FBQ1: When the sequence of partial sums tends to an infinite limit, oscillates either finitely or infinitely the series is said to be _____ Answer: divergent

FBQ2: Both Taylor series and Maclaurin series only represent the function f(x) in their interval of ______ Answer: Convergence

FBQ3: When functions are expanded at x = a, we have Taylorâ \in^{TM} s expansion and when functions are expanded at x = 0 then we have _____ expansion Answer: Maclaurin

FBQ4: By considering the hypothesis of mean value theorem, Given that $f(x) = x^2 + 2x + 1 a = 1, b = 2$ Answer: 4

FBQ5: By considering the hypothesis of mean value theorem, Given that $fx=x^2+2x+1$ and a=1, b=2 find fb=_____Answer: 9

FBQ6: By considering the hypothesis of mean value theorem,	Given that fx=x2+2x+1
and $a=1$, $b=2$ find $f\ddot{A}\pm c=$	
Answer: 5	

FBQ7: _____ rule is a technique for approximating the definite integral Answer: Trapezoidal

FBQ8:	rule is an arithmetical rule for estimating the area under a curve where
the values of a	an odd number of ordinates including those at each end.
Answer: Simp	son's

FBQ9: The trapezoidal rule is also known as _____ rule Answer: Trapezium

FBQ10: The a	,2fâ^,xâ^,y of the function fx,y=3x2-x3y3+5xy+6y3 evaluate at the points
x=1 and y=2	S
Answer: -31	

BQ11: The a^,2fa^,y2 of the function fx,y=3x2-x3y3+5xy+6y3 evaluate at the poir	nts
=1 and y=2 is	
Answer: 60	

FBQ12: The limxâ†'2 â□;x2-2xx2-4 is _____

FBQ13: The limxâ†'â^žÂ â□¡xx3+5 is _____ Answer: 0

FBQ14: If fx=x(x2-x-2) satisfies Mean Value Theorem , the value c is _____

Answer: 1/3

FBQ15: The exponential form of the function $fx=1+x+x22!+x33!+x44!+x55!+a^{-1}$ is

Answer: exp x

FBQ16: Find the limit of $[\lim_{(x, y)\rightarrow (2, 1)} x+3y^{2}]$ is _____ Answer: 5

FBQ17: Find the limit of $[\lim_{(x, y) rightarrow(2,4)} \frac{x+y}{x-y}]$ is ______ Answer: -3

FBQ18: Find limit ((x, y, z)) + (1, 2, 5) + (x+y+z)) is ______ Answer: 3

FBQ19: The coefficient of x^{2} in the Taylor series about x^{2} for $f(x)=e^{-x^{2}}$ is _____ Answer: -1

FBQ20: The coefficient of x^{3} in the Taylor series about x=0 for f(x)=sin 2x is

Answer: -4/3

FBQ21: Let $[f(x)=\frac{x}{1+x^{2}}]$ and $\frac{1+x^{2}}{100}+900y^{98}$ is _____ Answer: 0

FBQ22: If the first derivative at x=0 of the function $f(x)=\frac{x^{2}-x+1}$ is

Answer: 2

FBQ23: Given $f(x,y) = 2x^{2}y$, the value $f(x,y) \in x^{x,y}$ at x=2 and y=4 is ______ Answer: 24

FBQ23: .Given that the function $f(x)=\frac{2(x+3)}{x^{2}+x-2}$ has an absolute maximum on the -2<x<q. The maximum value is _____ Answer: 2

FBQ25: The points of inflection of the function $f(x)=x^{4}-12x^{3}+6x-9$ on the interval $-2 \log x \log 10$ and _____ Answer: 0, 6

