

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE CODE : CIT 834

COURSE TITLE:

OBJECT-ORIENTED PROGRAMMING USING C#

CIT 834
GUIDE

COURSE

ii

COURSE
GUIDE

CIT 834
OBJECT-ORIENTED PROGRAMMING USING C#

Course Developer/Writer Vivian Nwaocha
National Open University of Nigeria
Lagos

Programme Leader Prof Afolabi Adebanjo

National Open University of Nigeria
Lagos

Course Coordinator Vivian Nwaocha
National Open University of Nigeria,
Lagos

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT 834
GUIDE

COURSE

iii

National Open University of Nigeria
Headquarters
14/16 Ahmadu Bello Way
Victoria Island
Lagos

Abuja Annex
245 Samuel Adesujo Ademulegun Street
Central Business District
Opposite Arewa Suites
Abuja

e-mail: @nou.edu.ng
URL: .nou.edu.ng

National Open University of Nigeria 2009

First Printed --------

ISBN:

All Rights Reserved

Printed by ……………..
For
National Open University of Nigeria

CIT 834
GUIDE

COURSE

iv

TABLE OF CONTENTS PAGE

Introduction……………………………………………….. 1
What you will learn in this Course……………………....... 1
Course Aim………………………………………………... 1
Course Objectives…………………………………………. 1 – 2
Working through this Course……………………………… 2
Course Materials…………………………………………... 2
Study Units………………………………………………… 2 – 3
Recommended Texts………………………………………. 3 – 4
Assignment File…………………………………………… 4
Presentation Schedule……………………………………... 4
Assessment………………………………………………… 4
Tutor Marked Assignments (TMAs)………………………. 4 – 5
Final Examination and Grading…………………………… 5
Course Marking Scheme…………………………………… 5
Course Overview………………………………………….. 5 – 6
How to get the most from this course……………………. 6 – 8
Tutors and Tutorials……………………………………….. 8
Summary……….…………………………………………… 8

CIT 834
GUIDE

COURSE

v

Introduction

CIT 834: Object-Oriented Programming Using C# is a 3 credit
course for students studying towards acquiring the Master of Science in
Information Technology and related disciplines.

The course is divided into 5 modules and 21 study units. It will
introduce the students to concepts of Object-Oriented Programming,
.NET framework and C# development. This course also provides
information on Simple Class Creation in C#, Methods, C# Constructors,
Destructors and Static Behaviour. The last module looks at
Polymorphism, Operator Overloading, Indexers and Inheritance.

At the end of this course, it is expected that students should be able to
understand, explain and be adequately equipped with basic issues of C#
and Object-Oriented Programming in general.

The course guide therefore gives you an overview of what the course:
CIT 834 is all about, the textbooks and other course materials to be
referenced, what you are expected to know in each unit, and how to
work through the course material. It suggests the general strategy to be
adopted and also emphasizes the need for self assessment and tutor
marked assignment. There are also tutorial classes that are linked to this
course and students are advised to attend.

What you will learn in this Course

The overall aim of this course, CIT 834, is to boost the programming
expertise of students to enable them develop C# based applications. This
course provides extensive hands-on, case study examples, and reference
materials designed to enhance your programming skills. In the course of
your studies, you will be equipped with definitions of common terms,
characteristics and applications of object-oriented programming using
C#. You will also learn about .NET framework and C# development.
Finally, you will learn about other concepts such as; polymorphism,
indexers and inheritance.

Course Aim

This course aims to give students an in-depth understanding of object-
oriented programming using C#. It is hoped that the knowledge would
enhance the programming expertise of students to enable them develop
C# based applications.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

ii

Course Objectives

It is pertinent to note that each unit has precise objectives. Students
should learn them carefully before proceeding to subsequent units.
Therefore, it may be useful to refer to these objectives in the course of
your study of the unit to assess your progress. You should always look
at the unit objectives after completing a unit. In this way, you can be
sure that you have done what is required of you by the end of the unit.

However, below are overall objectives of this course. On successful
completion of this course, you should be able to:

• Explain the concept of object-oriented programming (OOP)
• Identify the characteristics of OOP
• Give typical examples of object-oriented programming languages
• Outline setup instructions for C# development
• Describe a C# Console application
• Outline the procedure for creating a windows form
• Identify common variables in C#
• State the general form of a dot operator
• State the class definition syntax
• Outline the procedure for creating a simple C# class
• Identify 2 main methods of adding C# Classes
• Describe how methods are declared
• Give a brief description of constructors
• State the syntax for adding a new constructor to a class
• Give the code for creating a destructor
• Describe the concept of garbage collection
• Outline the steps involved in Calling a static method
• List the properties of Static Constructors
• Explain the concept of Polymorphism
• List 2 techniques of creating overloaded methods
• Identify the procedure for carrying out basic operations on

operators
• Give the syntax for declaring one-dimensional and two-

dimensional indexers
• Identify the relationship between polymorphism and inheritance

Working through this Course

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

iii

To complete this course, you are required to study all the units, the
recommended text books, and other relevant materials. Each unit
contains some self assessment exercises and tutor marked assignments,
and at some point in this course, you are required to submit the tutor
marked assignments. There is also a final examination at the end of this
course. Stated below are the components of this course and what you
have to do.

Course Materials

The major components of the course are:

1. Course Guide
2. Study Units
3. Text Books
4. Assignment File
5. Presentation Schedule

Study Units

There are 21 study units and 5 modules in this course. They are:

MODULE 1: FUNDAMENTALS OF OBJECT-ORIENTED
PROGRAMMING AND C#..................……… 1

Unit 1 Object-Oriented Programming………….. 1 – 6
Unit 2 .NET Framework and C# Development…… 7 – 12
Unit 3 Getting Started with C#…………………....... 13 – 20
Unit 4 Common Variables in C# ..………………….. 21 – 25

MODULE 2: SIMPLE CLASS CREATION IN C#…………… 26

Unit 1 Class………………………........................... 26 – 31
Unit 2 Operation on Class……………………….. 32 – 38
Unit 3 Adding Methods …………………………… 39 – 43
Unit 4 C# Class Properties ……………………… 39 – 43

MODULE 3: C# CONSTRUCTORS AND DESTRUCTORS…. 44

Unit 1 Constructors ……………………………... 44 – 50
Unit 2 The Default Constructor……………………. 51 – 57
Unit 3 Destructors ………………………………. 58 – 62
Unit 4 Garbage Collection………………………… 63 – 69

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

iv

MODULE 4: C# STATIC BEHAVIOUR……………………… 68

Unit 1 Static Behaviours…………….……………. 68 – 71
Unit 2 Creating a Static Method…………………… 72 – 78
Unit 3 Static Properties…………………………… 79 – 82
Unit 4 Static Construction………………………… 83 – 87

MODULE 5: MAIN FEATURES…………………….……… 88

Unit 1 Polymorphism……….…………………….. 88 – 93
Unit 2 Overloaded Method…..…………………... 94 – 100
Unit 3 Operator Overloading…………………… 101 – 105
Unit 4 Indexers………….……………………... 106 – 110
Unit 5 Events and Inheritance……………………... 106 – 110

Recommended Texts

These texts will be of enormous benefit to you in learning this course:

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

v

11. Joyce, F. (2006). Microsoft Visual C#.NET with Visual Studio
2005

12. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

13. Martin, A and Luca, C. (2005). A Theory of Objects.
14. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
15. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
16. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
17. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

18. Schreiner, A. (1993). Object oriented programming with ANSI-C.
19. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
20. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

Assignment File

The assignment file will be given to you in due course. In this file, you
will find all the details of the work you must submit to your tutor for
marking. The marks you obtain for these assignments will count towards
the final mark for the course. Altogether, there are 21 tutor marked
assignments for this course.

Presentation Schedule

The presentation schedule included in this course guide provides you
with important dates for completion of each tutor marked assignment.
You should therefore endeavour to meet the deadlines.

Assessment

There are two aspects to the assessment of this course. First, there are
tutor marked assignments; and second, the written examination.

Therefore, you are expected to take note of the facts, information and
problem solving gathered during the course. The tutor marked

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

vi

assignments must be submitted to your tutor for formal assessment, in
accordance to the deadline given. The work submitted will count for
40% of your total course mark.

At the end of the course, you will need to sit for a final written
examination. This examination will account for 60% of your total score.

Tutor Marked Assignments (TMAs)

There are 21 TMAs in this course. You need to submit all the TMAs.
The best 4 will therefore be counted. When you have completed each
assignment, send them to your tutor as soon as possible and make
certain that it gets to your tutor on or before the stipulated deadline. If
for any reason you cannot complete your assignment on time, contact
your tutor before the assignment is due to discuss the possibility of
extension. Extension will not be granted after the deadline, unless on
extraordinary cases.

Final Examination and Grading

The final examination for CIT 834 will be of last for a period of 3 hours
and have a value of 60% of the total course grade. The examination will
consist of questions which reflect the self assessment exercise and tutor
marked assignments that you have previously encountered. Furthermore,
all areas of the course will be examined. It would be better to use the
time between finishing the last unit and sitting for the examination, to
revise the entire course. You might find it useful to review your TMAs
and comment on them before the examination. The final examination
covers information from all parts of the course.

Course marking Scheme

The following table includes the course marking scheme

Table 1 Course Marking Scheme

Assessment Marks
Assignments 1-21 21 assignments, 40% for the best 4

Total = 10% X 4 = 40%
Final Examination 60% of overall course marks
Total 100% of Course Marks

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

vii

Course Overview

This table indicates the units, the number of weeks required to complete
them and the assignments.

Table 2: Course Organizer

Unit Title of Work Weeks
Activity

Assessment
(End of Unit)

 Course Guide Week 1
Module 1 Object-Oriented Programming and C#
Unit 1 Object-Oriented

Programming
Week 1 Assignment 1

Unit 2 .NET Framework and C#
Development

Week 2 Assignment 2

Unit 3 Getting Started with C# Week 3 Assignment 3
Unit 4 Common Variables in

C#.NET
Week 3 Assignment 4

Module 2 Simple Class Creation in C#
Unit 1 Preamble to C# Class Week 4 Assignment 5
Unit 2 Operations on a Class Week 4 Assignment 6
Unit 3 C# Methods Week 5 Assignment 7
Unit 4 C# Class Properties Week 5 Assignment 8
Module 3 C# Constructors and Destructors
Unit 1 Constructors Week 6 Assignment 9
Unit 2 The Default Constructor Week 6 Assignment 10
Unit 3 Destructors Week 7 Assignment 11
Unit 4 Garbage Collection Week 7 Assignment 12
Module 4 C# Static Behaviour
Unit 1 Static Behaviours Week 8 Assignment 13
Unit 2 Creating a Static Behaviour Week 9 Assignment 14
Unit 3 Static Properties Week 10 Assignment 15
Unit 4 Static Constructors Assignment 16
Module 5 Polymorphism
Unit 1 Introduction to

Polymorphism
Week 11 Assignment 17

Unit 2 Overloaded Method Week 12 Assignment 18
Unit 3 C# Operator Overloading Week 13 Assignment 19
Unit 4 C# Indexers Week 14 Assignment 20
Unit 5 C# Inheritance and

Polymorphism
Week 14 Assignment 21

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

viii

How to get the most out of this course

In distance learning, the study units replace the university lecturer. This
is one of the huge advantages of distance learning mode; you can read
and work through specially designed study materials at your own pace
and at a time and place that is most convenient. Think of it as reading
from the teacher, the study guide indicates what you ought to study, how
to study it and the relevant texts to consult. You are provided with
exercises at appropriate points, just as a lecturer might give you an in-
class exercise.

Each of the study units follows a common format. The first item is an
introduction to the subject matter of the unit and how a particular unit is
integrated with the other units and the course as a whole. Next to this is
a set of learning objectives. These learning objectives are meant to guide
your studies. The moment a unit is finished, you must go back and
check whether you have achieved the objectives. If this is made a habit,
then you will increase your chances of passing the course. The main
body of the units also guides you through the required readings from
other sources. This will usually be either from a set book or from other
sources.

Self assessment exercises are provided throughout the unit, to aid
personal studies and answers are provided at the end of the unit.
Working through these self tests will help you to achieve the objectives
of the unit and also prepare you for tutor marked assignments and
examinations. You should attempt each self test as you encounter them
in the units.

The following are practical strategies for working through this
course

1. Read the course guide thoroughly
2. Organise a study schedule. Refer to the course overview for more

details. Note the time you are expected to spend on each unit and
how the assignment relates to the units. Important details, e.g.
details of your tutorials and the date of the first day of the semester
are available. You need to gather together all these information in
one place such as a diary, a wall chart calendar or an organizer.
Whatever method you choose, you should decide on and write in
your own dates for working on each unit.

3. Once you have created your own study schedule, do everything
you can to stick to it. The major reason that students fail is that

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

ix

they get behind with their course works. If you get into difficulties
with your schedule, please let your tutor know before it is too late
for help.

4. Turn to Unit 1 and read the introduction and the objectives for the
unit.

5. Assemble the study materials. Information about what you need for
a unit is given in the table of content at the beginning of each unit.
You will almost always need both the study unit you are working
on and one of the materials recommended for further readings, on
your desk at the same time.

6. Work through the unit, the content of the unit itself has been
arranged to provide a sequence for you to follow. As you work
through the unit, you will be encouraged to read from your set
books.

7. Keep in mind that you will learn a lot by doing all your
assignments carefully. They have been designed to help you meet
the objectives of the course and will help you pass the examination.

8. Review the objectives of each study unit to confirm that you have
achieved them. If you are not certain about any of the objectives,
review the study material and consult your tutor.

9. When you are confident that you have achieved a unit’s objectives,
you can start on the next unit. Proceed unit by unit through the
course and try to pace your study so that you can keep yourself on
schedule.

10. When you have submitted an assignment to your tutor for marking,
do not wait for its return before starting on the next unit. Keep to
your schedule. When the assignment is returned, pay particular
attention to your tutor’s comments, both on the tutor marked
assignment form and also written on the assignment. Consult you
tutor as soon as possible if you have any questions or problems.

11. After completing the last unit, review the course and prepare
yourself for the final examination. Check that you have achieved
the unit objectives (listed at the beginning of each unit) and the
course objectives (listed in this course guide).

Tutors and Tutorials

There are 8 hours of tutorial provided in support of this course. You will
be notified of the dates, time and location together with the name and
phone number of your tutor as soon as you are allocated a tutorial group.

Your tutor will mark and comment on your assignments, keep a close
watch on your progress and on any difficulties you might encounter and
provide assistance to you during the course. You must mail your tutor
marked assignment to your tutor well before the due date. At least two

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

x

working days are required for this purpose. They will be marked by your
tutor and returned to you as soon as possible.

Do not hesitate to contact your tutor by telephone, e-mail or discussion
board if you need help. The following might be circumstances in which
you would find help necessary: contact your tutor if:

• You do not understand any part of the study units or the assigned
readings.

• You have difficulty with the self test or exercise.
• You have questions or problems with an assignment, with your

tutor’s comments on an assignment or with the grading of an
assignment.

You should try your best to attend the tutorials. This is the only chance
to have face-to- face contact with your tutor and ask questions which are
answered instantly. You can raise any problem encountered in the
course of your study. To gain the maximum benefit from the course
tutorials, prepare a question list before attending them. You will learn a
lot from participating in discussion actively. GOODLUCK!

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

xi

Course Code CIT 834

Course Title Object-Oriented Programming Using
C#

Course Developer/Writer Vivian Nwaocha
National Open University of Nigeria
Lagos

Programme Leader Prof Afolabi Adebanjo
National Open University of Nigeria
Lagos

Course Coordinator Vivian Nwaocha
National Open University of Nigeria
Lagos

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

xii

National Open University of Nigeria
Headquarters
14/16 Ahmadu Bello Way
Victoria Island
Lagos

Abuja Annex
245 Samuel Adesujo Ademulegun Street
Central Business District
Opposite Arewa Suites
Abuja

e-mail: @nou.edu.ng
URL: .nou.edu.ng

National Open University of Nigeria 2009

First Printed 2009

ISBN:

All Rights Reserved

Printed by ……………..
For
National Open University of Nigeria

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

xiii

TABLE OF CONTENTS PAGE

Module 1: Object-Oriented Programming and C#............... 1

Unit 1 Object-Oriented Programming………….. 1 – 6
Unit 2 .NET Framework and C# Development…… 7 – 12
Unit 3 Getting Started with C#…………………....... 13 – 20
Unit 4 Common Variables in C# ..………………….. 21 – 25

Module 2: Simple Class Creation in C#……………… 26

Unit 1 Preamble to C# Class………………………..... 26 – 31
Unit 2 Operations on a Class……………………….. 32 – 38
Unit 3 C# Methods …………………………… 39 – 43
Unit 4 C# Class Properties ……………………… 39 – 43

Module 3: C# Constructors and Destructors………… 44

Unit 1 Constructors ……………………………... 44 – 50
Unit 2 The Default Constructor……………………. 51 – 57
Unit 3 Destructors ………………………………. 58 – 62
Unit 4 Garbage Collection………………………… 63 – 69

Module 4: C# Static Behaviour……………………… 68

Unit 1 Static Behaviours…………….……………. 68 – 71
Unit 2 Creating a Static Method…………………… 72 – 78
Unit 3 Static Properties…………………………… 79 – 82
Unit 4 Static Constructors………………………… 83 – 87

Module 5: Polymorphism…………………….……… 88

Unit 1 Introduction to Polymorphism……….…………88 – 93
Unit 2 Overloaded Method…..…………………... 94 – 100
Unit 3 C# Operator Overloading……………… 101 – 105
Unit 4 C# Indexers………….………………… 106 – 110
Unit 5 C# Inheritance and Polymorphism………... 106 – 110

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

1

MODULE 1 OBJECT-ORIENTED PROGRAMMING
AND C#

Unit 1 Object-Oriented Programming (OOP)…… 1 – 6
Unit 2 .NET Framework and C# Development…… 7 – 12
Unit 3 Getting Started with C# …………………....... 13 – 20
Unit 4 Common Variables in C#.NET………………. 21 – 25

UNIT 1 OBJECT-ORIENTED PROGRAMMING (OOP)

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Overview
3.1.1 Object-Oriented Programming Pattern
3.1.2 Characteristics
3.1.3 Benefits
3.1.4 Applications

3.2 Fundamental Concepts
3.2.1 Objects
3.2.2 Classes
3.2.3 Data Abstraction and Encapsulation
3.2.4 Inheritance
3.2.5 Polymorphism
3.2.6 Message Passing

3.3 OOP Languages
 3.3.1 Simula

3.3.2 Smalltalk
3.3.3 C++
3.3.4 Java
3.3.5 .NET

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

The most important thing you would need to learn from this module is
the idea that programming in an object-oriented concept or language is
much more than just learning new functions, syntax, etc. To this end,
object-oriented programming (OOP) is more than learning a new

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

2

language; it requires a new way of thinking. We must no longer think
only in terms of data structures - we must think also in terms of objects.

