

 

then 

 

 

 

If є > 0 Let M be the maximum of |g(z)| on C and let L be the length of C. 

Then there is an integer N so that 
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For all n >N. Thus, 

 

 

 

 

 

Hence, 

 

 

 

 

 

and we have shown what we promised. 

 

 

3.5     Differentiation of Power Series  
 

 Let 

 

 

 

Now we are ready to show that inside the circle of convergence, 

 

 

 

 

Let z be a point inside the circle of convergence and let C be a positive 

oriented circle centered at z and inside the circle of convergence. Define 

 

 

 

 

and apply the result of the previous section to conclude that 
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4.0 CONCLUSION 
 

We now end this unit by giving a summary of what we have covered 

in it. 

 

5.0 SUMMARY 
 

A sequence (fn) of functions on a domain D is a function from the 

positive integers into the set of complex functions on D. Thus, for each 

zєD, we have an ordinary sequence (fn(z)).  If each of the sequences 

(fn(z)) converges, then we say the sequence of functions (fn) converges 

to the function f defined by f(z) = lim(fn(z)).  The sequence (fn) is said 

to converge to f uniformly on a set S if given an є > 0, there is an 

integer Nє so that |fn(z) -f(z)| < є for all n ≥ Nє and all z є S. 

 

Note that it is possible for a sequence of continuous functions to have a 

limit function that is not continuous. 

If (fn) a sequence of functions, each analytic on some region D, and 

suppose the sequence converges uniformly on D to the function 

f . Then  f is analytic. 

 

The number R is called the radius of convergence of the series, and the 

set | z - z 0 |  = R is called the circle of convergence. We observed that 

the limit of a power series is a function analytic inside the circle of 

convergence.  We showed that the series may be integrated "term-by-

term"─that is, the integral of the limit is the limit of the integrals. 

Specifically, if C is any contour inside the circle of convergence, and the 

function g is continuous on C,  

 

Then 

 

 

We showed that inside the circle of convergence, 

 

 

 

 

if z be a point inside the circle of convergence and let C be a positive 

oriented circle centered at z and inside the circle of convergence.  

 

6.0  TUTOR-MARKED ASSIGNMENT 
 

i. Prove that a sequence cannot have more than one limit (We thus 

speak of the limit of a sequence.) 
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ii. Give an example of a sequence that does not have a limit, or 

explain carefully why there is no such sequence. 

 

iii. Give an example of a bounded sequence that does not have a 

limit, or explain carefully why there is no such sequence. 

 

iv. Give a sequence (fn) of functions continuous on a set D with a 

limit that is not continuous. 

 

v. Give a sequence of real functions differentiable on an interval 

which converges uniformly to a non-differentiable function 

 

vi. Find the set D of all z for which the sequence has a limit. Find the 

limit. 

 

 

 

vii.  Prove that the series             converges if and only if both the  

 

series                          and                    converge. 

 

viii. Explain how you know that the series converges uniformly on 

the set |z| ≥ 5. 

 

ix. Suppose the sequence of real number (aj) has a limit. Prove that 

 

lim sup(aj) = lim(aj). 

 

For each of the following, find the set D of points at which the series 

converges: 

 

 

x.  

 

 

xi.   

 

xii.  

 

 

xiii.  

 

xiv.  Find the limit of 
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xv. For what values of z does the series converge? 

 

xvi.  Find the limit of 

 

 

 

For what values of z does the series converge? 

 

 Find a power series                                      such that 

 

 

 

 

xvii. Find a power series                              such that 

 

 

 

7.0 REFERENCES/FURTHER READING 
 

Schum Series, Advance Calculus. 

. 

Stroud, K. A.  Engineering Mathematics. 
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MODULE    3 

 

UNIT 1 TAYLOR AND LAURENT SERIES 
 

CONTENTS  

 

15.0       Introduction 

16.0       Objectives 

17.0       Main Content 

17.1     Taylor Series 

17.2      Laurent Series 

18.0       Conclusion 

19.0       Summary 

20.0      Tutor-Marked Assignment 

21.0       References/Further Reading 

 

1.0 INTRODUCTION 
 

This unit introduces you to Taylor’s Series as well as Laurent’s Series. 

 

2.0 OBJECTIVES 
 

At end of this unit, you should be able to: 

 

 explain Taylor’s Series 

 explain Laurent’s Series 

 

3.0 MAIN CONTENT 
 

3.1 Taylor Series 

 

Suppose f  is analytic on the open disk |z - z0|< r. Let z be any point in 

this disk and choose C to be the positively oriented circle of radius p, 

Where|z - z0| <p<r. Then for sєC we have < 1. The 

convergence is uniform, so we may integrate. 
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We have thus produced a power series having the given analytic function 

as a limit: 

 

where 

 

 

 

 

 

This is the celebrated Taylor Series for f at z = z0. 