FBQ26: The value of a such that the function $f(x)=x^{2}+ax+5$, when f(2)=15 is

Answer: 3

FBQ27: If x2+y2-2x-6y+5=0, the value d2ydx2 at x=3, y=2 is _____ Answer: 5

FBQ28: If the Mean Value Theorem satisfies fx=x2 on the interval -2, 1Â, then the value of c is Answer: -1/5 FBQ29: The minimum value of $f(x,y)=x^{2}+y^{2}+6x+12$ is Answer: 3 FBQ30: Suppose w=x3yz+xy+z+3 and x=3cos \hat{a} ;t, \hat{A} , \hat{A} y=3sin \hat{a} ;t and w=2t. The value dwdtt=Ï€2 is _____ Answer: 7 FBQ31: Let $f(x)=\frac{e^{x} \sin(x^{2})}{x}$, then the value of the fifth derivative at x=0 is Answer: 21 FBQ32: Leibniz rule gives the Nth derivative of multiplication of functions Answer: Two FBQ33: Leibniz theorem is applicable if n is a integer Answer: Positive FBQ34: If nth derivative of $xy_{3}+x^{2}y_{2}+x^{3}y_{0}=0$ then order of its nth differential equation is Answer: n+3 FBQ35: For the function $f(x)=\frac{x^{2}}{$ are the number of are the number of points exist in the interval \$\$[0, 7\pi]\$\$ such that \$\$fa€™(c)= 0\$\$ Answer: True FBQ36: $f(x)=\frac{x}{x}$ are the number of points exist in the interval f(c)=0Answer: 18 FBQ37: For all second degree polynomials with $y = ax^2 + bx + k$, it is seen that the Rolles' point is at c = 0. Also the value of k is zero. Then the value of b is _____ Answer: 0 FBQ38: For second degree polynomial it is seen that the roots are equal. Then _____ is the relation between the Rolles point c and the root x Answer: c=x FBQ39: Rolle's Theorem is a special case of ______ theorem Answer: Mean value FBQ40: The value of $sc^{s} if \f(x)=x(x-3)e^{3x}$, is continuous over interval [0, 3] and differentiable over interval (0, 3) (Answer to 3 decimal) Answer: 2.703

FBQ41: The value of $\hat{a} \in a\hat{a} \in m$ are _____ and ____, if f(x) = ax2+32x+4 is continuous over [-4, 0] and differentiable over (-4, 0) and satisfy the Rolle $\hat{a} \in m$ s theorem. Hence find the point in interval (-2,0) at which its slope of a tangent is zero Answer: 8, -2

FBQ42: For the function $f(x) = x2 \ \hat{a} \in 2x + 1$. We have Rolles point at x = 1. The coordinate axes are then rotated by 45 degrees in anticlockwise sense. What is the position of new Rolles point with respect to the transformed coordinate axes_____

Answer: 3/2

FBQ43: If f(a)=f(b) in mean value theorem, then it becomes _____ theorem Answer: Rolle's

FBQ44: Mean Value theorem is applicable to the functions continuous in closed interval [a, b] and ______ in open interval (a, b) Answer: Differentiable

FBQ45: Mean Value theorem is also known as ______ theorem Answer: Lagrange's

FBQ46: The point c is ______ in the curve f(x) = x3 + x2 + x + 1 in the interval [0, 1] where slope of a tangent to a curve is equals to the slope of a line joining (0,1) Answer: 0.54

FBQ47: ______ is the point c between [2,9] where, the slope of tangent to the function $f(x)=1+\hat{a}^{,x}-1$ at point c is equals to the slope of a line joining point (2,f(2)) and (9,f(9)).(Providing given function is continuous and differentiable in given interval). Answer: 4.56

FBQ48: ______ is the point c between [-1,6] where, the slope of tangent to the function f(x) = x2+3x+2 at point c is equals to the slope of a line joining point (-1,f(-1)) and (6,f(6)).(Providing given function is continuous and differentiable in given interval). Answer: 2.5

FBQ49: The necessary condition for the maclaurin expansion to be true for function f(x) is f(x) should be continuous and ______ Answer: Differentiable

FBQ50: The limit \$\$\lim_{(x, y)/rightarrow (0, 0)} \frac{x^{3}-y^{3}}{x-y}\$ is _____ Answer: 0

MCQ1: A single valued function of x is said to be continuous at x=a if Answer: lim fx= f(a)