This module has thus been designed to boost your programming
expertise, assuming the learner has at least completed any programming
language. However, some parts of the topic don’t even require basic
programming idea. Even if you have gained previous programming
experience with any conventional programming language, it is
recommended that you go through the entire module systematically to
gain some insight of the course.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• Define the term object-oriented programming (OOP)
• Identify the characteristics of OOP
• State the benefits of OOP
• Outline the applications of OOP
• Explain the basic concepts of OOP
• Identify what really makes a programming language object-

oriented
• Give typical examples of object-oriented programming languages

3.0 MAIN CONTENT

3.1 Overview

Object-orientation or object oriented programming (OOP) was first
developed in the 1960s, as a programming concept to help Software
Developers build high quality software. Object-orientation is also a
concept which makes developing of projects easier. Consequently,
object-oriented programming attempts to solve the problems with only
one approach; dividing the problems in sub-modules and using different
objects. Objects of the program interact by sending messages to each
other. The drawing below illustrates this clearly -

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

3

To understand the actual concept of object orientation and the OOP, we
should first be acquainted with the basic concepts of OOP and ought to
know the exclusive terms used in this book later.

Object-oriented programming (OOP), reorganizes the programming
problem to allow for a higher level of abstraction. Programming with
objects is quite like working with real-world objects. It groups
operations and data into modular units called objects. These objects can
be combined into structured networks to form a complete program,
similar to how the pieces in a puzzle fit together to create a picture.

By breaking down complex software projects into small, self-contained,

and modular units, object orientation ensures that changes to one part of
a software project will not adversely affect other portions of the
software. Object orientation also aids software reuse. Once functionality
is created in one program, it can easily be reused in other programs.

Definition: “Object-oriented programming is a programming approach
that provides a way of modularizing programs by creating partitioned
memory area for both data and functions that can be used as templates
for creating copies of such modules on demand.”

Thus, an object is considered to be a partitioned area of the computer
memory that stores data and set of operations that can access that data.
Since the memory partitions are independent, the objects can be used in
a variety of different programs without modifications.

3.1.1 Object-Oriented Programming Pattern

The inspiring factor in the invention of object-oriented approach is that
some of the flaws encountered in the procedural approach can be
eradicated. OOP treats data as a critical element in the program

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

4

development and does not allow it to flow freely around the system. It
ties data more closely to the functions that operate on it, and protects it
from accidental modification from outside functions. OOP allows
decomposition of a problem into a number of entities called objects and
then builds data and functions around these objects.
Figure 1.0 shows the organization of data and functions in object-
oriented programs. The data of an object can be accessed only by the
functions associated with that object. However, functions of one object
can access the functions of other objects.

Figure 1.0 Organisation of Data and Functions in OOP

3.1.2 Characteristics of Object-Oriented Programming (OOP)

 Emphasis is on data rather than procedure.
 Programs are divided into what are known as objects.
 Data structures are designed such that they characterize the

objects.
 Functions that operate on the data of an object are tied together in

the data structure
 Data is hidden and cannot be accessed by external functions.
 Objects may communicate with each other through functions.
 New data and functions can be easily added whenever necessary.
 Follows bottom-up approach in program design.

3.1.3 Benefits of Object-Oriented Programming (OOP)

Object-oriented programming offers several benefits to both the
program designer and the user. Object-orientation contributes to the
solution of many problems associated with the development and quality
of software products. The new technology promises greater programmer
productivity, better quality of software and cheaper cost of maintenance.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

5

The principal advantages are:
 We can eliminate redundant code and extend the use of existing

classes through inheritance.
 We can build programs from the standard working modules that

communicate with one another, rather than having to start writing
the code from scratch. This leads to saving of development time
and higher productivity.

 The principle of data hiding helps the programmer to build secure
programs that cannot be invaded by code in other parts of the
program.

 It is possible to have multiple instances of an object to coexist
without any interference.

 It is possible to map objects in the problem domain to those in the
program.

 It is easy to partition the work in a, project based on objects.
 The data-centered design approach enables us to capture more

details of a model in implementable form.
 Object-oriented systems can be easily upgraded from small to

large systems.
 Message passing techniques for communication between objects

makes the interface descriptions with external systems much
simpler.

 Software complexity can be easily managed.

While it is possible to incorporate all these features in an object-oriented
system, their importance depends on the type of the project and the
preference of the programmer.

There are a number of issues that need to be tackled to reap some of the
benefits stated above. For instance, object libraries must be available for
reuse. This technology is still developing and, current products may be
superseded quickly. Strict controls and protocols need to be developed if
reuse is not to be compromised.

However, it is hoped that the object-oriented programming tools would
facilitate software development, which otherwise would be quite
difficult.

3.1.4 Applications of Object-oriented Programming

Applications of OOP are beginning to gain importance in many areas.
The most popular application of object-oriented programming, up to

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

6

now, has been in the area of user interface design such as windows.
Hundreds of windowing systems have been developed, using the OOP
techniques.
Real-business systems are often much more complex and contain many
more objects with complicated attributes and methods. Object-oriented
programming is useful in these types of applications because it can
simplify a complex problem. The promising areas for application of
object-oriented programming include:

 Real-time systems
 Simulation and modeling
 Object-oriented databases
 Hypertext, hypermedia and expert text
 AI and expert systems
 Neural networks and Parallel programming Decision support

and office automation systems
 CIM/CAM/CAD systems

Object-oriented technology is certainly going to change the way
software engineers think, analyze, design and implement future systems.

3.2 Fundamental Concepts of Object-Oriented Programming

It is necessary to understand some of the concepts used extensively in
object-oriented programming. The fundamental concepts of OOP are as
follows:
 Objects
 Classes
 Data abstraction and encapsulation
 Inheritance
 Polymorphism
 Dynamic binding
 Message passing

3.2.1 Objects

Objects are the basic run-time entities in an object-oriented system.
They may represent a person, a place, a bank account, a table of data or
any item that the program has to handle. They may also represent user-
defined data such as vectors, time and lists.
Objects take up space in the memory and have an associated address like
a record in Pascal, or a structure in C.
When a program is executed, the objects interact by sending messages to
one another. For example, if “customer” and “account” are two objects

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

7

in a program, then the customer object may send a message to the
account object requesting for the bank balance. Each object contains
data, and code to manipulate the data. Objects can interact without
having to know details of each other’s data or code. It is sufficient to
know the type of message accepted, and the type of response returned by
the objects. However, different authors represent them differently.

Figure 1.1 shows two notations that are popularly used in object-
oriented analysis and design.

Two ways of representing an Object

Figure 1.1 Notations used in Object-oriented Analysis and Design

3.2.2 Classes

Objects contain data, and code to manipulate that data. The entire set of
data and code of an object can be made a user-defined data type with the
help of a class. In fact, objects are variables of the type class. Once a
class has been defined, we can create any number of objects belonging
to that class. Each object is associated with the data of type class with
which they are created.

Definition
A class is a collection of objects of similar type.
For e.g., mango, apple and orange are members of the class fruit.
Classes are user-defined data types and behave like the built-in types of
a programming language. The syntax used to create an object is no
different than the syntax used to create an integer object in C. If fruit has
been defined as a class, then the statement

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

8

Fruit mango;
will create an object mango belonging to the class fruit.

3.2.3 Data Abstraction and Encapsulation

Encapsulation, also known as data hiding, is an important object-
oriented programming concept. It is the act of concealing the
functionality of a class so that the internal operations are hidden from
the programmer. With correct encapsulation, the developer does not
need to understand how the class actually operates in order to
communicate with it via its publicly available methods and properties;
known as its public interface.

Encapsulation is essential for creating maintainable object-oriented
programs. When the interaction with an object uses only the publicly
available interface of methods and properties, the class of the object
becomes a correctly isolated unit. The wrapping up of data and functions
into a single unit (called class) is known as encapsulation.
Data encapsulation is the most striking feature of a class. The data is not
accessible to the outside world, and only those functions, which are
wrapped in the class, can access it. These functions provide the interface
between the object’s data and the program. This insulation of the data
from direct access by the program is called data hiding or information
hiding.

Abstraction refers to the act of representing essential features without
including the background details or explanations.
Classes use the concept of abstraction and are defined as a list of
abstract attributes such as size, weight and cost, and functions to operate
on these attributes. They encapsulate all the essential properties of the
objects that are to be created. The attributes are sometimes called data
members because they hold information. The functions that operate on
these data are sometimes called methods or member functions. Since the
classes use the concept of data abstraction, they are known as Abstract
Data Types (ADT)

3.2.4 Inheritance

Inheritance is the process by which objects of one class acquire the
properties of objects of another class.
For example, the bird ‘robin’ is a part of the class “flying bird’ which is
again a part of the class ‘bird’. The principle behind this sort of division
is that each derived class shares common characteristics with the class
from which it is derived as illustrated in Figure 1.2.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

9

The concept of inheritance provides the idea of reusability. This means
that we can add additional features to an existing class without
modifying it. This is possible by deriving a new class from the existing
one. The new class will have the combined features of both the classes.
The real appeal and power of the inheritance mechanism is that it allows
the programmer to reuse a class that is almost, but not exactly, what he
wants, and to tailor the class in such a way that it does not introduce any
undesirable side-effects into the rest of the classes.

Note that each sub-class defines only those features that are unique to it.
Without the use of classification, each class would have to explicitly
include all of its features.

Figure 1.2 Property Inheritance

3.2.5 Polymorphism

Polymorphism refers to the ability to take more than one form.
An operation may exhibit different behaviors in different instances. The
behavior depends upon the types of data used in the operation.

For example, consider the operation of addition of two numbers; the
operation will generate a sum. If the operands are strings, then the
operation would produce a third string by concatenation. The process of
making an operator to exhibit different behaviors in different instances
is known as operator overloading.

Figure 1.3 illustrates that a single function name can be used to handle
different number and different types of arguments. This is something
similar to a particular word having several different meanings depending
on the context. Using a single function name to perform different types
of tasks is known as function overloading.

Polymorphism plays an important role in allowing objects having
different internal structures to share the same external interface. This
means that a general class of operations may be accessed in the same
manner even though specific actions associated with each operation may
differ.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

10

Polymorphism is extensively used in implementing inheritance.

Figure 1.3 Polymorphism

3.2.6 Message Passing

An object-oriented program consists of a set of objects that
communicate with each other. The process of programming in an object-
oriented language, therefore, involves the following basic steps:
1. Creating classes that define objects and their behavior,
2. Creating objects from class definitions, and
3. Establishing communication among objects.

Objects communicate with one another by sending and receiving
information much the same way as people pass messages to one another.
The concept of message passing makes it easier to talk about building
systems that directly model or simulate their real-world counterparts. A
message for an object is a request for execution of a procedure, and
therefore will invoke a function (procedure) in the receiving object that
generates the desired result.

Thus, message passing involves specifying the name of the object, the
name of the function (message) and the information to be sent.
Objects have a life cycle. They can be created and destroyed.
Communication with an object is feasible as long as it is a’1ive.

SELF ASSESSMENT EXERCISE

Outline the characteristics of object-oriented programming.

3.3 Object-Oriented Programming Language

What really makes a programming language object oriented? A
programming language is said to be object-oriented when it allows, to
some degree, object-oriented programming techniques, such as
encapsulation, inheritance, modularity and polymorphism.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

11

3.3.1 Simula

As the name implies, Simula was created to aid in simulations. It is not a
coincidence that simulations typically model real-world systems. Many
of these real-world systems contained hundreds, or thousands, of
interacting parts.

The initial version of the language, Simula-1, was introduced in 1966.
The programming modules defined by Simula were based not on
procedures, but on actual physical objects. Simula had a novel way of
presenting the object, so that each object has its own behavior and data.

3.3.2 Smalltalk

Many consider that the first truly object-oriented (O-O) language was
Smalltalk, developed at the Learning Research Group at Xerox's Palo
Alto Research Center in the early 1970s. In Smalltalk, everything is
really an object that enforces the O-O paradigm. It is virtually
impossible to write a program in Smalltalk that is not O-O. This is not
the case for other languages that support objects, such as C++ and
Visual Basic (and Java, for that matter).

3.3.3 C++

C++ has its roots in a project to simulate software running on a
distributed system. This simulator, actually written in Simula, is where
Bjarne Stroustrup conceived of the idea of combining some of the
features of Simula with the syntax of C.

While working at Bell, Stroustrup made personal contacts with people
such as Brian Kernighan and Dennis Ritchie, who wrote the definitive
book on C. When the initial simulator written in Simula failed,
Stroustrup decided to rewrite it in a C predecessor called BCPL.

C++ was originally implemented in 1982 under the name C with
Classes. As the name suggests, the most important concept of C with
Classes was the addition of the class. The class concept provided the
encapsulation now requisite with O-O languages.

3.3.4 Java

Java's origins are in consumer electronics. In 1991, Sun Microsystems
began to investigate how it might exploit this growing market. Some
time later, James Gosling was investigating the possibility of creating a
hardware-independent software platform for just this purpose. Initially,

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

12

he attempted to use C++, but soon abandoned C++ and began the
creation of a new language he dubbed Oak.

By fall 1995, Java beta 1 was released, and the Netscape Navigator 2.0
browser incorporated Java. Java 1.0 was officially released in January
1996. Over the past several years, Java has progressed to the current
release Java 2 Platform Standard Edition 6.0 as well as other platforms
such as an Enterprise Edition (J2EE) for the enterprise/server market
and a Micro Edition (J2ME) for mobile and wireless.

3.3.5 .NET

Microsoft initially responded to the popularity of Java by producing a
version of Java called Visual J++. However, Microsoft decided on a
more comprehensive response. Using many of the groundbreaking
concepts that Java implemented, Microsoft developed a language called
C# that became the foundation for the company's .NET platform. As
with Java, C# relied heavily on the success and failures of earlier
languages.

The .NET development environment includes many of the really good
characteristics of several other platforms. .NET incorporates many of
concepts introduced by the initial Java release. The .NET platform also
builds upon many of the powerful features of the VB6 and Visual C++
environments.

Visual Basic 6 was one of the most popular programming languages.
The programming environment for VB6 has had a huge impact on state-
of-the-art development environments. VB6 has evolved steadily towards
the object-oriented model until it finally joined the list of object-oriented
languages with the release of Visual Basic .NET. VB6 was not totally
object-oriented; it did not implement inheritance completely.

4.0 CONCLUSION

In this unit, we defined some basic concepts of object-oriented
programming. We also looked at the areas of application and benefits of
object-oriented programming.

5.0 SUMMARY

We hope you enjoyed this unit. This unit provided an overview of object
oriented programming: basic definition, characteristics, applications
benefits and key concepts. Now, let us attempt the questions below.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

13

6.0 TUTOR MARKED ASSIGNMENT

Give a brief explanation of the following; Data encapsulation,
Abstraction, Function Overloading and Message Passing.

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

12. Martin, A and Luca, C. (2005). A Theory of Objects.
13. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
14. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
15. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

14

UNIT 2 .NET FRAMEWORK AND C# DEVELOPMENT

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Introducing the .NET Platform
3.1.1 What is .NET?
3.1.2 The Common Language Runtime (CLR)
3.1.3 The .NET Framework Class Library (FCL)
3.1.4 C# and other .NET Languages
3.1.5 The Common Language Specification (CLS)

3.2 Microsoft C# Development
3.2.1 Requirements
3.2.2 Set up Instructions C# Development
3.2.3 Running the Microsoft.NET(C#)
3.2.4 Troubleshooting Setup Issues

3.3 Hello World
 3.3.1 Saving the Hello World File

3.2.2 Initial Hello World Program
3.2.3 Parts of the Hello World Program

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In unit 1, we gave an overview of ‘object-oriented programming’ as well
as its basic concepts and applications. This unit provides information
about setting up your development environment for developers using
Microsoft C# programming language. It includes requirements, Setup
instructions for C# development, Hello world history as well as well as
Console vs. Windows vs. Web Application.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

15

• Identify and explain characteristics of communication
• Illustrate functions of communication
• Explain purposes of communication

3.0 MAIN CONTENT

3.1 Introducing the .NET Platform

As a C# developer, it is essential that you understand the environment
you are building applications on: Microsoft .NET (pronounced “Dot
Net”). After all, your design and development decisions will often be
influenced by code-compilation practicalities, the results of compilation,
and the behavior of applications in the runtime environment. The
foundation of all .NET development begins here, and so it is important
that you take special note of this unit in order to understand concepts
that affect the practical implementation of C#.

By learning about the .NET environment, you can gain an understanding
of what .NET is and what it means to you. You will equally gain
knowledge of the parts of .NET, including the Common Language
Runtime (CLR), the .NET Framework Class Library, and how .NET
supports multiple languages. Along the way, you will see how the parts
of .NET tie together, their relationships, and what they do for you. First,
however, you need to know what .NET is, which is explained in the next
section.

3.1.1 What is .NET?

Microsoft .NET, which is commonly referred to as just .NET, is a
platform for developing “managed” software. The word managed is key
here- a concept setting the .NET platform apart from many other
development environments.

When referring to other development environments, we would be
focusing on the traditional practice of compiling to an executable file
that contains machine code and how that file is loaded and executed by
the operating system. Figure 1.1 shows what I mean about the
traditional compilation-to-execution process.

Figure 1.1 Traditional compilation

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

16

In the traditional compilation process, the executable file is binary and
can be executed by the operating system immediately. However, in the
managed environment of .NET, the file produced by the compiler (the
C# compiler in our case) is not an executable binary. Instead, it is an
assembly, shown in Figure 1.2, which contains metadata and
intermediate language code.

Figure 1.2 Managed compilation.

.NET STANDARDIZATION

As mentioned in the preceding paragraph, an assembly contains
intermediate language and metadata rather than binary code. This
intermediate language is called Microsoft Intermediate Language
(MSIL), which is commonly referred to as IL. IL is a high-level,
component-based assembly language. In later sections of this chapter,
you learn how IL supports a common type system and multiple
languages in the same platform.

.NET has been standardized by both the European Computer
Manufacturers Association (ECMA) and the Open Standards Institute
(OSI). The standard is referred to as the Common Language
Infrastructure (CLI). Similarly, the standardized term for IL is Common
Intermediate Language (CIL).

In addition to .NET, there are other implementations of CIL-the two
most well known by Microsoft and Novell. Microsoft’s implementation
is an open source offering for the purposes of research and education
called the Shared Source Common Language Infrastructure (SSCLI).
The Novell offering is called Mono, which is also open source.

Beyond occasional mention, this book focuses mainly on the Microsoft
.NET implementation of the CLI standard.

The other part of an assembly is metadata, which is extra information
about the code being used in the assembly. Figure 1.3 shows the
contents of an assembly.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

17

Figure 1.3 Assembly contents.