 

We know we may differentiate the series to get and this one converges 

uniformly where the series for f does. We can thus differentiate again 

and again to obtain 

  

 

 

 

 

 

 

 

Hence, 

 

  

But we also know that 

 

 

 

 

This gives us 

 

 

 

 

This is the famous Generalised Cauchy Integral Formula.  
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Recall that we previously derived this formula for n = 0 and 1. 

What does all this tell us about the radius of convergence of a power 

series?  

 

 

 

 

Suppose we have and the radius of convergence is R. Then we know, of 

course, that the limit function f is analytic for 1z - z0 I < R. We showed 

that if f is analytic in |z - z0 |<r, then the series converges for |z - z0 |    f 

<r. Thus r≤ R, and so f cannot be analytic at any point z for which |z - zp 

|> R. In other words, the circle of convergence is the largest circle 

centered at z0 inside of which the limit f' is analytic. 

 

SELF-ASSESSMENT EXERCISE  

 

Let f (z) = exp(z) = e
z
. Then 

 

f(0) = f
(n)

(0)=…= f
(n)

(0)=…=1.and the Taylor series for f at 

 

z0=0 is 

  

 

and this is valid for all values of z since f  is entire. (We also showed 

earlier that this particular series has an infinite radius of convergence.) 

 

3.2 Laurent Series 
 

Suppose f  is analytic in the region R1<  | z - z 0 |  ( <  R2, and let C be a 

positively oriented simple closed curve around z0 in this region. (Note: 

we include the possibilities that R1 can be 0, and R2  = ∞.) We shall 

show that for z є C in this region 

 

 

 

 

where 

 

 

 

and 

 

 

The sum of the limits of these two series is frequently written 
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where 

 

 

 

This recipe for f (z) is called a Laurent series, although it is important 

to keep in mind that it is really two series. 

 

Let us derive the above formula.  

 

First, let ri and r2be so thatR1< r1≤ |z - z0|≤ r2< R2 and so that the point 

z and the curve C are included in the region rl≤ |z-z0|≤r2. 

 

Also, let Г be a circle centered at z and such that Г is included in this 

region. 

 

 

 

 

 

 

 

 

 

 

 

 

Then is an analytic function (of s) on the region bounder byC1, C2, and 

Г, where C1 is the circle |z|= r1 and C2is the circle |z| = r2. Thus, 

 

 

 

 

 

 

(All three circles are positively oriented, of course.)   

and so we have 

 

 

 

Look at the first of the two integrals on the right-hand side of this 

equation. For sєC2,  
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We have |z - z0|<|s - z0|, and so 

 

 

 

 

 

 

 

 

 

 

 

 

Hence, 

 

 

 

 

For the second of these two integrals, note that for sєC1 we have |s - z0| 

< |z - z0|, and so 

 

 

 

 

 

 

 

 

 

As before, 

 

 

 

 

 

 

 

 

Putting this altogether, we have the Laurent series: 
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SELF-ASSESSMENT EXERCISE 

 

Let f be defined by 

 

 

 

First, observe that f is analytic in the region0<|z|<l.  

 

Let us find the Laurent series for f valid in this region.  

 

 

 

From our vast knowledge of the Geometric series, we have 

 

 

 

 

Now let us find another Laurent series for f, the one valid for the region 

1 <|z|<∞.  

 

 

 

 

Now since |  |< l, we have 

 

 

 

 

 

 

 

 

and so 

 

 

4.0 CONCLUSION 
 

We now end this unit by giving a summary of what we have covered 

in it. 
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5.0 SUMMARY 
 

In this unit, we have produced a power series having the given analytic 

function as a limit. 

 

We have differentiated the series to get and this one converges uniformly 

where the series for f does. We showed that if f is analytic in |z - z0 |<r, 

then the series converges for |z - z0 |<r. Thus r ≤ R, and so f cannot be 

analytic at any point z for which |z - zp |> R. In other words, the circle 

of convergence is the largest circle centered at z0 inside of which the 

limit f' is analytic. Finally, we find another Laurent series for f, the one 

valid for the region 1 < |z| < ∞. 

 

6.0     TUTOR-MARKED ASSIGNMENT  
 

i. Show that for all z, 

 

 

ii. What is the radius of convergence of the                Taylor series  

for tanhz? 

 

iii.  Show that 

 

For |z-i| < . 