MCQ2: Which of the following is discontinuous at x = 0Answer: Sin xx

MCQ3: A function y = f(x) is said to be differentiable at a point x = a if

Answer: f1(x) exists that point

MCQ4: Find the derivative of y = Sin-1xAnswer: 11-Â x2

MCQ5: Suppose $u = f(x, \hat{A} y) = x^2 + y^2$, where $x = \cosh 4t$ and $y = 2t + t^2$. Find the total derivative of u with respect to t Answer: $4\sinh 8t + 8t + 12t^2 + 4t^3$

MCQ6: If f(u) = Sin u and $u = x2+y2\hat{A}$ find fx Answer: $\hat{A} Cos\hat{A} U1+x2\hat{A}$

MCQ7: If f(u) = Sinu and $u = x2+y2\hat{A}$ find fy Answer: $y\hat{A} \cos \hat{A} Ux2+y2\hat{A}$

MCQ8: Partial derivatives are said to be continuous if Answer:

MCQ9: Obtain the slope of the tangent at the point (2,3) of the curve $6\hat{A} \times 2 + 3xy\hat{A} + x4 + 3y2 = 0$ Answer: -65Â 24

MCQ10: A function f (x, y) of two variables is said to have a local maximum at (a,b) if there exists a rectangular region containing (a,b) such that _____ Answer: $f(x, \hat{A} y) \hat{a}_{\infty}^{m} r(a, \hat{A} b)$

MCQ11: The local maxima and minima are called the _____ of $(x, \hat{A} y)$ Answer: extreme

MCQ12: To test for critical point if fxxfyy - fxy2< 0 then this givesÂ Answer: saddle point

MCQ13: Obtain the stationary points of $f(x, \hat{A} y) = x^2+y^2$ subject to the constraint condition 3x+2y = 6Answer: $18\hat{A} \ 13\hat{A} \ , 12\hat{A} \ 13$

MCQ14: A function $f(x, \hat{A} y)$ is said to be homogeneous of degree m if Answer: $f(kx, \hat{A} ky) = km f(x, \hat{A} y)$

MCQ15: What is the degree of the function $f(x, \hat{A} y) = x3+4xy2-\hat{A} 3y3$ Answer: three

MCQ16: If x and y are rectangular Cartesian coordinates, $u = f(x, \hat{A} y)$ satisfies laplace $\hat{a} \in \mathbb{T}^{M}$ s equation if Answer: $\hat{a}, 2f\hat{a}, x2\hat{A} + \hat{a}, 2f\hat{a}, y2\hat{A} = 0$

MCQ17: A function $f(x, \hat{A} y)$ is said to have a maximum value of point $(x, \hat{A} y) = (a, \hat{A} b)$ if Answer: $f(a+h, \hat{A} b+k)-f(a, \hat{A} b)$ <0

MCQ18: A function $f(x, \hat{A} y)$ is said to have a minimum value of point $(x, \hat{A} y)$ if Answer: $f(a+h, \hat{A} b+k)-\hat{A} f(a, \hat{A} b)\>0$

MCQ19: If exy+x+y=1, evaluate dy dx at (0,0) Answer: -1

MCQ20: lf xy + Sin y = 2 find dy dxÂ Answer: -y x+Cos y

MCQ21: lf z= Sin (x+y), x = u2+ v2, Â y=2uv. Evaluate dzdu Answer: $2(u+v) \cos(x + u)$

MCQ22: Â With the usual notation a series cannot be convergent unless Answer: $limna^{+}a^{-}za^{-}lun=0$

MCQ23: Let U1+ U2+ . Â . Â . Un+ . Â . Â . Â . be a series of positive terms. If limnâ†'â^žâ \Box_i Un+1Un>1. Then the series Answer: Diverges

MCQ24: As nâ†'â^ž of the series 1+12+13+14+ . Â . Â . is Answer: divergent

MCQ25: For the series 12+23+34+45+ . Â . Â Â . an expression of Un+1 is given by Answer: n+1n+2

MCQ26: By considering the Dâ€[™] Alembert test for positive terms if limnâ†'â^žâ□¡Un+1Un=1, then the series is Answer: inconclusive