Figure 1.3 is a simplified version of an assembly, showing only those
parts pertaining to the current discussion. Assemblies have other features
that illustrate the difference between an assembly and an executable file.
Specifically, the role of an assembly is to be a unit of deployment,
execution, identity, and security in the managed environment. In Part X,
Chapters 43 and 44 explain more about the role of the assembly in
deployment, identity, and security. The fact that an assembly contains
metadata and IL, instead of only binary code, has a significant
advantage, allowing execution in a managed environment.
The next section explains how the CLR uses the features of an assembly
to manage code during execution.

3.1.2 The Common Language Runtime (CLR)

As introduced in the preceding unit, C# applications are compiled to IL,
which is executed by the CLR. This section highlights several features
of the CLR. You’ll also see how the CLR manages your application
during execution.

Why Is the CLR Important?

In many traditional execution environments of the past, programmers
needed to perform a lot of the low-level work (plumbing) that

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

18

applications needed to support. For example, you had to build custom
security systems, implement error handling, and manage memory.

The degree to which these services were supported on different language
platforms varied considerably. Visual Basic (VB) programmers had
built-in memory management and an error-handling system, but they
didn’t always have easy access to all the features of COM+, which
opened up more sophisticated security and transaction processing. C++
programmers have full access to COM+ and exception handling, but
memory management is a totally manual process. In a later section, you
learn about how .NET supports multiple languages, but knowing just a
little about a couple of popular languages and a couple of the many
challenges they must overcome can help you to understand why the
CLR is such a benefit for a C# developer.

The CLR solves many problems of the past by offering a feature-rich set
of plumbing services that all languages can use. The features described
in the next section further highlight the value of the CLR.

CLR Features

This section describes, more specifically, what the CLR does for you.
Table 1.1 summarizes CLR features with the corresponding
descriptions.

In addition to the descriptions provided in Table 1.1, the following
sections expand upon a few of the CLR features. These features are
included in the CLR execution process.

The CLR Execution Process

Beyond just executing code, parts of the execution process directly
affect your application design and how a program behaves at runtime.
Many of these subjects are handled throughout this book, but this
section highlights specific additional items you should know about.

From the time you or another process selects a .NET application for
execution, the CLR executes a special process to run your application,
shown in Figure 1.4.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

19

Figure 1.4 The CLR execution process (summarized).

As illustrated in Figure 1.4, Windows (the OS) will be running at Start;
the CLR won’t begin execution until Windows starts it. When an
application executes, OS inspects the file to see whether it has a special
header to indicate that it is a .NET application. If not, Windows
continues to run the application.

If an application is for .NET, Windows starts up the CLR and passes the
application to the CLR for execution. The CLR loads the executable
assembly, finds the entry point, and begins its execution process.

The executable assembly could reference other assemblies, such as
dynamic link libraries (DLLs), so the CLR will load those. However,
this is on an as-needed basis. An assembly won’t be loaded until the
CLR needs access to the assembly’s code. It’s possible that the code in
some assemblies won’t be executed, so there isn’t a need to use
resources unless absolutely necessary.

As mentioned previously, the C# compiler produces IL as part of an
assembly’s output. To execute the code, the CLR must translate the IL
to binary code that the operating system understands. This is the
responsibility of the JIT compiler.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

20

As its name implies, the JIT compiler only compiles code before the first
time that it executes. After the IL is compiled to machine code by the
JIT compiler, the CLR holds the compiled code in a working set. The
next time that the code must execute, the CLR checks its working set and
runs the code directly if it is already compiled. It is possible that the
working set could be paged out of memory during program execution,
for various reasons that are necessary for efficient operation of the CLR
on the particular machine it is running on. If more memory is available
than the size of the working set, the CLR can hold on to the code.
Additionally, in the case of Web applications where scalability is an
issue, the working set can be swapped out due to periodic recycling or
heavier load on the server, resulting in additional load time for
subsequent requests.

The JIT compiler operates at the method level. If you aren’t familiar
with the term method, it is essentially the same as a function or
procedure in other languages. Therefore, when the CLR begins
execution, the JIT compiler compiles the entry point (the Main method
in C#). Each subsequent method is JIT compiled just before execution.
If a method being JIT compiled contains calls to methods in another
assembly, the CLR loads that assembly (if not already loaded).

This process of checking the working set, JIT compilation, assembly
loading, and execution continues until the program ends. Some other
detail you might be concerned with is application performance. As
described earlier, code is loaded and JIT compiled. Another DLL adds
load time, which may or may not make a difference to you, but it is
certainly something to be aware of. By the way, after code has been JIT
compiled, it executes as fast as any other binary code in memory.

One of the CLR features listed in Table 1.1 is .NET Framework Class
Library (FCL) support. The next section goes beyond FCL support for
the CLR and gives an overview of what else the FCL includes.

3.1.3 The .NET Framework Class Library (FCL)

.NET has an extensive library, offering literally thousands of reusable
types. Organized into namespaces, the FCL contains code supporting all
the .NET technologies, such as Windows Forms, Windows Presentation
Foundation, ASP.NET, ADO.NET, Windows Workflow, and Windows
Communication Foundation. In addition, the FCL has numerous cross-

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

21

language technologies, including file I/O, networking, text management,
and diagnostics. As mentioned earlier, the FCL has CLR support in the
areas of built-in types, exception handling, security, and threading.
Table 1.2 shows some common FCL libraries.

What Is a Type?

Types are used to define the meaning of variables in your code. They
could be built-in types such as int, double, or string. You can also have
custom types such as Customer, Employee, or Bank Account. Each type
has optional data/behavior associated with it.

The namespaces in Table 1.2 are a sampling from the many available in
the .NET Framework. They’re representative of the types they contain.
For example, you can find Windows Presentation Foundation (WPF)
libraries in the System.Windows namespace, Windows Communication
Foundation (WCF) is in the System.ServiceModel namespace, and
Language Integrated Query (LINQ) types can be found in the
System.Linq namespace.

Another aspect of Table 1.2 is that only two levels are included in the
namespace hierarchy, System.*. In fact, there are multiple namespace
levels, depending on which technology you view. For example, if you
want to write code using the Windows Workflow (WF) runtime, you
look in the System.Workflow.Runtime namespace. Generally, you can
find the more common types at the higher namespace levels.

One of the benefits you should remember about the FCL is the amount of
code reuse it offers. As you read through this book, you’ll see many
examples of how the FCL forms the basis for code you can write. The
FCL was built and intended for reuse, and you can often be much more
productive by using FCL types rather than building your own from
scratch.

Another important feature of the FCL is language neutrality. Just like the
CLR, it doesn’t matter which .NET language you program in-the FCL is
reusable by all .NET programming languages, which are discussed in the
next section.

3.1.4 C# and Other .NET Languages

.NET supports multiple programming languages, which are assisted by
both the CLR and the FCL. Literally dozens of languages target the
.NET CLR as a platform. Table 1.3 lists some of these languages.

Table 1.3 is not a comprehensive list because there are new languages

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

22

being created for .NET on a regular basis. An assumption one could
make from this growing list is that .NET is a successful multi-language
platform.

The C# compiler emits IL. However, the C# compiler is not alone-all
compilers for languages in Table 1.2 emit IL, too. By having a CLR that
consumes IL, anyone can build a compiler that emits IL and join the
.NET family of languages.

In the next section, you learn how the CLR supports multiple languages
via a Common Type System (CTS), the relationship of the languages via
a Common Language Specification (CLS), and how languages are
supported via the FCL.

3.1.5 The Common Language Specification (CLS)

Although the CLR understands all types in the CTS, each language
targeting the CLR will not implement all types. Languages must often be
true to their origins and will not lose their features or add new features
that aren’t compatible with how they are used.

However, one of the benefits of having a CLR with a CTS that
understands IL, and an FCL that supports all languages, is the ability to
write code in one language that is consumable by other languages.
Imagine you are a third-party component vendor and your language of
choice is C#. It would be desirable that programmers in any .NET
language (for example, IronRuby or Delphi) would be able to purchase
and use your components.

For programming languages to communicate effectively, targeting IL is
not enough. There must be a common set of standards to which every
.NET language must adhere. This common set of language features is
called the Common Language Specification (CLS).

Most .NET compilers can produce both CLS-compliant and non-CLS-
compliant code, and it is up to the developer to choose which language
features to use. For example, C# supports unsigned types, which are non-
CLS compliant. For CLS compliance, you can still use unsigned types
within your code so long as you don’t expose them in the public
interface of your code, where code written in other languages can see.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

23

Table 1.1 CLR Features with the Corresponding Descriptions
Feature Description

.NET Framework
Class Library support

Contains built-in types and libraries to manage
assemblies, memory, security, threading, and
other runtime system support

Debugging Facilities for making it easier to debug code.
Exception
management

Allows you to write code to create and handle

exceptions.

Execution
management

Manages the execution of code

Garbage collection Automatic memory management and garbage
collection (Chapter 15)

Interop Backward-compatibility with COM and Win32
code.

Just-In-Time (JIT)
compilation

An efficiency feature for ensuring that the CLR
only compiles code just before it executes

Security Traditional role-based security support, in
addition to Code Access Security (CAS)

Thread management Allows you to run multiple threads of execution

Type loading Finds and loads assemblies and types

Type safety Ensures references match compatible types, which
is very useful for reliable and secure code

Table 1.2 Common FCL Libraries
Feature Description

.NET Framework
Class Library support

Contains built-in types and libraries to manage
assemblies, memory, security, threading, and
other runtime system support

Debugging Facilities for making it easier to debug code.
Exception
management

Allows you to write code to create and handle
exceptions.

Execution
management

Manages the execution of code

Garbage collection Automatic memory management and garbage
collection.

Interop Backward-compatibility with COM and Win32
code.

Just-In-Time (JIT)
compilation

An efficiency feature for ensuring that the CLR
only compiles code just before it executes

Security Traditional role-based security support, in

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

24

 addition to Code Access Security (CAS)
Thread management Allows you to run multiple threads of execution

Type loading Finds and loads assemblies and types

Type safety Ensures references match compatible types, which
is very useful for reliable and secure code.

Table 1.3 .NET Languages

A# Fortran Phalanger (PHP)
APL IronPythonPython

C++ IronRuby RPG

C# J# Silverfrost FTN95
COBOL Jscript Scheme

Component Pascal LSharp SmallScript
Delphi Mercury Smalltalk

Delta Forth Mondrian TMT Pascal
Eiffel.NET Oberon VB.NET

F# Perl Zonnon

SELF ASSESSMENT EXERCISE

What is a type?

3.2 Microsoft C# Development

The most common way of programming with C# is by using the Visual
Studio.NET developers integrated development environment (IDE).
Prior to programming, you should install the latest version of the .NET

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

25

Framework to your PC running Windows. If you like you can install
Visual Studio.NET which installs the .NET Framework automatically.

Once you have the .NET Framework installed, you also have the
Framework SDK, which includes the command-line compiler for C#.
The C# compiler is called csc.exe and exists in the following directory.

C:\WINDOWS\Microsoft.NET\Framework\v1.0.2914
The final directory named v1.0.2914 indicates the version of the .NET
Framework that you have installed.

This directory is set to a path, using the advanced tab of the System
control panel applet. (The Visual Studio .NET installation optionally
sets my path for me). This lets me type csc from the command line in
any directory in my file-system. (I find that I use Visual Studio for my
big projects, but I use the command line compiler for my little tests and
scripts.)

This is all you need to use C#. You can use any editor you like to create
C# source code modules. You should give your C# models a .cs
extension, and you are good to go.

3.2.1 Requirements

The VI SDK includes C# (.cs) source files and Microsoft Visual Studio
project files (solutions or .sln) for both Microsoft Visual Studio 2003
and Microsoft Visual Studio 2005. Web services client application
development for C# requires:

• Development environment for C#, such as Microsoft Visual C#,
Microsoft Visual Studio 2003, or Microsoft Visual Studio 2005.

• Microsoft .NET Framework, specifically Microsoft .NET
Framework 2.0 (which is included with Microsoft Visual Studio
2005).

• Microsoft .NET Framework 2.0 Software Development Kit.
Depending on the specific version of the Microsoft Visual Studio
and Microsoft .NET Framework that you use, you may need to
also specifically install the Microsoft .NET Framework 2.0
software development kit, which includes the command-line C#
compiler (csc.exe).

3.2.2 Setup Instructions for C# Development

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

26

Specific setup instructions will vary, depending on whether your
development workstation already meets some or all of the requirements,
and whether you plan to use the provided samples.

To set up a development workstation to use C#

1. Install the Microsoft Visual programming environment, such as

Microsoft Visual Studio 2005, Microsoft Visual Studio .NET
2003, or Microsoft Visual C#.
VMware recommends using Microsoft Visual Studio 2005,
which includes the required .NET Framework 2.0 and improved
versions of Web-services-client tools.

2. Obtain the Microsoft .NET Framework 2.0 or Microsoft .NET

Framework 1.1. If you have been using Microsoft development
tools for any length of time, it’s likely you already have what’s
needed. If not, you can obtain Microsoft .NET Framework from
Microsoft, at: http://msdn.microsoft.com

3. Obtain the VMware Infrastructure SDK (VI SDK) package from

VMware Web site: http://www.vmware.com/download/sdk/

4. Unpack the various components into appropriate sub-directories.
Use Microsoft defaults for Microsoft Visual Studio, Microsoft
.NET Framework, and Microsoft .NET Framework SDK. To
ensure that all paths to all tools (wsdl.exe, csc.exe) are set
correctly, it’s best to execute the command script from the
Microsoft .NET 2.0 SDK command prompt, available from the
.NET SDK menu.

To build the C# samples

1. Open the Microsoft .NET Framework 2.0 SDK command
prompt (from the Windows Start menu, select
Programs > Microsoft .NET Framework SDK v2.0 > SDK
Command Prompt. The command prompt launches.

2. Navigate to the sub-directory containing the Build2005.cmd and
other files:
cd %SDKHOME%\samples\DotNet

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

27

3. Run the Build2005.cmd to generate new stubs and compile into
an assembly. Simply enter the name of the script at the command
prompt: build2005

4. Test your development workstation.

3.2.3 Running the Microsoft.NET (C#)

These instructions assume that you have followed all setup instructions
detailed in “Setup Instructions for C# Development” of this unit. For all
intents and purposes, using Visual Studio 2003 is discouraged.

To run the SimpleClient application

1. Navigate to the sub-directory where the compiled object code is
located. From the top-level directory of the SDK download, the
directory is as follows:
%SDKHOME%\samples\DotNet\cs\SimpleClient\bin\Debug

2. Run the application, passing to the command line the server
URL and logon credentials. Note that, as coded, the SimpleClient
application (SimpleClient.cs) requires that credentials (user
account and password) be passed to the executable—even if the
server has been configured to support HTTP. You can
change the source code yourself and recompile. If you don’t
provide all three arguments as shown here—server address,
account name, and password—the executable generates an error
message and comes to a halt.
simpleclient https://sdkpubslab-01.eng.vmware.com/sdk
useraccount password
The application connects to the server. A “Bad Server
Certificate” message displays:

Figure

3. Click Yes to dismiss this message and proceed to the server.
Soon, the output from server should display in the console
(command prompt), as shown in Example 4-2:

Example 1.0 Sample Output of a Successful Run of SimpleClient

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

28

Object Type : Datacenter
Reference Value : ha-datacenter
Property Name : name
Property Value : ha-datacenter
Object Type : Folder
Reference Value : ha-folder-root
Property Name : name
Property Value : ha-folder-root

3.2.4 Troubleshooting Setup Issues

If you are unable to successfully run the SimpleClient, check your
environment settings and all other setup tasks. The table Table 4-3 lists
some common error messages and provides steps that you can take to
resolve.

Table 4-3. Microsoft C# Runtime Error Messages

Symptom Possible Solution
SimpleClient.exe
https://<management-server>/sdk
<user>

<pass>
Caught Exception : Name :
WebException Message : Unable
to connect to the remote server
Trace : at
System.Net.HttpWebRequest.Get
RequestStream() at
System.Web.Services.Protocols.So
apHttpClientProtocol.I
nvoke(String methodName,
Object[] parameters) at
VimApi.VimService.RetrieveServi
ceContent(ManagedObject
Reference _this) ...
Exception disconnecting.
Caught Exception : Name :
NullReferenceException Message
: Object reference not set to an
instance of an object.
Trace:
...

Cannot connect to the web service
from Microsoft .NET
client sample through proxy server.
Try a different server
on the same subnet as the client.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

29

3.3 Hello World

After understanding the fundamentals of .NET and its Structure, let us
now move on to look at a classic Hello C# Program. Essentially you can
use any text editor depending on your convenience.

The coding for a simple Hello C# Program is as follows:

using System ;
Class Hello
{
Public static void Main ()
{
Console.writeLine ("Hello C#");
}
} //end of the main

3.3.1 Saving the Hello World File

The file above is saved as Hello.cs. Where “.cs” is an extension to
indicate C-sharp, just like .java for a Java Source File. You have to
supply this extension while saving your file, otherwise the code will not
compile correctly. The saved file will be of .cs.txt extension.

Compile the above Code by giving the following Command at the
Command Prompt csc Hello.cs
If there are compile errors then you will be prompted accordingly,

otherwise you will be getting a com

3.3.2 Initial Hello World Program

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

30

If you run C# for the first time it will take slightly more time as it
configures the environment for the first time. Once C# starts running,
adopt the following steps:

 Select File -> New project
 From the project dialog, select the Console application
 This is the most basic application type on a Windows system
 Click Ok
 Visual C# Express creates a new project for you, including a file

called Program.cs.

It should look somewhat like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{

class Program
{

static void Main(string[] args)
{
}

}
}

Now write the following two lines within the two inner braces

Console.WriteLine("Hello, world!");
Console.ReadLine();

The whole thing now should look as follows

using System;
using System.Collections.Generic;

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

31

using System.Linq;
using System.Text;

namespace ConsoleApplication1
{

class Program
{

static void Main(string[] args)
{

Console.WriteLine("Hello, world!");
Console.ReadLine();

}
}

}

Hit F5 to run the above code. If you have not made any typographical
error the program will actually run and display a black window
displaying Hello World.
`
In the two lines that we wrote the first line ‘Writes a line in the console
window’. The second line ‘Reads a line in the window’. The second line
is required because, without it the program will run and come out of it. So
before you could observe the output on the console window, the program
finishes the task and the console window is closed. Try running the code
with only the first line and see what happens.

You have completed the installation of your first c# program. In the next
unit we will develop detailed C# concepts.