 

iv.  If f(z) =  what is f
10n)

(i) ? 

 

v.  Suppose f is analytic at z = 0 and f (0) = f(0) = f(0) = 0. Prove 

there is a function g analytic at 0 such that f( z) = z
3
g(z) in a 

neighborhood of 0. 

 

vi.  Find the Taylor series for f(z) = sin z at z0 = 0. 

 

vii. Show that the function f defined by 

 

 

 

 

 

is analytic at z = 0, and find f (0). 

 

viii.  Find two Laurent series in powers of z for the function f defined 

by 
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and specify the regions in which the series converge to f(z). 

 

 

 

 

 

ix. Find two Laurent series in powers of z for the function f defined 

by 

 

 

 

and specify the regions in which the series converge to f (z). 

 

x.  Find the Laurent series in powers of z - 1 for f (z) =  in the 

region 1 < |z – 1| < ∞. 

 

8.0 REFERENCES/FURTHER READING 
 

Schum Series.  Advance Calculus. 

 

Stroud, K. A.  Engineering Mathematics. 
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1.0 INTRODUCTION  
 

This is the most common method for transforming the system function 

Ha (s) of an analogue filter to the system function H(z) of an IIR discrete 

time filter.   It is not the only possible transformation, but a very useful 

and reliable one. 

 

Consider derivative approximation technique:   

 

D(y[n]) = dy(t) /dt  at t=nT    ( y[n]  -  y[n-1]) / T.   

D(x[n]) = dx(t) /dt  at t=nT    (x[n] -  x[n-1]) / T.     

D'(y[n]) = d
2
y(t)/dt

2
 at t=nT  D(D(y[n]) ) =  (y[n] - 2y[n-1]+y[n-2])/T

2 

 
D''(y[n]) = d

3
y(t)/dt

3
 at t=nT  D(D'(y[n]) ) =  (y[n]-3y[n-1]+3y[n-2]-

y[n-3])/T
3
 

 

“Backward difference” approximation introduces delay which becomes 

greater for higher orders.  

 

Try "forward differences”: D[n]  [y[n+1]  -  y[n]] / T, etc.   

 

But this does not make matters any better.    
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Bilinear approximation:  

 

 0.5( D[n] + D[n-1])  (y[n] - y[n-1]) / T and similarly for dx(t)/dt at 

t=nT. 

 

Similar formulae may be derived for d
2
y (t)/dt

2
, and so on. 

 

If D(z) is the z-transform of D[n] : 

 

0.5( D(z) + z
-1

D(z) ) = ( Y(z) - z
-1

Y(z) ) / T 

 D(z)   =    [2 (1 - z
-1

)/ [T(1+z
-1

)] Y(z)   

               = [(2/T) (z-1)/(z+1)] Y(z). 

 

Applying y[n] to [(2/T) (z-1)/(z+1)] produces an approximation to 

dy(t)/dt at t=nT. 

 

In an analogue circuit, applying y(t) to an LTI circuit with system 

function H(s) = s  produces dy(t)/dt since the Laplace Transform of 

dy(t)/dt  is sY(s) . 

 

Therefore, replacing s by [(2/T) (z-1)/(z+1)] is the bilinear 

approximation. 

 

2.0   OBJECTIVES 
 

At the end of this unit, you should be able to:  

 

 explain bilinear transformation 

 explain design of an IIR low-pass filter by the bilinear 

transformation method 

 explain higher order IIR digital filters 

 discuss IIR discrete time high-pass band-pass and band-stop filter 

design 

 compare IIR and FIR digital filters. 
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3.0    MAIN CONTENT 
 

3.1    Bilinear Transformation Technique 
 

Definition: Given analogue transfer function H a (s), replace s by: 

 

         
2 1

1T

z

z













                                                                          

 

to obtain H(z).   For convenience we can take T=1. 

 

SELF-ASSESSNMENT EXERCISE  

 

If   
 RCs

sH a



1

1
  then, 

 
    1

1

1

1

1

2121

1














zb

z
K

RCzRC

z
zH    

 

where 
 RC

k
21

1


   and  

 
 RC

RC
b

21

21
1




  

 

3.2    Properties of Bilinear Transformation  
 

(i)  This transformation produces a function H(z) such that given any 

complex number z,  

      H(z) = Ha(s)   where   s  =  2 (z - 1) / (z + 1) 

(ii)  The order of H(z) is equal to the order of Ha(s) 

(iii)  If Ha (s) is causal and stable, then so is H(z). 

(iv)  H(exp(j)) = H a (j) where  = 2 tan(/2) 

 

Proofs of properties (ii) and (ii) are straightforward but are omitted here. 