MCQ27: By the comparison test, the series $11P+12P+13P+14P\hat{A} + \hat{A} \cdot \hat{A} \cdot \hat{A} \cdot \hat{A} \cdot \hat{A} + 1nP\hat{A} \hat{A}$ _____ if p > 1 Answer: converges

MCQ28: Find limnâ†'â^žâ□¡Sin2xx2 Answer: 1

MCQ29: Evaluate limxâ†'0â□¡Sinhx-Sinxx3 Answer: 1/3

MCQ30: The Taylor's series is given by Answer: fx+h= fx+hfıx+h2fıı(x)2!+ . Â . Â .

MCQ31: Find limxâ†'0â□jtanâ□jx-xx3Â Answer: 1/3

MCQ32: Determine limxâ†'1â□¡Â x3-2x2+4x-34x2-5x+1 Answer: 1

MCQ33: Find the second order derivatives of the function. fx=x2-cosx at x= $\ddot{I} \in 4$ Answer: 2+12

MCQ34: Find the third order derivatives of the function. fx=x2-cosx at x= $\hat{I} \in 4\hat{A}$ Answer: -12

MCQ35: limxâ†'0â \Box_i tanâ \Box_i x-xSin x-x is Answer: -2

MCQ36: From the Taylorâ€[™]s expansion of Cos $i \in 3+x$ in ascending powers of x up to the x3 term find $f\ddot{A}\pm\hat{A}$ $i \in 3$ Answer: -32

MCQ37: From the Taylorâ \in TMs expansion of Cos $\hat{I}\in$ 3+x in ascending powers of x up to the x3 term find f \hat{A} ± \hat{A} ± \hat{A} x Answer: -cosx \hat{A}

MCQ38: From the Taylorâ€[™]s expansion of Cos $I \in 3+x$ in ascending powers of x up to the x3 term find $I \neq xA$ $I \in 3$ Answer: $A^{1/2}$

MCQ39: From the Taylorâ \in TMs expansion of Cos $\hat{I}\in$ 3+x in ascending powers of x up to the x3 term find f \hat{A} ±v \hat{A} x Answer: Cosâ \Box_i x

MCQ40: Suppose fx is a function continuous on a close interval $a\hat{a}$ ^m $x\hat{a}$ ^m $z\hat{a}$ and differentiable on the open interval a<x<b and if fa= \hat{A} fb= \hat{A} 0, then f \ddot{A} ±c Answer: 0

MCQ41: From the Maclaurin expansion fx=ln(1+x) find $f\ddot{A}\pm\ddot{A}\pm\ddot{A}\pm x$ Answer: 21+x3

MCQ42: From the Maclaurin expansion fx=ln(1+x) find $f\ddot{A}\pm vx$ Answer: -6(1+x)4

MCQ43: From the Maclaurin expansion fx=ln(1+x) find $f\ddot{A}\pm\ddot{A}\pm 0$ Answer: -1

MCQ44: From the Maclaurin expansion fx=ln(1+x) find fv0 Answer: 4!

MCQ45: Using Simpsonâ€[™]s rule with 6 equally spaced intervals and by considering the integral â[°]«064+x3dx. Find The number of ordinates Answer: 7

MCQ46: Using Simpsonâ€[™]s rule with 6 equally spaced intervals and by considering the integral â[°]«064+x3dx. Find â[°]†x = strip width Answer: 1

MCQ47: Using Simpsonâ€[™]s rule with 6 equally spaced intervals and by considering the integral â[°]«064+x3dx. Find Area Answer: 22.6square units

MCQ48: The two segment trapezoidal rule of integration is exact for integrating at most _____ order of polynomial Answer: first

MCQ49: Using trapezoidal rule with five (5) equally spaced intervals and by considering the integral. \hat{a}^{*} 12Å Å 1xÅ dx. Evaluate b-an Answer: 1/5

MCQ50: Using trapezoidal rule with five (5) equally spaced intervals and by considering the integral. \hat{a}^{*} 12 \hat{A} \hat{A} 1x \hat{A} dx, evaluate the area of the integral Answer: 17532520