3.3.3 Parts of the Hello World Program

Let us take a look at the first four lines of the code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

32

"using" is a keyword. A keyword is higlighted in blue in Microdoft IDE
editor. This keyword using imports a namespace. A namespace is a
collection of classes. We will get into the details of classes later on. For
now you can assume the classes as a set of variables, properties and
classes. In our program we have imported four namespaces. If you
notice, we have our own namespace ConsoleApplication1.

namespace ConsoleApplication1

Next we define our own class. The C# is an Object Oriented language.
Every line of code that actually does something, is wrapped inside a
class. In this case, the class is called Program.

class Program

A class can contain several variables, properties and methods, concepts.
It is important that you note that our current class only contains one
method and nothing else. It's declared like this:
static void Main(string[] args)

We will now explain the above line. The first word static is a keyword.
The static keyword tells us that this method should be accessible without
creating an instance of the class. The next keyword is void, and tells us
what this method should return. The void means it returns nothing. For
instance, int could be an integer or a string. The next word is Main, this
is the name of our method. This method is the so-called entry-point of
our application, that is, the first piece of code to be executed, and in our
example, the only piece to be executed. Now, after the name of a
method, a set of arguments can be specified within a set of parentheses.
In our example, our method takes only one argument, called args. The
type of the argument is a string, or to be more precise, an array of
strings. Windows applications can always be called with a set of
arguments. These arguments will be passed as text strings to our main
method.

4.0 CONCLUSION

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

33

From our studies in this unit, it is vital to remember that .NET supports
multiple programming languages. It is equally worth noting that some
specific setup instructions are required for C# development.

5.0 SUMMARY

In this unit, we looked at .NET and the programming languages it
supports. We equally considered the setup instructions for C#
development as well as the ‘Hello World’ program. We hope you found
the unit enlightening. To assess your comprehension, attempt the
questions below.

6.0 TUTOR MARKED ASSIGNMENT

What is the relevance of the Common Language Runtime (CLR)?
Outline the procedure for running a Simpleclient application

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

34

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

12. Martin, A and Luca, C. (2005). A Theory of Objects.
13. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
14. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
15. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
16. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

17. Schreiner, A. (1993). Object oriented programming with ANSI-C.
18. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
19. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

35

UNIT 3 GETTING STARTED WITH C#

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 C# Console Application
3.1.1 Saving in C#.NET

3.2 C# Code
3.3 Running C# Programmes
3.4 C# Windows Applications

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

The initial task we have in this unit is to create a very simple
programme, so that you can see what makes up a C# .NET project. You
might be tempted to think you're never going to get to grips with the
project. But don't worry - after a few lessons, things will start to feel
familiar, and you will gain more confidence.

2.0 OBJECTIVES

By the end of this unit, you'll have learnt the following:

• How to create new projects
• What the Solution Explorer is
• The various files that make up of a C# .NET project
• How to save your work
• How to run programmes

3.0 MAIN CONTENT

3.1 C# Console Application

A Console Application is an application that takes input and displays
output at the console. This console looks like a DOS window. If you

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

36

need to see what the DOS window looks like, click your Start menu in
the bottom left of your screen. Click on Run. From the dialogue box
that appears, type cmd:

Click OK and you'll see a black screen, like this one:

This is the type of window you'll see for Console Applications. These
applications are ideal for learning C# development because the user
interface is so simple. Console applications are also very useful for
utility programs that require little or no user interaction.

On the other hand, when you create your Windows forms, there's a
whole lot of code to get used to. But Console Applications start off
fairly simple, and you can see which part of the programme is the most
important.

So with Visual C# Express open, click File from the menu bar at the top.
From the File menu, select New Project:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

37

When you click on New Project, you'll see the following dialogue box
appear:

This is where you select the type of project you want to create. If you
only have the Express edition of Visual C#, the options are limited. For

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

38

the rest of this book, we'll be creating Windows Applications. For now,
select Console Application. Then click OK.

When you click OK, a new Console Application project will be created
for you. Some code should be displayed:

As well as the code, have a look on the right hand side and you'll see the
Solution Explorer. This is where all the files for your project are. (If you
can't see the Solution Explorer, click View from the C# menu bar at the
top. From the View menu, click Solution Explorer.)

The code itself will look very complicated, if you're new to
programming. We'll get to it shortly. For now, right click the
Program.cs tab at the top, and click Close from the menu that appears:

Now double click the Program.cs file in the Solution Explorer:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

39

When you double click Program.cs, you should see the code reappear.
So this code is the programme that will run when anyone starts your
application.

Now click the plus symbol next to Properties in the Solution Explorer
above. You'll see the following:

The file called AssemblyInfo.cs contains information about your
programme. Double click this file to open it up and see the code. Here's
just some of it:

The reddish colour text is something you can change. You can add a
Title, Description, Copyright, Trademark, etc.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

40

But right click the AssemblyInfo.cs tab at the top, and click Close from
the menu. Now, in the Solution Explorer, click the plus symbol next to
References:

These are references to code built in to C#. Much later, you'll see how to
add your own files to this section.

Before we add some code, let's save the project. We'll do that in the next
part below.

3.1.1 Saving in C#.NET

When you save your work, C# will create quite a few folders and files
for you.

The procedure for saving in C#.NET is as follows:

 Click File from the menu bar at the top of the Visual C# Express

software, then Save All:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

41

 When you click Save All, you'll see the following dialogue box

appear:

 You can type any name you like for your project. The default

Name is ConsoleApplication1. Have a look at the location of the
project, though:

C:\Documents and Settings\kayspc\My Documents\Visual Studio

2005\Projects

So it's going to be saved to the "My Documents" folder of this computer
(XP). In the "My Documents" folder you'll find another one called
Visual Studio 2005. In this folder there will be one called Projects.

 Before clicking the Save button, ensure that there is a tick in the

box for "Create directory for solution". Then click Save.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

42

 Now open up Windows Explorer (Hold down the Windows key
on your keyboard, then press the letter "e"), or just double click
the "My Computer" icon on your desktop. Navigate to the folder
location above. In the image below, we've used Windows
Explorer to navigate to the Visual Studio 2005 folder (the 2008
version should be the same):

 Double click the Projects folder to see inside of it. You should
see a folder called ConsoleApplication1. Double click this folder
and you'll see the following:

So there's another folder called ConsoleApplication1. There are two
other files: one that ends in sln, and another that ends in suo. The sln
file is the entire solution. Have a look at the Solution Explorer again:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

43

The one highlighted in blue at the top refers to the sln file. The suo file
contains information about the Visual Studio environment - whether the
plus symbols are expanded in the Solution Explorer, what other files you
have open in this project, and a whole host of other settings. (If you can't
see this file, click Tools > Folder Option in Windows Explorer. Click
the View tab, and select the option for "Show hidden files and folders".)

Double click your ConsoleApplication1 folder, though, to see inside of
it:

Now we have three more folders and two files. You can see the bin and
obj folders in the Solution Explorer:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

44

Click ConsoleApplication1, second from the top. Then click the icon for
Show all Files, circled in red in the image above. The bin and obj
folders will appear. Click the plus arrows to see what's inside of these
folders:

The important one for us is the Debug folder under bin. You'll see why
in a moment. However, it's time to write some code!

SELF ASSESSMENT EXERCISE

What sort of information is found in the suo file?

3.2 C# Code

The only thing we'll do with the code is to write some text to the screen.
But here's the code that Visual C# prepares for you when you first create
a Console Application:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

45

The 3 lines that start with using add references to in-built code. The
namespace line includes the name of your application. A namespace is
a way to group related code together.

You’ll need to take note of the word class. All your code will be written
in classes. This one is called Program (you can call them anything you
like, as long as C# hasn't taken the word for itself). But think of a class
as a segment of code that you give a name to.

Inside of the class called Program there is this code:

static void Main(string[] args)
{
}

This piece of code is known as a Method. The name of the Method
above is Main. When you run your programme, C# looks for a Method
called Main. It uses the Main Method as the starting point for your
programmes. It then executes any code between those two curly
brackets. The blue words above are all special words referred to as
keywords.

But position your cursor after the first curly bracket, and then hit the
enter key on your keyboard:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

46

The cursor automatically indents for you, ready to type something. Note
where the curly brackets are, though in the code above you have a pair
for class Program, and a pair for the Main method. However, if you
miss one out and you'll get error messages.

The single line of code we'll write is this (but don't write it yet):

Console.WriteLine("Hello C Sharp!");

First, type the letter "C". You'll see a popup menu. This popup menu is
called the IntelliSense menu. It tries to guess what you want, and allows
you to quickly add the item from the list. But it should look like this,
after you have typed a capital letter "C":

The icon to the left of the word Console on the list above means that it
is a Class. But press the Enter key on your keyboard. The word will be
added to your code:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

47

Now type a full stop (period) immediately after the word Console. The
IntelliSense menu appears again:

You can use the arrow keys on your keyboard to move up or down the
list. But if you type Write and then the letter L of Line, IntelliSense will
automatically move down and select it for you:

Press the Enter key to add the word WriteLine to your code:

Now type a left round bracket. As soon as you type the round bracket,
you'll see this:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

48

WriteLine is another Method (A Method is just some code that does a
particular job). But the yellow box is telling you that there are 19
different versions of this Method. You could click the small arrows to
move up and down the list. Instead, type the following:

"Hello C Sharp!"

Don't forget the double quotes at the start and end. These tell C# that
you want text. Your code will look like this:

Now type a right round bracket:

Notice the red wiggly line at the end. This is the coding environment's
way of telling you that you've missed something out.

The thing we've missed out is a semicolon. All complete lines of code in
C# must end with a semicolon. Miss one out and you'll get error
messages. Type the semicolon at the end and the red wiggly line will go
away. Your code should now look like this:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

49

Note all the different colours. Visual C# colour-codes the different parts
of your code. The reddish colour between double quotes means that they
are texts; the green colour means it's a Class; blue words are words that
C# reserves for itself.

However, you can change these colours. From the menu bar at the top,
click Tools > Options. Under Environment, click Fonts and Colors.)

It’s time to Build and Run your code!

3.3 Running C# Programmes

You can test your programme a number of ways. This is after it has
been built. This is when everything is checked to see if there are any
errors. Try this:

• From the View menu at the top of Visual C# Express, click

Output. You’ll see a window appear at the bottom
• From the Build menu at the top of Visual C# Express, click

Build Solution
• You should see the following report:

The final line is this:

Build: 1 succeeded or up-to-date, 0 failed, 0 skipped

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

50

That's telling you that everything is OK.

Now try this:

• Delete the semicolon from the end of your line of code
• Click Build > Build Solution again
• Examine the output window

This time, you should see these two lines at the end of the report:

Compile complete -- 1 errors, 0 warnings
Build: 0 succeeded or up-to-date, 1 failed, 0 skipped

This indicates that it couldn't build your solution because there was 1
error.

Put the semicolon back at the end of the line. Now click Debug from the
menu at the top of Visual C# Express. From the Debug menu, select
Start Debugging.

You should see a black DOS window appear and then disappear. Your
programme has run successfully!

To actually see your line of text, click Debug > Start Without
Debugging. You should now see this:

And that's your programme! Have a look at the Solution Explorer on the
right. Because the project has been built, you'll see two more files under
Debug:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

51

We now have a ConsoleApplication1.exe and ConsoleApplication1.pdb.
The exe file is an executable programme, and it appears in the
bin/debug folder. Switch back to Windows Explorer, if you still have it
open. You'll see the exe file there:

You could, if you wanted, create a desktop shortcut to this exe file.
When you double click the desktop shortcut, the programme will run.

But that's enough of Console Applications - we'll move on to creating
Windows Applications.

3.4 C# Windows Applications

From now on, we're going to be creating Windows Applications, rather
than Console Applications. Windows Applications make use of
something called a Form. The Form is blank at first. You then add
control to your form, things like buttons, text boxes, menus, check
boxes, radio buttons, etc. To get your first look at a Windows Form, do
the following.

If you still have your Console Application open from the previous
section, click File from the menu bar at the top of Visual C# Express.
From the File menu, click on Close Solution.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

52

To create your first Windows form project, click the File menu again.
This time, select New Project from the menu. When you do, you'll see
the New Project dialogue box again:

Select Windows Application from the available templates. Keep the
Name on the default of WindowsApplication1 and then click OK.

When you click OK, a new Windows Application project will be created
for you:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

53

The obvious difference from the Console Application you created in the
previous section is the blank Form in the main window. Notice the
Toolbox, though, on the left hand side. We'll be adding controls from the
Toolbox to that blank Form1 you can see in the image above.

If you can't see the Toolbox, you may just see the Tab, as in the
following image:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

54

If your screen looks like the one above, move your mouse over to the
Toolbox tab. It will expand to look like the first one. If you want to
permanently display the Toolbox, click on the pin symbol:

Notice the Solution Explorer on the right side of your screen. (If you
can't see the Solution Explorer, click its entry on the View menu at the
top of Visual C# Express.) If you compare it with the Solution Explorer
when you created your Console Application, you'll see there's only one
difference - the Form.

We still have the Properties, the References and the Program.cs file.
Double click the Program.cs file to open it, and you'll see some familiar
code:

And here's the code from the Console Application:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

55

Both have the same using lines, a namespace, a class called Program,
and a Main Method.

The Main Method is the entry point for your programme. The code
between the curly brackets of Main will get executed when the
programme first starts. The last line in the WindowsApplication1 code
above is the one that Runs Form1 when the Application starts.

You can do other things here. For example, suppose you had a
programme that connects to a server. If it finds a connection then it
loads some information from a database. In the Main Method, you could
check that the server connection is OK. If it's not, display a second form;
if it's OK, then display the first form.

But don't worry if all that code has you scratching your head. The thing
to bear in mind here is that a method called Main starts your
programme. And Program.cs in the Solution Explorer on the right is
where the code for Main lives.

But we won't be writing code in the Program.cs file, so we can close it.
Have a look near the top of the coding window, and you'll see some
tabs:

Right click the Program.cs tab and select Close from the menu that
appears. You should now see your form again (you may have a Start tab
as well. You can close this, if you want).

To see the window where you'll write most of your code, right click
Form1.cs in the Solution Explorer:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

56

The menu has options for View Code and View Designer. The Designer
is the Form you can see at the moment. Click View Code from the menu
to see the following window appear (you can also press the F7 key on
your keyboard):

This is the code for the Form itself. This Form:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

57

The code has a lot more using statements than before. Don't worry about
these for now. They just mean "using some code that's already been
written".

The code also says partial class Form1. It's partial because some code is
hidden from you. To see the rest of it (which we don't need to alter),
click the plus symbol next to Form1.cs in the Solution Explorer:

Now double click Form1.Designer.cs. You'll see the following code:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

58

Again, you see partial class Form1, which is the rest of the code. Click
the plus symbol next to Windows Form Designer generated code.
You'll see the following:

InitializeComponent is a code (a Method) that is automatically
generated for you when you create a new Windows Application project.
As you add things like buttons and text boxes to your form, more code
will be added here for you.

But you don't need to do anything in this window, so you can right click
the Form1.Designer.cs tab at the top, and click Close from the menu.

Click back on the Form1.cs tab at the top to see you form again. If the
tab is not there, right click Form1.cs in the Solution Explorer on the

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

59

right. From the menu, select View Designer. Here's what you should be
looking at:

It's in Designer view that we'll be adding things like buttons and text
boxes to our form. But you can run this programme as it is. From the
Debug menu at the top, click Start Debugging (Or you can just press
the F5 key on your keyboard.):

When you click Start Debugging, Visual C# will Build the programme
first, and then run it, if it can. If it can't run your programme you'll see
error messages.

But you should see your form running on top of Visual Studio. It will
have its own Red X and its own minimize and maximize buttons. Click
the Red X to close your programme, and to return to Visual C# Express.

From now on, when we say Run your programme, this is what we mean:
either press F5, or click Debug > Start Debugging.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

60

4.0 CONCLUSION

Two main applications in C# are console and windows applications.
Double quotes are used to indicate texts. A code is said to be partial if
some codes are hidden. Debugging is used to fix error in C# programs.

5.0 SUMMARY

In this unit, we considered the console and windows applications in C#.
We equally looked at the procedure for these two applications as well as
debugging. Hoping that you understood the topics discussed, you may
now attempt the questions below.

6.0 TUTOR MARKED ASSIGNMENT

What is the function of the double quote in C#? 47
Outline the procedure for debugging a C# program. 49
What makes a code partial? 56

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

61

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

62

UNIT 4 COMMON VARIABLES IN C#.NET

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 String Variables
3.2 Setting up String variables

3.2.1 Characters for Variables
3.3 Assigning Texts to Strings
3.4 C# Comments
3.5 C# Number Variables

3.5.1 C# Integers
3.5 Double and Float Variables

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

Programmes work by manipulating data stored in memory. These
storage areas come under the general heading of Variables. In this unit,
we'll be looking at how to set up and use variables. You'll see how to set
up both text and number variables. Setting up both text and number
variables likewise form part of this unit.

2.0 OBJECTIVES

By the end of this unit, you’ll have learnt the following:

• Identify the common variables in C#
• Explain how texts are assigned to strings in C#
• State how comments are incorporated in C#

3.0 MAIN CONTENT

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

63

3.1 String Variables

The first type of variable we'll take a look at is called a String. String
variables are always text. We'll write a little programme that takes text
from a text box, store the text in a variable, and then display the text in a
message box.

But bear in mind that a variable is just a storage area for holding things
that you'll need later. Think of them like boxes in a room. The boxes are
empty until you put something in them. You can also place a sticker on
the box, so that you'll know what's in it. Let's look at a programming
example.

If you've got your project open from the previous section, click File
from the menu bar at the top of Visual C#. From the File menu, click
Close Solution. Start a new project by clicking File again, then New
Project. From the New Project dialogue box, click on Windows
Application. For the Name, type String Variables, as in the image
below:

Click OK, and you'll see a new form appear. Add a button to the form,
just like you did in the previous section. Click on the button to select it
(it will have the white squares around it), and then look for the

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

64

Properties Window in the bottom right of Visual Studio. Set the
following Properties for your new button:

Name: btnStrings
Location: 90, 175
Size: 120, 30
Text: Get Text Box Data

Your form should then look like this:

We can add two more controls to the form, a Label and a Text Box.
When the button is clicked, we'll get the text from the text box and
display whatever was entered in a message box.

A Label is just that: a means of letting your users know what something
is, or what it is for. To add a Label to the form, move your mouse over
to the Toolbox on the left. Click the Label item under Common
Controls:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

65

Now click once on your form. A new label will be added:

The Label has the default text of label1. When your label is selected, it
will have just the one white square in the top left. When it is selected,
the Properties Window will have changed. Notice that the properties for
a label are very similar to the properties for a button - most of them are
the same!

Change the following properties of your label, just like you did for the
button:

Location: 10, 50
Text: Name

You don't really need to set a size, because Visual C# will automatically
resize your label to fit your text. But your Form should look like this:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

66

Move your mouse back over to the Toolbox. Click on the TextBox entry.
Then click on your form. A new Text Box will be added, as in the
following image:

Instead of setting a location for your text box, simply click it with your
left mouse button. Hold your left mouse button down, and the drag it
just to the right of the Label.