 

Proof of property (iv):        When z = exp(j), then 
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Fig 6.1: Frequency warping
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Frequency Warping:    

 

By property (iv) the discrete time filter's frequency response H(exp(j))  

at relative  frequency  will be equal to the analogue  frequency  

response H a (j) with  = 2 tan(/2).  The graph of  against  in fig 

6.1, shows how  in the range - to  is mapped to  in the range - to 

.  The mapping is reasonably linear for  in the range -2 to 2 (giving  

in the range -/2 to /2), but as  increases beyond this range, a given 

increase in  produces smaller and smaller increases in .  Comparing 

the analogue gain response shown in fig 6.2(a) with the discrete time one 

in fig. 6.2(b) produced  by  the transformation,  the  latter becomes more 

and more compressed as    .  This "frequency warping" effect 

must be taken into account when determining a suitable Ha(s) prior to the 

bilinear transformation. 

 

 

 

|Ha(j   )| |H(exp(j     )|





 

Fig 6.2(a): Analogue gain response Fig 6.2(b): Effect of bilinear transformation 
 

3.3   Design of an IIR Low-pass Filter by the Bilinear 

Transformation Method 
 

 

 

Fig. 4.1: Frequency Warping 

Fig. 4.2 (a): Analogue Gain Response Fig. 4.2(b): Effect of Bilinear Transformation 
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Given the required cut-off frequency c in radians/sample:- 

 

(i)    Find H a(s) for an analogue low-pass filter with cut-off   c = 2 

tan( c /2) radians/sec.   

       ( c is said to be the "pre-warped" cut-off frequency). 

(ii)   Replace s by 2(z - 1)/(z + 1) to obtain H(z). 

(iii)  Rearrange the expression for H(z) and realise by bi-quadratic 

sections. 

 

SELF-ASSESSMENT EXERCISE 

 

Design a second order Butterworth-type IIR low pass filter with  c  =  

/ 4. 

Solution:   Pre-warped frequency  c = 2 tan ( / 8)  =  0.828 

 

For an analogue Butterworth low-pass filter with cut-off frequency 1 

radian/second: 

 

H a (s) = 1 / (1 + 2 s   + s
 2

 ) 

 

Replace s by s / 0.828, then replace s by 2(z - 1)/(z + 1) to obtain: 

 

  






















21

21

2

2

33.094.01

21
093.0

4.37.93.10

12

zz

zz

zz

Zz
zH  

 

which may be realised by the signal flow graph in fig 6.5.  Note the extra 

multiplier scaling the input by 0.097. 

x[n] y[n]

Fig. 6.3

0.097

20.94

-0.33

         

3.4   Higher Order IIR Digital Filters  
 

Recursive filters of order greater than two are highly sensitive to 

quantisation error and overflow.  It is normal, therefore, to design higher 

order IIR filters as cascades of bi-quadratic sections. 

 

Fig. 4.3 
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SLEF-ASSESSMENT EXERCISE  

 

Design a 4
th

 order Butterworth-type IIR low-pass digital filter is needed 

with 3dB cut-off at one sixteenth of the sampling frequency f s. 

  

Solution:    The relative cut-off frequency is C = /8 radians/sample 

The pre-warped cut-off frequency is therefore C = 2 tan (/16) = 0.4 

radians/sec. 

 

Formula for 4th order Butterworth 1 radian/sec low-pass system 

function:  

 

                            





















22 85.11

1

77.01

1

ssss
sH a  

 

Scale the analogue cut-off frequency to  c   by replacing s by s / 0.4. 

Then replace s by 2 (z - 1)/(z +1) to obtain: 

 

  

































21

21

21

21

48.0365.11

21
028.0

74.06.11

21
033.0

zz

zz

zz

zz
zH  

 

H(z) may be realised in the form of cascaded bi-quadratic sections as 

shown in fig 4.1   

 

x[n]
0.033

21.6

-0.74

0.028
y[n]

21.36

-0.48

Fig. 6.4:  Fourth order IIR Butterworth filter with cut-off  fs/16
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Figure 4.5(a) shows the gain response for the 4th order Butterworth low-

pass filter whose transfer function was used here as a prototype. Fig 

4.5(b) shows the gain response of the derived digital filter which, like 

the analogue filter, is 1 at zero frequency and 0.707 at the cut-off 

frequency.  Note however that the analogue gain approaches 0 as    

whereas the gain of the digital filter becomes exactly zero at  = . The 

shape of the Butterworth gain response is “warped " by the bilinear 

transformation.  However, the 3dB point occurs exactly at  c for the 

digital filter, and the cut-off rate becomes sharper and sharper as    

because of the compression as   . 