Notice that when you drag your text box around, lines appear on the
form. These are so that you can align your text box with other controls
on the form. In the image below, we've aligned the text box with the left
edge of the button and the top of the Label.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

67

OK, time to add some code. Before you do, click File > Save All from
the menu bar at the top of Visual C#. You can also run your programme
to see what it looks like. Type some text in your text box, just to see if it
works. Nothing will happen when you click your button, because we
haven't written any code yet. Let's do that now. Click the red X on your
form to halt the programme, and you'll be returned to Visual C#.

Double click your button to open up the coding window. Your cursor
will be flashing inside of the curly brackets for the button code:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

68

Notice all the minus symbols on the left hand side. You can click these,
and it will hide code for you. Click the minus symbol next to public
Form1(). It will turn into a plus symbol, and the code for just this
Method will be hidden:

Hiding code like this makes the rest of the coding window easier to read.

SELF ASSESSMENT EXERCISE

How would you access the coding window?

3.2 Setting up String Variables

We're going to set up a string variable. To do this, you require two
things:

 The Type of variable you want, and
 A name for your variable.

Click inside the two curly brackets of the button code, and add the
following:

string firstName;

After the semi-colon, press the enter key on your keyboard to start a new
line. Your coding window will then look like this:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

69

What you have done is to set up a variable called firstName. The Type
of variable is a string. Note that the coding editor will turn the word
"string" blue. Blue denotes the variable type - a string, in this case.
(Other variable types are int, float, and double. These are all number
variables that you'll meet shortly.)

After you have told C# which type of variable you want, you then need
to come up with a name for your variable. This is like the sticker on an
empty box. The empty box is the variable type. Think of these empty
boxes as being of different sizes and different materials. A big, cardboard
box is totally different from a small wooden one! But what you are really
doing here is telling C# to set aside some memory, and that this storage
area will hold strings of text. You give it a unique name so as to tell it
apart from other items in memory. After all, would you be able to find
the correct box, if they were all the same size, the same shape, the same
colour, and had no stickers on them?

The name you pick for your variables, firstName in our case, can be
almost anything you want - it's entirely up to you what you call them.
But you should pick something that is descriptive, and gives you a clue
as to what might be in your variable.

We say you can call your variables almost anything. But there are some
rules, and some words that C# bags for itself. The words that C#
reserves for itself are called Keywords. There are about 80 of these
words, things like using, for, new, and public. If the name you have
chosen for your variable turns blue in the coding window, then it's a
reserved word, and you should pick something else.

3.2.1 Characters for Variables

The only characters that you can use in your variable names are letters,
numbers, and the underscore character (_). And you must start the
variable name with a letter, or underscore. You'll get an error message if
you start your variable names with a number. So these are OK:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

70

firstName
first_Name
firstName2

But these are not:

1firstName (Starts with a number)
first_Name& (Ends with an illegal character)
first Name (Two words, with a space in between)

Notice that all the variable names above start with a lowercase letter.
Because we're using two words joined together, the second word starts
with an uppercase letter. It's recommended that you use this format for
your variables (called camelCase notation.) So firstName, and not
Firstname.

After setting up your variable (telling C# to set aside some memory for
you), and giving it a name, the next thing to do is to store something in
the variable. Add the following line to your code (don't forget the semi-
colon on the end):

firstName = textbox1.Text;

Your coding window will then look like this:

To store something in a variable, the name of your variable goes on the
left hand side of an equals sign. After an equals sign, you type what it is
you want to store in the variable. For us, this is the Text from textbox1.

Except, there's a slight problem. Try to run your code. You should see
an error message like this one:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

71

Click No, and have a look at your code:

There is a blue wiggly line under textbox1. Hold your mouse over this
and Visual Studio will tell you that:

The name 'textbox1' does not exist in the current context.

If you see an error like this, which is quite common, it means that Visual
C# cannot find anything with the name you've just typed. So it thinks we
don't have a textbox called textbox1. And we don't! It's called textBox1.
We've typed a lowercase "b" when it should be an uppercase "B". So it's
important to remember that C# is case sensitive. This variable name:

firstName

Is different to this variable name:

FirstName

The first one starts with a lowercase "f" and the second one starts with
an uppercase "F".

Delete the lowercase "b" from your code and type an uppercase "B"
instead. Run your programme again and you won't see the error
message. Now stop your programme and return to the coding window.
The blue wiggly line will have disappeared.

What have so far, then, is the following:

string firstName;
firstName = textBox1.Text;

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

72

The first line sets up the variable, and tells C# to set aside some memory
that will hold a string of text. The name of this storage area will be
firstName.

The second line is the one that actually stores something in the variable -
the Text from a text box called textBox1.

Now that we have stored the text from the text box, we can do
something with it. In our case, this will be to display it in a message box.
Add this line to your code:

MessageBox.Show(firstName);

The MessageBox.Show() Method is one you've just used. In between
the round brackets, you can either type text surrounded by double
quotes, or you can type the name of a string variable. If you're typing the
name of a variable, you leave the double quotes off. You can do this
because C# knows what is in your variable (you have just told it on the
second line of your code.)

Run your programme again. Type something in your text box, and then
click the button. You should see the text you typed:

Halt your programme and return to the coding window.

3.3 Assigning Text to a String Variable

As well as assigning text from a text box to your variable, you can
assign text like this:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

73

firstName = "Home and Learn";

On the right hand side of the equals sign, we now have some direct text
surrounded by double quotes. This then gets stored into the variable on
the left hand side of the equals sign. To try this out, add the following
two lines just below your MesageBox line:

firstName = "Home and Learn";
MessageBox.Show(firstName);

Your coding window will then look like this:

Run your programme again. Type something in the text box, your own
first name. Then click the button. You should see two message boxes,
one after the other. The first one will display your first name. But the
second will display "Home and Learn".

We're using the same variable name, here: firstName. The first time we
used it, we got the text directly from the text box. We then displayed it
in the Message Box. With the two new lines, we're typing some text
directly in the code, "Home and Learn", and then assigning that text to
the firstName variable. We've then added a second MessageBox.Show(
) method to display whatever is in the variable.

(If you want, you can change these colours. From the menu bar at the

top, click Tools > Options. Under Environment, click Fonts and
Colors.)

Time now to Build and Run your code!

3.4 C# Comments

Comments in C# are incorporated by adding slashes. Thus to integrate a
C# comment the following procedure is adopted:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

74

1 Return to your coding window, and add two forward slashes to the start
of your MessageBox.Show() line. The line should turn green, as in the
following image:

The reason it turns green is that two forward slashes are the characters
you use to add a comment. C# then ignores theses lines when running
the programme. Comments are a very useful way to remind yourself
what the programme does, or what a particular part of your code is for.
Here's our coding window with some comments added:

You can also use the menu bar, or the toolbar, to add comments.
Highlight any line of text in your code. From the menu bar at the top of
Visual C#, select Edit > Advanced > Comment Selection. Two
forward slashes will be added to the start of the line. You can quickly
add or remove comments by using the toolbar. Locate the following
icons on the toolbars at the top of Visual C#:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

75

The comment icons are circled in red, in the image above. The first one
adds a comment, and the second one removes a comment. (If you can't
see the above icons anywhere on your toolbars, click View > Toolbars
> Text Editor.)

Now that you have commented out the MessageBox line, it won't get
executed when your code runs. Instead, add the following like to the end
of your code:

TextMessage.Text = messageText + firstName;

Your coding window should then look like this:

Run your programme again. Type your name in the text box, and then
click your button. The message should now appear on your label, instead
of in a Message Box:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

76

The reason is does so is because you're now setting the Text property of
the Label with code. Previously, you changed the Label's Text Property
from the Properties Window. The name of our label is TextMessage. To
the right of the equals sign, we have the same code that was in between
the round brackets of the Show() method of the MessageBox.

OK, time for an exercise.

Exercise
Add a second text box to your form. Display your message in the text
box as well as on the label. So if your name is John, your second text
box should have: "Your name is: John" in it after the button is clicked.

When you complete this exercise, your form should look like this, when
the button is clicked:

We’re now going to move away from string variables and on to number
variables. The same principles you’ve just learnt still apply, though:

• Set up a variable, and give it a name
• Store something in the variable
• Use code to manipulate what you have stored

3.5 C# Number Variables

As well as storing text in memory you can, of course, store numbers.
There are a number of ways to store numbers, and the ones you'll learn
about now are called Integer, Double and Float. First up, though, are
Integer variables.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

77

First, close any solution you have open by clicking File > Close
Solution from the menu bar at the top of Visual Studio. Start a new
project by clicking File > New Project. From the New Project dialogue
box, select Windows Application from the available templates. Type a
Name for your project. In the image below, we've chosen the name
Numbers:

Click OK, and you'll have a new form to work with.

3.5.1 C# Integers

An integer is a whole number. It's the 6 of 6.5, for example. In
programming, you'll work with integers a lot. But they are just variables
that you store in memory and want to manipulate. You'll now see how to
set up and use Integer variables.

Add a button to your form, and set the following properties for it in the
Properties Window:

Name: btnIntegers
Text: Integers
Location: 110, 20

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

78

Now double click your button to get at the code:

In the previous section, you saw that to set up a string variable you just
did this:

string myText;

You set up an integer variable in the same way. Except, instead of
typing the word string, you type the word int (short for integer).

So, in between the curly brackets of your button code, type int. You
should see the word turn blue, and the IntelliSense list appear:

Either press the enter key on your keyboard, or just hit the spacebar.
Then type a name for your new variable. Call it myInteger. Add the
semi-colon at the end of your line of code, and hit the enter key. Your
coding window will then look like this:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

79

Notice the text in the yellow box, in the image one up from the one
above. It says:

Represents a 32-bit signed integer

A signed integer is one that can have negative values, like -5, -6, etc.
(The opposite, no negative numbers, is called an unsigned integer.) The
32-bit part is referring to the range of numbers that an integer can hold.
The maximum value that you can store in an integer is: 2,147,483,648.
The minimum value is the same, but with a minus sign on the front: -
2,147,483,648.

To store an integer number in your variable, you do the same as you did
for string: type the name of your variable, then an equals sign (=), then
the number you want to store. So add this line to your code (don't forget
the semi-colon on the end):

myInteger = 25;

Your coding window should look like this:

So we've set up an integer variable called myInteger. On the second line,
we're storing a value of 25 inside of the variable.

We'll use a message box to display the result when the button is clicked.
So add this line of code for line three:

MessageBox.Show(myInteger);

Now try to run your code. You'll get the following error message:

You should see a blue wiggly line under your MessageBox code:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

80

Hold your mouse over myInteger, between the round brackets of Show(
). You should see the following yellow box:

The error is: "Cannot convert from int to string". The reason you get this
error is because myInteger holds a number. But the MessageBox only
displays text. C# does not convert the number to text for you. It doesn't
do this because C# is a programming language known as "strongly
typed". What this means is that you have to declare the type of variable
you are using (string, integer, double). C# will then check to make sure
that there are no numbers trying to pass themselves off as strings, or any
text trying to pass itself off as a number. In our code above, we're trying
to pass myInteger off as a string. And C# has spotted it!

What you have to do is to convert one type of variable to another. You
can convert a number into a string quite easily. Type a full stop (period)
after the "r" of myInteger. You'll see the IntelliSense list appear:

Select ToString from the list. Because ToString is a method, you need
to type a pair of round brackets after the "g" of ToString. Your code will
then look like this (we've highlighted the new addition):

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

81

The ToString method, as its name suggests, converts something to a
string of text. The thing we are converting is an integer.

Start your programme again. Because you've converted an integer to a
string, you should find that it runs OK now. Click your button and you
should see the message box appear:

In the next lesson, we'll take a look at double variables, and float
variables.

When you complete this exercise, your form should look like this, when
the button is clicked:

3.6 Double and Float Variables

Integers, as was mentioned, are whole numbers. They can't store the
point something, like .7, .42, and .007. If you need to store numbers that
are not whole numbers, you need a different type of variable. You can
use the double type, or the float type. You set these types of variables
up in exactly the same way: instead of using the word int, you type
double, or float. Like this:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

82

float myFloat;
double myDouble;

(Float is short for "floating point", and just means a number with a point
something on the end.)

The difference between the two is in the size of the numbers that they
can hold. For float, you can have up to 7 digits in your number. For
doubles, you can have up to 16 digits. To be more precise, here's the
official size:

float: 1.5 × 10-45 to 3.4 × 1038
double: 5.0 × 10-324 to 1.7 × 10308

Float is a 32-bit number and double is a 64-bit number.

To get some practice using floats and doubles, return to your form. If
you can't see the Form1.cs [Design] tab at the top, right click Form1.cs
in the Solution Explorer on the right hand side. (If you can't see the
Solution Explorer, click View > Solution Explorer from the menu bar at
the top.)

Add a new button to your form. Set the following properties for it in the
Properties Window:

Name btnFloat
Location: 110, 75
Text: Float

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

83

Double click your new button, and add the following line to the button
code:

float myFloat;

Your coding window will then look like this:

To store something inside of your new variable, add the following line:

myFloat = 0.42F;

The capital letter F on the end means Float. You can leave it off, but C#
then treats it like a double. Because you've set the variable up as a float,
you'll get errors if you try to assign a double to a float variable.

Add a third line of code to display your floating point number in a
message box:

MessageBox.Show(myFloat.ToString());

Again, we have to use ToString() in order to convert the number to a
string of text, so that the message box can display it.

But your coding window should look like ours below:

Run your programme and click your Float button. You should see a
form like this:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

84

Halt the programme and return to your coding window. Now delete the
capital letter F from 0.42. The line will then be:

myFloat = 0.42;

Try to run your programme again. You'll get an error message, and a
blue wiggly line under your code. Because you've missed the F out, C#
has defaulted to using a double value for your number. A float variable
can't hold a double value, confirming that C# is a strongly typed
language. (The opposite is a weakly typed language. PHP, and
JavaScript are examples of weakly typed languages - you can store any
kind of values in the variables you set up.)

Another thing to be careful of when using float variables is rounding up
or down. As an example, change the number from 0.42F to 1234.567F.
Now run your programme, and click your float button. The message box
will be this:

Halt the programme and return to your code. Now add an 8 before the F
and after the 7, so that your line of code reads:

myFloat = 1234.5678F;

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

85

Now run your programme again. When you click the button, your
message box will be this:

It's missed the 7 out! The reason for this is that float variables can only
hold 7 numbers in total. If there's more than this, C# will round up or
down. A number that ends in 5 or more will be rounded up. A number
ends in 5 or less will be rounded down:

1234.5678 (eight numbers ending in 8 - round up)
1234.5674 (eight numbers ending in 4 - round down)

The number of digits that a variable can hold is known as precision. For
float variable, C# is precise to 7 digits: anything more and the number is
rounded off.

4.0 CONCLUSION

Note that, some common variables in C# are Strings, Numbers, Integers,
Double and Float variables. Comments are incorporated in C# by adding
slashes.

5.0 SUMMARY

This unit provided us with information on common variables and
comments in C#. We hope you found this unit remarkable and simple.
Let us attempt the question below.

6.0 TUTOR MARKED ASSIGNMENT

o List the common variables in C#
o Outline the procedure for assigning texts to strings in C#
o State how comments are incorporated in C#

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

86

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

87

MODULE 2 C# CLASS

Unit 1 Preamble to C# Class
Unit 2 Operation on C# Class
Unit 3 Adding Methods
Unit 4 C# Class Properties

UNIT 1 PREAMBLE TO C# CLASS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Class Fundamentals
3.1.1 Class Description
3.1.2 General Form of a Class
3.1.3 General Form of an Instance Variable
3.1.4 General Form of a Dot Operator
3.1.5 Class Definition Syntax
3.1.6 Simple C# Class

3.2 Creating a C# Class
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

Classes are at the heart of every object-oriented language. With classes,
as with a lot of the language's features, C# borrows a little from C++ and
Java and adds some ingenuity to create elegant solutions to old
problems. In this unit, we'll equally give a brief description of classes in
C#.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

88

• Describe a class
• Give the general form of a class
• Declare an instance variable
• State the general form of a dot operator
• State the class definition syntax
• Outline the procedure for creating a simple C# class

3.0 MAIN CONTENT

3.2 Class Fundamentals

The class is the basic building block of code when creating object-
oriented software. It describes in abstract all of the characteristics and
behaviour of a type of object. Once instantiated, an object is generated
that has all of the methods, properties and other behaviour defined
within the class.

Consequently a class should not be confused with an object. The class is
the abstract concept for an object that is created at design-time by the
programmer. While objects based upon the class are the concrete
instances of the class that occur at run-time. For example, the Car class
will define that all cars have a make, model and colour. Only at run-time
will an object be instantiated as a Red.

3.1.1 Class Description

A class is can simply be described as a template that defines the form of
an object. It specifies both the data and the code that will operate on that
data. Methods and variables that constitute a class are called members of
the class.

3.1.2 General Form of a Class

A class is created by use of the keyword class.
The general form of a class definition that contains only instance variables and

methods is given as:

class classname {
// declare instance variables
access type var1;
access type var2;
// ...

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

89

access type varN;

// declare methods
access ret-type method1(parameters) {

// body of method
}
access ret-type method2(parameters) {

// body of method
}
// ...
access ret-type methodN(parameters) {

// body of method
}

}

3.1.3 Declaring Instance Variable

The general form for declaring an instance variable is shown here:

access type var-name;

An instance variable consists of the following:
1. access which specifies the access,
2. type which specifies the type of variable, and
3. var-name which is the variable's name.

In order to access these variables, you will use the dot (.) operator.
The dot operator links the name of an object with the name of a member.

3.1.4 General Form of a Dot Operator

The general form of the dot operator is shown here:

Object.member

The dot operator is used to access both instance variables and methods.

3.1.5 Class Definition Syntax

Class definition syntax is given as:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

90

class MyClass
{

int simpleValue = 0;
}

3.1.6 Simple C# Class

A simple C# class is given as:

using System;

class MainClass {
MainClass() {

Console.WriteLine("MainClass Constructor Called");
}

~MainClass() {
Console.WriteLine("MainClass Destructor Called");

}
void PrintAMessage(string msg) {

Console.WriteLine("PrintAMessage: {0}", msg);
}
void Dispose() {

GC.SuppressFinalize(this);
}

static void Main() {
Console.WriteLine("Top of function main");
MainClass app = new MainClass();
app.PrintAMessage("Hello from class");
Console.WriteLine("Bottom of function main");
app.Dispose();

}
}

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

91

SELF ASSESSMENT EXERCISE

State the class definition syntax

3.2 Creating a Class

Now that we have had an overview of classes, we would consider the
syntax for the creation of a new class. The basic syntax for the creation
of a new class is very simple. The keyword 'class' followed by the name
of the new class is simply added to the program. This is then followed by
a code block surrounded by brace characters {} to which the class' code
will be added.

class class-name {}

4.0 CONCLUSION

We discovered that the class is the basic building block of code when
creating object-oriented software. It describes in abstract all of the
characteristics and behaviour of a type of object. We equally saw the
syntax for a simple class creation as well as the general form of a dot
operator.

5.0 SUMMARY

In this unit, we learnt about the general form of a class, instance variable
declaration general form of a dot operator as well as the procedure for
creating a simple C# class. Be assured that the facts gathered from this
unit will be valuable for building C# applications. OK! Let us attempt
the questions below.

6.0 TUTOR MARKED ASSIGNMENT

 Give a brief description of a class
 State the general form of a dot operator

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

92

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

12. Martin, A and Luca, C. (2005). A Theory of Objects.
13. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
14. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
15. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
16. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

17. Schreiner, A. (1993). Object oriented programming with ANSI-C.
18. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
19. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

93

UNIT 2 OPERATIONS ON A CLASS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Adding a C# Class
3.1.1 Adding a C# Class using a Solution Explorer
3.1.2 Adding a C# Class in Class View

3.2 Instantiating a Class
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

C# Classes can be added by two main methods, these are by using:
(1) The Solution Explorer or (2) The Class View. This unit sheds more
light on this.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• Identify 2 main methods of adding C# Classes
• Enumerate the steps involved in adding a C# Class using Solution

Explorer
• Outline the procedure for adding a C# Class in Class View
• Describe how to instantiate a Class

3.0 MAIN CONTENT

3.1 Adding a C# Class

We can add C# Classes to applications in two main ways, these are by:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

94

a. Adding a C# Class using Solution Explorer
b. Adding a C# Class in Class View

We would look at the procedure for accomplishing these tasks in
the proceeding units.

3.1.1 Adding a C# Class Using Solution Explorer

You can build a generic class that is automatically declared under the
current default namespace. For example, classes added to a project
named WindowsApplication1 are added to the namespace
WindowsApplication1.

Adding a class in Solution Explorer

1. In Solution Explorer, right-click the project name and click Add,

and then click Add Class.

The Add New Item dialog box appears with the C# Class icon

already selected.

2. In the dialog box, enter a class name in the Name field and click

Open.

The new class is added to your project.

3.1.2 Adding a C# Class Using Class View

When you add a class from Class View, you have maximum control defining

elements while using C# Class Wizard.

To add a class in Class View

• In Class View, right-click the project name and click Add

• Then click Add Class

• The C# Class Wizard appears

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

95

SELF ASSESSMENT EXERCISE

Outline the procedure for adding a C# Class using Class View

3.2 Instantiating a Class

Although we have not explicitly added any functionality to the class, it
can now be instantiated to create objects. These objects will have the
standard behaviour of all classes. To demonstrate this, return to the
program code file containing the Main method. In this method we will
create a new vehicle object and run its ToString method to see the
results. As we have not yet defined how ToString should work, this will
simply show the fully qualified name.

static void Main(string[] args)
{

Vehicle car = new Vehicle();
Console.WriteLine(car.ToString()); // Outputs "ClassTest.Vehicle"

}

NB: The prefix of ClassTest is simply the name of the namespace of the
Vehicle class.

4.0 CONCLUSION

Classes are added in C# either by employing the class view or solution
explorer.

5.0 SUMMARY

In summary, this unit looked at two main methods of adding C# Classes.
We equally identified the procedure for instantiating Classes. We can
now attempt the questions below.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

96

6.0 TUTOR MARKED ASSIGNMENT

Outline the procedure for accomplishing the following tasks:

1. Adding a C# class in solution explorer
2. Adding a C# class in class view
3. Instantiating a C# class

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

12. Martin, A and Luca, C. (2005). A Theory of Objects.
13. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

97

14. Michael Lee Scott (2006). Programming language pragmatics,
(2nd Edition) p. 470

15. Pierce, Benjamin (2002). Types and Programming Languages.
MIT Press.

16. Rumbaugh, James; Michael Blaha, William Premerlani,
Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

17. Schreiner, A. (1993). Object oriented programming with ANSI-C.
18. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
19. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

98

UNIT 3 C# METHODS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Methods
3.1.1 Declaring Methods
3.1.2 Calling a Method

3.2 Method Parameters
3.3 Creating a Reference Type
3.4 Return Values
3.5 Public Methods
3.6 Private Methods

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In C# every executed instruction is done in the context of a method.
We’ll be considering methods, how they are called and declared as well
the two common methods.

2.0 OBJECTIVES

At the end of this unit, you should be able to:
• Describe a Method
• Identify how Methods are declared
• Explain the concept of Method Parameters
• State the syntax for declaring a Reference type

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

99

3.0 MAIN CONTENT

3.1 Methods

A method is a code block containing a series of statements. In C#, every
executed instruction is done in the context of a method.

3.1.1 Declaring Methods

Methods are declared within a class or struct by specifying the access
level, the return value, the name of the method, and any method
parameters. Method parameters are surrounded by parentheses, and
separated by commas. Empty parentheses indicate that the method
requires no parameters. This class contains three methods:

class Motorcycle
{

public void StartEngine() { }
public void AddGas(int gallons) { }
public int Drive(int miles, int speed) { return 0; }

}

3.1.2 Calling a Method

Calling a method on an object is similar to accessing a field. After the

object name; add a period, the name of the method, and parentheses.

Arguments are listed within the parentheses, and separated by commas.

The methods of the Motorcycle class can therefore be called like this:

Motorcycle moto = new Motorcycle();

moto.StartEngine();
moto.AddGas(15);
moto.Drive(5, 20);

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

100

SELF ASSESSMENT EXERCISE

How are Methods declared?

3.2 Method Parameters

Passing arguments to a method is simply a matter of providing them in
the parentheses when calling a method. To the method being called, the
incoming arguments are called parameters.

The parameters a method receives are also provided in a set of
parentheses, but the type and a name for each parameter must be
specified. The name does not have to be the same as the argument. For
example:

public static void PassesInteger()
{

int fortyFour = 44;
TakesInteger(fortyFour);

}
static void TakesInteger(int i)
{

i = 33;
}
Here a method called PassesInteger passes an argument to a method
called TakesInteger. Within PassesInteger, the argument is named
fortyFour, but in TakeInteger, this is a parameter named i. This
parameter exists only within the TakesInteger method. Any number of
other variables can be named i, and they can be of any type, so long as
they are not parameters or variables declared inside this method.

Notice that TakesInteger assigns a new value to the provided argument.
One might expect this change to be reflected in the PassesInteger
method once TakeInteger returns, but in fact the value in the variable
fortyFour remains unchanged. This is because int is a value type. By
default, when a value type is passed to a method, a copy is passed
instead of the object itself. Because they are copies, any changes made
to the parameter have no effect within the calling method. Value types
get their name from the fact that a copy of the object is passed instead of
the object itself. The value is passed, but not the same object.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

101

This differs from reference types, which are passed by reference. When
an object based on a reference type is passed to a method, no copy of the
object is made. Instead, a reference to the object being used as a method
argument is made and passed. Changes made through this reference will
therefore be reflected in the calling method.

3.3 Creating a Reference Type

A reference type is created with the class keyword, like this:

public class SampleRefType
{

public int value;
}

Now, if an object based on this type is passed to a method, it will be
passed by reference. For example:

public static void TestRefType()
{

SampleRefType rt = new SampleRefType();
rt.value = 44; ModifyObject(rt);
System.Console.WriteLine(rt.value);

}
static void ModifyObject(SampleRefType obj)
{

obj.value = 33;
}
This example essentially does the same thing as the previous example.
But, because a reference type is used, the modification made by
ModifyObject is made to the object created in the TestRefType method.
The TestRefType method will therefore display the value 33.

3.4 Return Values

Methods can return a value to the caller. If the return type, the type listed
before the method name, is not void, then the method can return the
value using the return keyword. A statement with the keyword return
followed by a value that matches the return type will return that value to
the method caller. The return keyword also stops the execution

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

102

of the method. If the return type is void, a return statement with no
value is still useful to stop the execution of the method. Without the
return keyword, the method will stop executing when it reaches the end
of the code block. Methods with a non-void return type are required to
use the return keyword to return a value. For example, these two
methods use the return keyword to return integers:

class SimpleMath
{

public int AddTwoNumbers(int number1, int number2)
{

return number1 + number2;
}

public int SquareANumber(int number)
{

return number * number;
}

}

To use a value returned from a method, the calling method can use the
method call itself anywhere a value of the same type would suffice. You
can also assign the return value to a variable. For example, the following
two code examples accomplish the same goal:

int result = obj.AddTwoNumbers(1, 2);
obj.SquareANumber(result);

obj.SquareANumber(obj.AddTwoNumbers(1, 2));
Using an intermediate variable, in this case, result, to store a value is
optional. It may help the readability of the code, or it may be necessary
if the value is going to be used more than once.

3.5 Public Methods

Public methods are part of the class' public interface. Essentially, they
are the methods that can be called by other objects.

The syntax for creating methods described previously must be modified
slightly to make the methods visible to external objects. To achieve this,
the public keyword is used as a prefix. The following code added to the
vehicle class provides a new method for pressing a vehicle's horn. Make
sure that you add the code within the class' code block.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

103

public void PressHorn()
{

Console.WriteLine("Toot toot!");
}

To use the new method, change the code within the Main method as
follows:

static void Main(string[] args)
{

Vehicle car = new Vehicle();
car.PressHorn(); // Outputs "Toot toot!"

}

3.6 Private Methods

To provide for encapsulation, where the internal functionality of the
class is hidden, some methods will be defined as Private. Methods with
a private protection level are completely invisible to external classes.
This makes it safe for the code to be modified to change functionality,
improve performance, etc. without the need to update classes that use
the public interface. To define a method as private, the private keyword
can be used as a prefix to the method. Alternatively, using no prefix at
all implies that the method is private by default.

The following method of the car class is a part of the internal
implementation not the public interface so is defined as being private.

private void MonitorOilTemperature()
{

// Internal oil temperature monitoring code...;
}

To demonstrate that this method is unavailable to external classes, try
the following code in the Main method of the program. When you
attempt to compile or execute the program, an error occurs indicating
that the MonitorOilTemperature method cannot be called due to its
protection level.

static void Main(string[] args)
{

Vehicle car = new Vehicle();
car.MonitorOilTemperature();

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

104

4.0 CONCLUSION

In conclusion, Methods are codes of blocks containing series of
statements. They are declared within a class or struct by specifying the
access level, the return value, the name of the method, and any method
parameters. Methods can either be Public or Private.

5.0 SUMMARY

In this unit, we described methods and identified the syntax for
declaring and calling methods. We equally considered the concept of
method parameters and reference types. Hope you grasped the key
points. Now, let us attempt the questions below.

6.0 TUTOR MARKED ASSIGNMENT

• Explain how methods are declared
• State the syntax for declaring a Reference Type

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

105

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

12. Martin, A and Luca, C. (2005). A Theory of Objects.
13. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
14. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
15. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
16. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

17. Schreiner, A. (1993). Object oriented programming with ANSI-C.
18. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
19. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

106

UNIT 4 C# CLASS PROPERTIES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Adding State
3.2 Defining a Class-Scoped Variable
3.3 Accessing Properties of Instantiated Objects

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit expands upon the previous creation of simple classes by
introducing class properties. Properties of a class allow instantiated
objects to have a state with each object controlling its own data. Enjoy
your studies.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• Define a class-scoped variable
• State the syntax for adding two integer variables to the Rectangle

class to hold the height and width
• Explain how to access properties of Instantiated Objects

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

107

3.0 MAIN CONTENT

3.1 Adding State

In the previous unit, you learnt about the basic syntax and process of
creating a class that has methods as a part of its public interface. This
allows the generation of simple classes with behaviour but without state.

However, the state of an object is the property which describes its
individual data or unique configuration. In the example of a car object,
methods allow us to accelerate or decelerate but the state, described in
properties, allows us to determine the actual speed and to describe one
car object as red and another as blue. This information creates a real
differentiation between the two objects.

SELF ASSESSMENT EXERCISE

Which property describes the unique configuration of an object?

3.2 Defining a Class-Scoped Variable

In many cases, the information that is made public via a property is held
directly within the object as a variable. This variable has a scope that
makes it visible to the entire class. This is not always the case however,
as the information may be held in a database or other external source or
may be calculated rather than stored. In the class example in this unit, two
of the property values will be held in variables and two will be
calculated.

To define a class-scoped variable, the declaration is made within the
class' code block but outside of any methods or properties. Although not
required, it is useful to precede the variable declaration with the private
keyword to make the code clear and easy to read. Using this syntax, we
can add two integer variables to the Rectangle class to hold the height
and width.

class Rectangle
{

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

108

private int _width;
private int _height;

}

NB: The use of lower camel case and an underscore (_) prefix is one
naming standard for class-level variables. It is a useful, though not
essential, convention.

3.3 Accessing Properties of Instantiated Objects

Properties of instantiated objects are accessed using the object name
followed by the member access operator (.) and the property name. The
property can be read from and written to using similar syntax as for a
standard variable. To demonstrate this, consider the following example
code, added to the Main method of the program. It creates two objects
based upon the Rectangle class and assigns and reads their properties
individually. When trying to assign an invalid height to a rectangle, an
exception is thrown by the validation code.

static void Main(string[] args)
{

Rectangle rect = new Rectangle();
rect.Width = 50;
rect.Height = 25;

Rectangle square = new Rectangle();
square.Height = square.Width = 40;

Console.WriteLine(rect.Height); // Outputs "25"
Console.WriteLine(square.Width); // Outputs "40"

rect.Height = 25; // Throws the validation exception.

}

NB: The sample code demonstrates both encapsulation and state. The
state of the two rectangles is held internally and independently and the
implementation details of the properties are hidden from the program. If,
in the future, we need to move the data from the private variables into an
XML file or database, the Main method will not need to be changed.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

109

4.0 CONCLUSION

To wrap up, recall that the state of an object is the property which
describes its individual data or unique configuration. A class-scoped
variable is defined by making a declaration within the class' code block
but outside of any methods or properties. Properties of instantiated
objects are accessed using the object name followed by the member
access operator (.) and the property name.

5.0 SUMMARY

This unit provided an overview of class properties, illustrating how to
define class-scoped variables and access properties of instantiated
objects. However, to assess your level of assimilation , you would need
to attempt the questions below.

6.0 TUTOR MARKED ASSIGNMENT

 Define a class-scoped variable
 Describe how to access properties of instantiated objects

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

110

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

12. Martin, A and Luca, C. (2005). A Theory of Objects.
13. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
14. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
15. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
16. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

17. Schreiner, A. (1993). Object oriented programming with ANSI-C.
18. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
19. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

111

MODULE 3 C# CONSTRUCTORS AND DESTRUCTORS

Unit 1 Constructors
Unit 2 Default Constructor
Unit 3 Destructors
Unit 4 Garbage Collection

UNIT 1 CONSTRUCTORS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Significance of Constructors
3.2 What is a Constructor?
3.3 Creating a New Class

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit examines constructors. These special methods allow objects to
be initialised on instantiation and to perform final actions before they are
removed from memory. Enjoy your studies.

2.0 OBJECTIVES

What you would study in this unit, would enable you:

• Identify the main significance of constructors
• Give a brief description of constructors
• Create a new class

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

112

3.0 MAIN CONTENT

3.1 Significance of Constructors

To set properties in Classes, an object is instantiated and the property
values are assigned individually. This gives the desired result but is not
ideal as it is possible for a property to be forgotten and left undefined,
possibly leaving the entire object in an invalid state. This problem is
solved with the use of constructors by initialising all the public and
private state of the object.

SELF ASSESSMENT EXERCISE

What is the main function of a constructor?

3.2 What is a Constructor?

A constructor is a special class member that is executed when a new
object is created. The constructor's job is to initialise all of the public
and private state of the new object and to perform any other tasks that
the programmer requires before the object is used.

3.3 Creating a New Class

In this unit, we will create a new class to represent a triangular shape.
This class will define three properties: the triangle's height, base-length
and area. To begin, create a new console application and add a class
named "Triangle". Copy and paste the following code into the class to
create the three properties that are required.

public class Triangle
{

private int _height;

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

113

private int _baseLength;

public int Height
{

get
{

return _height;
}
set
{

if (value < 1 || value > 100)
{

throw new OverflowException();
}

_height = value;

}
}

public int BaseLength
{

get
{

return _baseLength;
}
set
{

if (value < 1 || value > 100)
{

throw new OverflowException();
}

_baseLength = value;

}
}

public double Area
{

get
{

return _height * _baseLength * 0.5;
}

}
}

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

114

4.0 CONCLUSION

Winding up, we can go over the key points of this unit. A constructor is
a special class member that is executed when a new object is created.
The main function of the constructor is to initialise all of the public and
private state of the new object and to perform any other tasks that the
programmer requires before the object is used. To create a new class to
represent a triangular shape that will define three properties: the
triangle's height, base-length and area. First, create a new console
application and add a class named "Triangle". Then key in the required
appropriate code into the class to create the three properties that are
required.

5.0 SUMMARY

This unit provided an overview of constructors, their key role and
procedure for creating a class of a new object to define some properties.
We hope you have found this unit interesting.

6.0 TUTOR MARKED ASSIGNMENT

 What is a constructor?
 Outline the procedure involved in creating a new class to

represent a rectangular shape that will define the rectangle’s
length, width and area

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

115

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

12. Martin, A and Luca, C. (2005). A Theory of Objects.
13. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
14. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
15. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
16. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

17. Schreiner, A. (1993). Object oriented programming with ANSI-C.
18. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
19. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

116

UNIT 2 THE DEFAULT CONSTRUCTOR

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 What is a Default Constructor?
3.2 Replacing the Default Constructor

3.2.1 Syntax for Adding a New Constructor to a Class
3.2.2 Maintaining the Valid Range of the Sides of a

Triangle
3.3 Executing the Constructor

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit gives a general idea of the default constructor. It equally states
the syntax for adding a new constructor to a class and gives the
description of how the constructor is executed. Enjoy your studies.

2.0 OBJECTIVES

What you would study in this unit, would equip you to do the following:

• Describe the default constructor
• State the Syntax for adding a new constructor to a class
• Give the code for maintaining the valid range of the sides of a

triangle (class)
• Describe how to execute the constructor

3.1 What is a Default Constructor?

A default constructor is simply the constructor that is applied in a class if
no other constructor is explicitly declared by the developer. This
constructor causes all of the value type properties and variables to be set
to zero and all reference types to be set to null. If these are invalid
values for an object, as in the Triangle class above, the default

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

117

constructor will always create an object that is invalid. In this case, the
default constructor should be replaced.

SELF ASSESSMENT EXERCISE

When is a default constructors applied in a class?