 

3.5  IIR Discrete Time High-pass Band-pass and Band-stop 

Filter Design 
 

The bilinear transformation may be applied to analogue system functions 

which are high-pass, band-pass or band-stop.  Such system functions 

may be obtained from an analogue low-pass 'prototype' system function 

(with cut-off 1 radian/second) by means of the frequency band 

transformations introduced in Section 2.   Wide-band band-pass and 

band-stop filters (fU >> 2fL) may be designed by cascading low-pass and 

Fig. 4.4: Fourth Order IIR Butterworth Filter with Cut-Off 

fs/16 

Fig. 4.5(a): Analogue 4th Order Butterworth Gain Response 
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high-pass sections, thus avoiding the need to apply frequency band 

transformations, but 'narrow band' band-pass/stop filters (fU  not >> 2fL) 

will not be very accurate if a cascading approach is used. 

 

3.6     Comparison of IIR and FIR Digital Filters 

 

IIR type digital filters have the advantage of being economical in their 

use of delays, multipliers and adders.   They have the disadvantage of 

being sensitive to coefficient round-off inaccuracies and the effects of 

overflow in fixed point arithmetic.  These effects can lead to instability 

or serious distortion. Also, an IIR filter cannot be exactly linear phase.  

 

FIR filters may be realised by non-recursive structures which are simpler 

and more convenient for programming especially on devices specifically 

designed for digital signal processing.  These structures are always 

stable, and because there is no recursion, round-off and overflow errors 

are easily controlled.  A FIR filter can be exactly linear phase.   The 

main disadvantage of FIR filters is that large orders can be required to 

perform fairly simple filtering tasks. 

 

4.0      CONCLUSION 
 

In this closing unit, you learnt how to explain bilinear transformation; 

design an IIR low-pass filter by the bilinear transformation method; 

explain higher order IIR digital filters; IIR discrete time high-pass band-

pass and band-stop filter design and compare IIR and FIR digital filters..  

 

5.0    SUMMARY 
 

We defined bilinear transformation and its properties. 

 

We replaced s by 2(z - 1)/(z + 1) to obtain H(z) and rearranged the 

expression for H(z) and realised by bi-quadratic sections. Therefore, we 

design higher order IIR filters as cascades of bi-quadratic sections. 

 

You also learnt that wide-band band-pass and band-stop filters (fU >> 

2fL) may be designed by Cascading low-pass and high-pass sections, 

thus avoiding the need to apply frequency band Transformations, but 

'narrow band' band-pass/stop filters (fU not >> 2fL) will not be very 

accurate if a cascading approach was used. These effects can lead to 

instability or serious distortion. Also, an IIR filter cannot be exactly 

linear phase. 
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6.0 TUTOR-MARKED ASSIGNMENT 
 

i. By referring to the general formula, show that the system function 

of a third order analogue Butterworth low-pass filter with 3 dB 

cut-off frequency at 1 radian/second is: 

 

 
  11

1
2 


sss

sH a                                      

 

ii.  Confirm from the general formula that the system function for a 

3
nd

 order Butterworth type low-pass analogue filter with cut-off 

frequency C radians per second is:   

  



















3

2

2

221

1

ccc

a

sss

sH



 

  

      Give the corresponding differential equation. 

 

Apply the derivative approximation technique to derive from this 

differential equation a third Order IIR Butterworth-type digital filter 

with cut-off frequency 500 Hz where the sampling Frequency is 10 kHz. 

 

iii. A third order low-pass IIR discrete time filter is required with a 

3dB cut-off frequency of one quarter of the sampling frequency, f 

s.  If the filter is to be designed by the bilinear transformation 

applied to a Butterworth low-pass transfer function, design the 

IIR filter and give its signal flow graph in the form of a second 

order and a first order section in serial cascade.  

 

iv.   Give a computer programme to implement the third order IIR 

filter designed above on a processor with floating point 

arithmetic.  How would it be implemented in fixed point 

arithmetic? 

 

v. A low-pass IIR discrete time filter is required with a cut-off 

frequency of one quarter of the sampling frequency, fs, and a 

stop-band attenuation of at least 20 dB for all frequencies   

greater than 3f s /8 and less than f s /2.  If the filter is to be 

designed by the bilinear transformation applied to a Butterworth 

low-pass transfer function, show that the minimum order required 

is three. Design the IIR filter and give its signal flow graph.   
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Fig. 4.6(a): Analogue 4th Order Butterworth Gain Response 