3.2 Replacing the Default Constructor

3.2.1 Syntax for Adding a New Constructor to a Class

The syntax to add a new constructor to a class is similar to that of adding
a method. However, the constructor has the same name as the class and
does not include a return type. The declaration for the Triangle's new
constructor is therefore simply:

public Triangle()

3.2.2 Maintaining the Valid Range of the Sides of a Triangle

To ensure that all triangles will have a height and base-length within the
valid range, we will make the class' constructor set both of these
properties to one unit for all new Triangle objects. This is achieved by
simply setting the underlying private variables in the constructor's code
block. Add the following code within the class' code block to add the
constructor.

public Triangle()
{

Console.WriteLine("Triangle constructor executed");

_height = _baseLength = 1;
}

NB: The Console.WriteLine command is added to show that the
constructor has been executed in the examples. This would generally not
be added to a real class definition.

3.3 Executing the Constructor

The newly added constructor replaces the default constructor and is
executed automatically when a new Triangle is instantiated. This can be

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

118

tested by adding some code to the console application's Main method.
Add the following code and execute the program to test the results and
to see that the height and base-length are set correctly.

static void Main(string[] args)
{

Triangle triangle = new Triangle();

Console.WriteLine("Height:\t{0}", triangle.Height);
Console.WriteLine("Base:\t{0}", triangle.BaseLength);
Console.WriteLine("Area:\t{0}", triangle.Area);

}

/* OUTPUT

Triangle constructor executed
Height: 1
Base: 1
Area: 0.5

*/

4.0 CONCLUSION

To end, a default constructor is simply the constructor that is applied in
a class if no other constructor is explicitly declared by the developer. We
also identified. Ensure that all classes, say triangles, have a height and
base-length within the valid range, by simply setting the underlying
private variables in the constructor's code block.

5.0 SUMMARY

This unit provided an overview of the default constructor. It equally
stated the syntax for adding a new constructor to a class and explained
how the constructor is executed. We hope you found this unit
enlightening.

6.0 TUTOR MARKED ASSIGNMENT

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

119

• Give the code for maintaining the valid range of the sides of a
triangle (class)

• Describe how to execute the constructor

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

12. Martin, A and Luca, C. (2005). A Theory of Objects.
13. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
14. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
15. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

120

16. Rumbaugh, James; Michael Blaha, William Premerlani,
Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

17. Schreiner, A. (1993). Object oriented programming with ANSI-C.
18. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
19. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

121

UNIT 3 DESTRUCTORS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Destructors
3.1.1 Application of Destructors
3.2.1 Calling the Finalizer of a Base Class Object

3.2 Creating a Destructor
3.3 Executing the Destructor

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In the previous unit we examined default constructors. Here, we will be
looking at destructors. These special methods allow an object to be
initialised on instantiation and to perform final actions before it is
removed from memory. Do make the most of your studies.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• Define a destructor
• Discover the application of destructors
• Call the function of a base class object
• Give the syntax for creating a destructor
• State the condition for automatically executing destructors

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

122

3.0 MAIN CONTENT

3.1 Destructors

A destructor is a special member that can be added to a class. It is called
automatically when an object is no longer required and is being removed
from memory.

3.1.1 Application of Destructors

The destructor can be useful because it can ensure that all objects of a
particular class terminate cleanly. For example, if a class maintains a
database connection, the destructor can be used to ensure that any
database transaction is rolled back if it has not been committed and that
the database connection is closed when the object is cleaned up.

3.1.2 Calling the Finalizer of a Base Class Object

Destructors are sometimes known as finalizers. In other .NET
languages, the object class' Finalize method can be overridden to
provide the clean-up code. In C#, this is not permitted so the destructor
syntax must be used. This forces the calling of the finalizer of the base
class of the object too, by implicitly converting the destructor statements
into the Finalize code below:

protected override void Finalize()
{

try
{

// Destructor code
}
finally
{

base.Finalize();
}

}

SELF ASSESSMENT EXERCISE

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

123

How would you call the finalizer of a base class object?

3.2 Creating a Destructor

The syntax to create a destructor is very simple. The class name is
prefixed with a tilde character (~). No parameters are permitted as the
destructor cannot be called manually. To add a destructor to the Triangle
class, add the following code:

~Triangle()
{

Console.WriteLine("Triangle destructor executed");
}

NB: The destructor outputs a message only as there is no clean up
required for Triangle objects.

3.3 Executing the Destructor

The destructor is executed automatically when the object is being
removed from memory. This can be demonstrated by running the
console application. The output should be as follows:

Triangle constructor executed
Height: 5
Base: 8
Area: 20
Triangle destructor executed

NB: Classes that require finalizers should also implement the
interface.

4.0 CONCLUSION

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

124

In conclusion, a destructor also known as a finalizer is a special
member that can be added to a class. It is executed automatically when
the object is being removed from memory.

5.0 SUMMARY

We considered destructors, their application, and the syntax for creating
them as well as the condition for automatically executing them. To test
your knowledge, let us attempt the exercise below.

6.0 TUTOR MARKED ASSIGNMENT

 Explain how destructors are called
 Give the code for adding a destructor to the Triangle class

ANSWER TO SELF ASSESSMENT EXERCISE

The finalizer of the base class of the object is called by implicitly
converting the destructor statements into the Finalize code below:

protected override void Finalize()
{

try
{

// Destructor code
}
finally
{

base.Finalize();
}

}

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

125

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

12. Martin, A and Luca, C. (2005). A Theory of Objects.
13. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
14. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
15. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
16. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

17. Schreiner, A. (1993). Object oriented programming with ANSI-C.
18. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
19. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

126

UNIT 4 GARBAGE COLLECTION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Garbage Collection
3.2 Role of a Garbage Collector
3.3 Garbage Collection and Destructors

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit we will be learning about the concept of garbage collection.
We would also discover the role of garbage collection and its
relationship with destructors. Hope you would be able to grasp the key
points.

2.0 OBJECTIVES

What you would study in this unit, would enable you to:

• Describe the concept of garbage collection
• Discover the role of a garbage collector
• Identify the relationship between garbage collection and

destructors

3.0 MAIN CONTENT

3.1 Garbage Collection

When objects are created they occupy some memory. As memory is a
limited resource, it is important that once the objects are no longer

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

127

required, they are cleaned up and their memory is reclaimed. The .NET
framework uses a system of garbage collection to perform this activity
automatically so that the developer does not need to control this directly.

SELF ASSESSMENT EXERCISE

Why is garbage collection essential in the process of object creation?

3.2 Role of the Garbage Collector

 The garbage collector periodically checks for objects in memory
that are no longer in use and that are referenced by no other
objects.

 It also detects groups of objects that reference each other but as a
group have no other remaining references. When detected, the
objects' destructors are executed and the memory utilised is
returned to the pool of available memory.

3.3 Garbage Collection and Destructors

The garbage collection system is completely automated and requires
little consideration by the C# developer. However, it is important to
understand that an object's destructor is not called immediately, that it
falls out of scope. There can be a delay until the garbage collector
decides to reclaim the object's memory and it is only at this point that
the destructor is called.

4.0 CONCLUSION

In this unit, we saw that garbage collectors periodically check for
objects in memory that are no longer in use and that are referenced by
no other objects. They also detect groups of objects that reference each
other but as a group have no other remaining references. The destructor
is called when the garbage collector decides to reclaim the object's
memory.

5.0 SUMMARY

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

128

This unit introduced the concept of garbage collection. We equally
identified the key roles of garbage collectors as well as their relationship
with destructors. We hope you enjoyed your studies.

6.0 TUTOR MARKED ASSIGNMENT

What are the key roles of the garbage collector?

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

12. Martin, A and Luca, C. (2005). A Theory of Objects.
13. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
14. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

129

15. Pierce, Benjamin (2002). Types and Programming Languages.
MIT Press.

16. Rumbaugh, James; Michael Blaha, William Premerlani,
Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

17. Schreiner, A. (1993). Object oriented programming with ANSI-C.
18. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
19. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

130

MODULE 4 C# STATIC BEHAVIOUR

Unit 1 Methods
Unit 2 Creating a Static Method
Unit 3 Static Properties
Unit 4 Static Constructors

UNIT 1 C# METHODS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Relevance of Methods
3.2 Syntax required for creating a Method
3.3 One Simple Method: OneMethod.cs

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In the previous modules, we discussed classes, methods and constructors
as well as destructors. This unit describes the concept of static
behaviours. These behaviours are accessible from classes without the
requirement to instantiate new objects.

2.0 OBJECTIVES

What you would study in this unit, would enable you to:

• Discover the importance of methods
• State the syntax required for creating a method
• Identify the

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

131

3.0 MAIN CONTENT

3.1 Relevance of Methods

Methods help you separate your code into modules that perform specific
tasks. They are extremely useful because they allow you to separate
your logic into different units. You can pass information to methods,
have it perform one or more statements, and retrieve a return value. The
capability to pass parameters and return a value is optional and depends
on what you want the method to do.

SELF ASSESSMENT EXERCISE

Why are methods extremely useful?

3.2 Syntax Required for Creating a Method

Here's a description of the syntax required for creating a method:

attributes modifiers return-type method-name(parameters)

{
statements

}

The return-type can be any C# type. It can be assigned to a variable for
use later in the program. The method name is a unique identifier for
what you wish to call a method. To promote understanding of your code,
a method name should be meaningful and associated with the task the
method performs. Parameters allow you to pass information to and from
a method. They are surrounded by parenthesis. Statements within the
curly braces carry out the functionality of the method.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

132

3.3 One Simple Method: OneMethod.cs

The program below illustrates one simple method:

using System;

class OneMethod
{

public static void Main()
{

string myChoice;

OneMethod om = new OneMethod();

do
{

myChoice = om.getChoice();

// Make a decision based on the user's choice
switch(myChoice)
{

case "A":
case "a":

Console.WriteLine("You wish to add an address.");
break;

case "D":
case "d":

Console.WriteLine("You wish to delete an address.");
break;

case "M":
case "m":

Console.WriteLine("You wish to modify an address.");
break;

case "V":
case "v":

Console.WriteLine("You wish to view the address list.");
break;

case "Q":
case "q":

Console.WriteLine("Bye.");
break;

default:
Console.WriteLine("{0} is not a valid choice", myChoice);
break;

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

133

}

// Pause to allow the user to see the results
Console.WriteLine();
Console.Write("press Enter key to continue...");

Console.ReadLine();
Console.WriteLine();

} while (myChoice != "Q" && myChoice != "q"); // Keep going
until the user wants to quit

}

string getChoice()
{

string myChoice;

// Print A Menu
Console.WriteLine("My Address Book\n");

Console.WriteLine("A - Add New Address");
Console.WriteLine("D - Delete Address");
Console.WriteLine("M - Modify Address");
Console.WriteLine("V - View Addresses");
Console.WriteLine("Q - Quit\n");

Console.Write("Choice (A,D,M,V,or Q): ");

// Retrieve the user's choice
myChoice = Console.ReadLine();
Console.WriteLine();

return myChoice;

}
}

The program above accepts input in the Main() method, this
functionality has been moved to a new method called getChoice(). The
return type is a string. This string is used in the switch statement in
Main(). The method name "getChoice" describes what happens when it
is invoked. Since the parentheses are empty, no information will be
transferred to the getChoice() method.

Within the method block we first declare the variable myChoice.
Although this is the same name and type as the myChoice variable in
Main(), they are both unique variables. They are local variables and they

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

134

are visible only in the block they are declared. In other words, the
myChoice in getChoice() knows nothing about the existence of the
myChoice in Main(), and vice versa.

The getChoice() method prints a menu to the console and gets the user's
input. The return statement sends the data from the myChoice variable
back to the caller, Main(), of getChoice(). Notice that the type returned
by the return statement must be the same as the return-type in the
function declaration. In this case it is a string.

In the Main() method we must instantiate a new OneMethod object before
we can use getChoice(). This is because of the way getChoice() is
declared. Since we did not specify a static modifier, as for Main(),
getChoice() becomes an instance method. The difference between
instance methods and static methods is that multiple instances of a class
can be created (or instantiated) and each instance has its own separate
getChoice() method. However, when a method is static, there are no
instances of that method, and you can invoke only that one definition of
the static method.

So, as stated, getChoice() is not static and therefore, we must instantiate
a new object to use it. This is done with the declaration OneMethod om
= new OneMethod(). On the left hand side of the declaration is the
object reference om which is of type OneMethod. The distinction of om
being a reference is important. It is not an object itself, but it is a
variable that can refer (or point) to an object of type OneMethod. On the
right hand side of the declaration is an assignment of a new OneMethod
object to the reference om. The keyword new is a C# operator that
creates a new instance of an object on the heap. What is happening here
is that a new OneMethod instance is being created on the heap and then
being assigned to the om reference. Now that we have an instance of the
OneMethod class referenced by om, we can manipulate that instance
through the om reference.

Methods, fields, and other class members can be accessed, identified, or
manipulated through the "." (dot) operator. Since we want to call
getChoice(), we do so by using the dot operator through the om
reference: om.getChoice(). The program then executes the statements in
the getChoice() block and returns. To capture the value getChoice()
returns, we use the "=" (assignment) operator. The returned string is
placed into Main()'s local myChoice variable. From there, the rest of the
program executes as expected, using concepts from previous units.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

135

4.0 CONCLUSION

In this unit, we learnt that methods are valuable because they allow you
to separate your logic into different units. You can pass information to
methods, have it perform one or more statements, and retrieve a return
value. We equally identified the syntax for creating a method.

5.0 SUMMARY

In this unit, we considered methods and illustrated one simple method.
We hope you enjoyed your studies. Let us attempt the question below.

6.0 TUTOR MARKED ASSIGNMENT

State the syntax for creating a method

7.0 REFERENCES/FURTHER READINGS

21. Abelson, H and Gerald J. S. (1997). Structure and Interpretation

of Computer Programs. The MIT Press.
22. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented

Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

23. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

24. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

25. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

26. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

27. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

28. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

29. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

136

30. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

31. Joyce, F. (2006). Microsoft Visual C#.NET with Visual Studio
2005

32. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

33. Martin, A and Luca, C. (2005). A Theory of Objects.
34. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
35. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
36. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
37. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

38. Schreiner, A. (1993). Object oriented programming with ANSI-C.
39. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
40. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

137

UNIT 2 CREATING A STATIC METHOD

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Declaring a Static Method in C#
3.2 Calling a Static Method in C#

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you'll gain knowledge of how to declare and call static
methods in C#. Enjoy your studies.

2.0 OBJECTIVES

What you would study in this unit, would equip you to do the following:

• Declare a static method
• Add a method to a new class
• Call a static method

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

138

3.0 MAIN CONTENT

3.1 Declaring a Static Method in C#

A static method is declared using a similar syntax to a class method.

The 'static' keyword is used in the declaration to indicate the modified

behaviour. To add the mass calculation method to the new class,

insert the following code:

public static int CalculateMass(int density, int volume)
{

return density * volume;
}

SELF ASSESSMENT EXERCISE

State the code for adding a mass calculation method to a new class

3.2 Calling a Static Method in C#

Static methods are called without reference to a specific instance of a
class. Instead of supplying an object name followed by the method
name, the class name and method name are used, separated by a full stop
(or period). We can demonstrate this using the Main method of the
console application as follows:

static void Main(string[] args)
{

int density = 50;
int volume = 100;

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

139

int mass = MassCalculator.CalculateMass(density, volume);

Console.WriteLine("Mass: {0}", mass); // Outputs "Mass:
5000"
}

It is important to understand that static methods may not directly use
non-static members. It is invalid for one static method to directly call a
non-static method or property without first instantiating an object.
Similarly, private variables that are not marked as static cannot be
utilised by a static method. The reverse of this is not true of course, as a
non-static member can call a static method.

4.0 CONCLUSION

To wrap up, we discovered that the 'static' keyword is used to modify
behaviour. We also learnt that Static methods are called without
reference to a specific instance of a class.

5.0 SUMMARY

In this unit, we learnt how to declare and call static methods in C#. Let
us now attempt the questions below.

6.0 TUTOR MARKED ASSIGNMENT

What is the function of the ‘static’ keyword in a C# declaration?

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

140

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Joyce, F. (2006). Microsoft Visual C#.NET with Visual Studio
2005

12. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

13. Martin, A and Luca, C. (2005). A Theory of Objects.
14. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
15. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
16. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
17. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

18. Schreiner, A. (1993). Object oriented programming with ANSI-C.
19. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
20. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

141

UNIT 3 STATIC PROPERTIES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Types of Properties
3.2 Creating a Static Private Variable
3.3 Exposing a Static Property
3.4 Using a Static property

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you have a chance to learn another aspect of object-oriented
programming using C#. We will study the types of static properties and
the procedure for using them. We’ll equally look at the condition for
adding a static property to a class.

2.0 OBJECTIVES

What you would study in this unit, would enable you do the following:

• List the common types of static properties
• Explain how to create static private variable
• State the condition for adding a static property to a class
• Outline the procedure for using a static property

3.0 MAIN CONTENT

3.1 Types of Properties

Static properties provide the functionality of standard properties, except
that the property is not linked to any instance of the class. Static
properties can be read/write, read-only or write-only as with standard
properties. As such, they can essentially be thought of as global
variables.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

142

SELF ASSESSMENT EXERCISE

List 3 types of static properties

3.2 Creating a Static Private Variable

In the earlier unit describing class properties we created a class-level
private variable to hold the data behind a property. As mentioned above,
private variables may not be accessed by static methods, and this also
applies in the case of static properties. Instead, we must create a static
private variable if the property value is to be held rather than calculated.

In the MassCalculator class we will implement a call counter that is
incremented every time the mass calculation method is used. The current
value for the call counter is stored in a static private variable that may
now be added within the class' code block:

private static int _callCount;

To maintain the counter, adjust the CalculateMass method so that it
increments the variable on every call:

public static int CalculateMass(int density, int volume)
{

_callCount++;
return density * volume;

}

3.3 Exposing a Static Property

As you may expect, adding a static property to a class requires only that
the declaration includes the 'static' keyword to modify the property's
behaviour. We can now add the read-only call count property to the
class.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

143

public static int CallCount
{

get
{

return _callCount;
}

}

3.4 Using a Static Property

To use the static property, the property name is preceded by the class
name and the member access operator (.). To demonstrate, adjust the
Main method to perform two mass calculations and output the call count
property as follows:

static void Main(string[] args)
{

int density = 50; int
volume = 100; int
volume2 = 180;

int mass1 = MassCalculator.CalculateMass(density, volume);
int mass2 = MassCalculator.CalculateMass(density, volume2);
int calls = MassCalculator.CallCount;

Console.WriteLine("Mass1: {0}", mass1); // Outputs "Mass1:

5000"
Console.WriteLine("Mass2: {0}", mass2); // Outputs "Mass2:

9000"
Console.WriteLine("Calls: {0}", calls); // Outputs "Calls: 2"

}

4.0 CONCLUSION

In conclusion, we have seen that static properties are often thought of as
global variables, they can be read/write, read-only or write-only. The
only condition for adding a static property to a class is that the
declaration includes the 'static' keyword to modify the property's
behaviour.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

144

5.0 SUMMARY

In sum, we discovered the common types of static properties, the
condition for adding a static property to a class as well as the procedure
for using a static property. You can now attempt the questions below.

6.0 TUTOR MARKED ASSIGNMENT

Outline the procedure for using a static property

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Joyce, F. (2006). Microsoft Visual C#.NET with Visual Studio
2005

12. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

145

13. Martin, A and Luca, C. (2005). A Theory of Objects.
14. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
15. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
16. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
17. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

18. Schreiner, A. (1993). Object oriented programming with ANSI-C.
19. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
20. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

146

UNIT 4 STATIC CONSTRUCTORS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Overview of Static Constructors
3.2 Properties of Static Constructors
3.3 Adding a Static Constructor

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit gives a general idea of static constructors and their specific
properties. You’ll actually find this aspect simple and interesting. Enjoy
your studies!

2.0 OBJECTIVES

What you would study in this unit, would equip you to do the
following:

• Explain the concept of static constructors
• Identify the properties of static constructors
• Outline the procedure involved in adding a static constructor

3.0 MAIN CONTENT

3.1 Overview of Static Constructors

A static constructor is used to initialise the static state of a class when it
is first used. A static constructor is always declared as private and as
such may not be directly called by a program. A static constructor

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

147

therefore has no facility to add parameters. It is also not possible to
include a static destructor.

SELF ASSESSMENT EXERCISE

How are static constructors declared?

3.2 Properties of Static Constructors

Static constructors have the following properties:

• A static constructor does not take access modifiers or have

parameters.

• A static constructor is called automatically to initialize the

before the first instance is created or any static members are

referenced.

• A static constructor cannot be called directly.

• The user has no control on when the static constructor is executed

in the program.

• A typical use of static constructors is when the class is using a log

file and the constructor is used to write entries to this file.

• Static constructors are also useful when creating wrapper classes

for unmanaged code, when the constructor can call the

LoadLibrary method.

• If a static constructor throws an exception, the runtime will not

invoke it a second time, and the type will remain uninitialized for

the lifetime of the application domain in which your program is

running.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

148

3.3 Adding a Static Constructor

To add a static constructor, create a private constructor with the static
keyword as a prefix. The following code could be added to the
MassCalculator class if the appropriate static methods were available to
retrieve the previously saved call count from a file or other storage.

static MassCalculator()
{

_callCount = InitialiseCallCount();
}

4.0 CONCLUSION

A static constructor is used to initialise the static state of a class when it
is first used. It is constantly declared as private and as such may not be
directly called by a program. A static constructor is added by creating a
private constructor with the static keyword as a prefix.

5.0 SUMMARY

In this unit, we learnt about static constructors, their properties as well
as the procedure for adding a static constructor. Ok! We can now
attempt the questions below.

6.0 TUTOR MARKED ASSIGNMENT

State at least 4 properties of static constructors
Give a brief description of how to add a static constructor

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

149

http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Joyce, F. (2006). Microsoft Visual C#.NET with Visual Studio
2005

12. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

13. Martin, A and Luca, C. (2005). A Theory of Objects.
14. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
15. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
16. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
17. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

18. Schreiner, A. (1993). Object oriented programming with ANSI-C.
19. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
20. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

150

MODULE 5 POLYMORPHISM

Unit 1 Introduction to Polymorphism
Unit 2 Overloaded Method
Unit 3 C# Basic Operator Overloading
Unit 4 C# Indexers
Unit 5 C# Inheritance and Polymorphism

UNIT 1 INTRODUCTION TO POLYMORPHISM

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Polymorphism versus Object-oriented Programming
3.2 Method Overloading
3.3 Advantages of Method Overloading

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit is a preamble to polymorphism. It describes the concept of
method overloading stating their advantages. Do take note of the key
points.

2.0 OBJECTIVES

What you would study in this unit, would equip you to:

• Give a brief description of the term “polymorphism”
• Identify the relationship between polymorphism and object-

oriented programming
• Describe the concept of “Method Overloading”
• Explain the expression “Signature of the Method”
• Outline the advantages of method overloading

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

151

3.0 MAIN CONTENT

3.1 Polymorphism versus Object-oriented Programming

One of the key features of object-oriented programming is
polymorphism. Polymorphism permits objects to behave in different
ways according to the manner in which they are used. One part of
polymorphism is the ability for a method to behave differently according
to the types and number of parameters that are passed to it. This is
achieved through method overloading.

SELF ASSESSMENT EXERCISE

State the relationship between polymorphism and object-oriented
programming

3.2 Method Overloading

Method overloading is a technique which allows the programmer to
define many methods with the same name but with a different set of
parameters. Each combination of parameter types is known as a
signature of the method. When a call is made to one of these
overloaded methods, the compiler automatically determines which of the
methods should be used according to the arguments used in the call and
the available method signatures.

3.3 Advantages of Method Overloading

One of the greatest advantages of method overloading is the
improvement that it provides to code readability and maintainability. In
languages that do not support this technique, or that of optional
operands, a new method must be created for every possible combination
of parameters. For example, in the ANSI C programming language to
truncate a value you would use trunc, truncf or truncl according to the
data type being rounded.

In C#, method overloading allows you to always call Math.Truncate.
This becomes even more useful when a change in the requirements of

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

152

the program means that data types change. Unlike with the older
languages, the C# truncate method would require no code modification.

When using method overloading, each version of a method should
perform the same general function using different data types or numbers
of parameters. Although it is possible to create two methods with the
same name that perform completely different tasks, this just reduces the
quality of your code.

4.0 CONCLUSION

To end, we learnt that polymorphism is one of the key features of
object-oriented programming and that method overloading allows the
programmer to define many methods with the same name but with a
different set of parameters.

5.0 SUMMARY

In this unit, we looked at: the relationship between object-oriented
programming and polymorphism as well as the concept of method
overloading and their advantages. You may now proceed to the tutor
marked assignment below.

6.0 TUTOR MARKED ASSIGNMENT

Explain the expression “Signature of the Method”

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

153

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Joyce, F. (2006). Microsoft Visual C#.NET with Visual Studio
2005

12. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

13. Martin, A and Luca, C. (2005). A Theory of Objects.
14. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
15. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
16. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
17. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

18. Schreiner, A. (1993). Object oriented programming with ANSI-C.
19. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
20. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

154

UNIT 2 OVERLOADED METHOD

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Creating an Overloaded Method
3.2 Automatic Type Conversion
3.3 Return Type Limitation

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, we'll learn about the procedure for creating a method as well
as adding a new method. We’ll equally discuss the relevance of having
different signatures in a method declaration.

2.0 OBJECTIVES

What you would study in this unit, would enable you do the following:

• List 2 techniques of creating overloaded methods
• Identify the procedure for creating a method
• Explain how to add a new method
• State the condition for “Automatic Type Conversion”

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

155

3.0 MAIN CONTENT

3.1 Creating an Overloaded Method

Creating an overloaded method is achieved by simply adding two or
more methods of the same name to a class. The methods can be normal
or static. As long as the method signatures differ, the code will compile
correctly. In the following example, we will create a method that
calculates the square of a number using different data types. To begin,
create a new console application and add a new class file named
"Calculate". Add the following code to the new class:

class Calculate
{

public static int Square(int number)
{

Console.WriteLine("Integer Square calculated");
return number * number;

}
}

The new method calculates the square of an integer value. The
Console.WriteLine command is included so that we can easily see the
flow of execution. To test the calculation, modify the Main method of
the program as follows and run the program to see the results.

static void Main(string[] args)
{

int squareMe = 5;
Console.WriteLine(Calculate.Square(squareMe));

}

/* OUTPUT

Integer Square calculated
25

*/

The program takes the integer value and squares it using the static
Square method of the Calculate class, giving the correct result of
twenty-five. However, if the data type of the value to be squared is
changed, the result can be different. If you were to change the Main
method so that the squared variable is a double the code will no longer
compile because the double data type may not be implicitly cast to an
integer.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

156

static void Main(string[] args)
{

double squareMe = 5; // Does not compile
Console.WriteLine(Calculate.Square(squareMe));

}

In order to support the double data type we can add a second variation of
the method to the Calculate class. This overloaded method will accept
and return doubles rather than integers. Add the new method as follows:

public static double Square(double number)
{

Console.WriteLine("Double Square calculated");
return number * number;

}

Now that the Calculate class can square integers and doubles, change the
Main method as follows and execute the program. You can see that the
compiler correctly determines which of the overloaded methods to
execute for each call to Calculate.Square.

static void Main(string[] args)
{

double squareMe = 5; int squareMeToo = 5;
Console.WriteLine(Calculate.Square(squareMe));
Console.WriteLine(Calculate.Square(squareMeToo));

}

/* OUTPUT

Double Square calculated
25
Integer Square calculated
25

*/

SELF ASSESSMENT EXERCISE

Give a brief description of how overloaded methods are created

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

157

3.2 Automatic Type Conversion

In the example above, a second variant of the method was created
because we wanted to square a double and this could not be implicitly
cast to an integer. However, where an implicit cast is possible, the
compiler will perform this conversion automatically. In the following
example, the Main method is updated to use a float. As you can see,
because no overloaded method exists specifically for floats, the double
variation is used instead.

static void Main(string[] args)
{

float squareMe = 5;
Console.WriteLine(Calculate.Square(squareMe));

}

/* OUTPUT

Double Square calculated
25

*/

3.3 Return Type Limitations

The signature defines the name and the set of parameters for the method.
In order to use overloaded methods, the signature must differ for each
method declaration. This means that every overloaded method in a class
must have either a different number of parameters or a different set of
argument data types to every other method with the same name.
However, the return type of the method is not included in this signature.
This means that two methods that differ only in return type cannot be
created in the same class. For this reason, the following code is invalid
and so will not compile:

class Calculate
{

public static int Square(double number)
{

return (int)(number * number);

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

158

}

public static double Square(double number)
{

return number * number;
}

}

4.0 CONCLUSION

To wrap up, we learnt that: an overloaded method is created by simply
adding two or more methods of the same name to a class, the compiler
carries out automatic conversion where an implicit cast is possible, and
that two methods that differ only in return type cannot be created in the
same class.

5.0 SUMMARY

In this unit, we identified the techniques of creating overloaded methods
and the condition for automatic type conversion. You may now proceed
to the tutor marked assignment. Good luck!

6.0 TUTOR MARKED ASSIGNMENT

State the condition for the compiler to carry out automatic conversion.

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

159

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Joyce, F. (2006). Microsoft Visual C#.NET with Visual Studio
2005

12. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

13. Martin, A and Luca, C. (2005). A Theory of Objects.
14. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
15. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
16. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
17. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

18. Schreiner, A. (1993). Object oriented programming with ANSI-C.
19. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
20. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

160

UNIT 3 C# OPERATOR OVERLOADING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Operator Overloading
3.1.1 Creating a Two-Dimensional Vector Class

3.2 Binary Operator Overloading
3.1.1 Declaring a Binary Operator
3.1.2 Parts of a Declared Binary Operator

3.3 Creating the Addition (+) Operator
3.4 Creating the Subtraction (-) Operator
3.5 Creating the Multiplication (*) Operator
3.6 Unary Operators
3.7 Creating the Increment and Decrement Operators
3.8 Creating the Negation Operator

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit you learn about the process of declaring operator
overloading. You will equally learn about the rules for carrying out
basic operations on operators.

OBJECTIVES

At the end of this unit, you should be able to:

• Describe the process of operator overloading
• State the syntax declaring binary operators
• Describe the parts of a declared binary operator
• Identify the procedure for carrying out basic operations on

operators
• State the syntax for declaring common operators

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

161

3.0 MAIN CONTENT

3.1 Operator Overloading

Operator overloading is simply the process of adding operator
functionality to a class. This allows you to define exactly how the
operator behaves when used with your class and other data types. This
can be standard uses such as the ability to add the values of two vectors,
more complex mathematics for multiplying matrices or non-arithmetic
functions such as using the + operator to add a new item to a collection
or combine the contents of two arrays. Multiple overloaded versions of
operators may also be created to provide different functionality
according to the data types being processed, in a similar manner to the
varying signatures of method overloading.

3.1.1 Creating a Two-Dimensional Vector Class

The first step in creating a new class to represent a two-dimensional
vector with X and Y properties is to create a new console application
named "VectorDemo" and add a new class file named "Vector".

Add the following code to the new class to create the properties and a
basic constructor:

private int _x, _y;

public Vector(int x, int y) { _x = x; _y = y; }

public int X
{

get { return _x; }
set { _x = value; }

}

public int Y
{

get { return _y; }
set { _y = value; }

}

SELF ASSESSMENT EXERCISE

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

162

What is the procedure for creating a two-dimensional vector class?

3.2 Binary Operator Overloading

The binary operator is a type of operator that requires two values to
work with. These include the simple arithmetic operators such as +, -, *,
/ and %.

3.2.1 Declaring a Binary Operator

To declare a binary operator, the following syntax is used:

public static result-type operator binary-operator (
op-type operand,
op-type2 operand2

)

3.2.2 Parts of a Declared Binary Operator

This initially appears to be a rather complex declaration but in fact is
quite simple. The declaration starts with public static as all operators
must be declared as such. Other scopes are not permitted and neither are
non-static operators.

The result-type defines the data type or class that is returned as the result
of using the operator. Usually this will be the same type as the class that
it is being defined within. However, that need not be the case and it is
perfectly valid to return data of a different type.

The operator keyword is added to tell the compiler that the following
binary-operator symbol is an operator rather than a normal method. This
operator will then process the two operand parameters, each prefixed
with its data type (op-type and op-type2). As least one of these operands
must be the same type as the containing class.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

163

3.3 Creating the Addition (+) Operator

The syntax for binary operators can now be used to create a new addition
operator for the Vector class. This operator will simply add the X and Y
elements of two vectors together and return a new vector containing the
result. Add the following to the Vector class to provide this functionality.
Note that a new Vector is created rather than adjusting one of the
operands. This is because the operands are reference-types
and the original values should not be updated in this case.

public static Vector operator +(Vector v1, Vector v2)
{

return new Vector(v1.X + v2.X, v1.Y + v2.Y);
}

We can now test the Vector's new operator by modifying the program's
main method. The following program instantiates two Vector objects,
adds them together and outputs the values of the resultant Vector's X
and Y properties.

static void Main(string[] args)
{

Vector v1 = new Vector(4, 11);
Vector v2 = new Vector(0, 8);

Vector v3 = v1 + v2;

Console.WriteLine("({0},{1})", v3.X, v3.Y); // Outputs "(4,19)"

}

3.4 Creating the Subtraction (-) Operator

Addition is a commutative operation. This means the order of the two
operands can be swapped without affecting the outcome. However, this
is not the case in subtraction, thus it is important to remember that the
first operand in the declaration represents the value to the left of the
operator and the second operand represents the value to the right. If
these are used incorrectly, the resultant value will be incorrect. Using
this knowledge we can add a subtraction operator to the Vector class:

public static Vector operator -(Vector v1, Vector v2)
{

return new Vector(v1.X - v2.X, v1.Y - v2.Y);
}

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

164

To test the new operator, modify the Main method as follows and
execute the program.

static void Main(string[] args)
{

Vector v1 = new Vector(4, 11);
Vector v2 = new Vector(0, 8);

Vector v3 = v1 - v2;

Console.WriteLine("({0},{1})", v3.X, v3.Y); // Outputs "(4,3)"

}

3.5 Creating the Multiplication (*) Operator

The last binary operator that will be added to Vector class is for
multiplication. This operator will be used to scale the vector by
multiplying the X and Y properties by the same integer value. This
demonstrates the use of operands of a different type to the class they are
defined within.

public static Vector operator *(Vector v1, int scale)
{

return new Vector(v1.X * scale, v1.Y * scale);
}

To test the multiplication operator, adjust the Main method again:

static void Main(string[] args)
{

Vector v1 = new Vector(4, 11);

Vector v2 = v1 * 3;

Console.WriteLine("({0},{1})", v2.X, v2.Y); // Outputs "(12,33)"
}

In the operator code for the multiplication operator, the Vector is the
first operand and the integer the second. This means that the order used
in the multiplication statement must have the Vector at the left of the
operator and the integer value to the right. Changing the order of the
operands in the Main method will cause a compiler error.

static void Main(string[] args)
{

Vector v1 = new Vector(4, 11);

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

165

Vector v2 = 3 * v1;

Console.WriteLine("({0},{1})", v2.X, v2.Y); // Does not compile
}

If the class must support both variations of multiplication, both must be
declared in the code. This provides the benefit of allowing the order of
operands change the underlying function. To provide the second
variation of multiplication, add the following code to the Vector class.
Afterwards, the program will execute correctly.

public static Vector operator *(int scale, Vector v1)
{

return new Vector(v1.X * scale, v1.Y * scale);
}

3.6 Unary Operators

Unary operators are operators that require a single operand. These
include the simple increment (++) and decrement (--) operators. To
declare a unary operator, the following syntax is used:

public static result-type operator unary-operator (op-type operand)

This syntax is almost identical to that used for binary operators. The
difference is that only one operand is declared. The operand type must
be the same as the class in which the operator is declared.

3.7 Creating the Increment and Decrement Operators

Using the syntax defined above, we can now add the increment and
decrement operators to the Vector class. Note that there is only a single
definition for each. There is no way to differentiate between prefix and
postfix versions of the operator so both provide the same underlying
functionality.

To declare the two operators, add the following code to the Vector class.
Each increments or decrements both the X and Y properties for Vector
objects.

public static Vector operator ++(Vector v)

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

166

{
v.X++;
v.Y++;
return v;

}

public static Vector operator --(Vector v)
{

v.X--;
v.Y--;
return v;

}

To test these operators, update and execute the Main method:

static void Main(string[] args)
{

Vector v1 = new Vector(4, 11);

v1++;
Console.WriteLine("({0},{1})", v1.X, v1.Y); // Outputs "(5,12)"

v1--;
Console.WriteLine("({0},{1})", v1.X, v1.Y); // Outputs "(4,11)"

}

3.8 Creating the Negation Operator

The last arithmetic unary operator to be considered in this unit is the
negation operator. This is the unary version of subtraction used to
identify a negative version of a value. We can add this operator using
the following code:

public static Vector operator -(Vector v)
{

return new Vector(-v.X, -v.Y);
}

To test the negation operator, update the Main method and run the
program.

static void Main(string[] args)
{

Vector v1 = new Vector(4, 11);

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

167

Vector v2 = -v1;
Console.WriteLine("({0},{1})", v2.X, v2.Y); // Outputs "(-4,-11)"

}

4.0 CONCLUSION

In this unit, we were made to understand that the binary operator is a
type of operator that requires two values to work with while unary
operators are operators that require a single operand. We also spotted the
various parts of a declared binary operator as well as the procedure for
carrying out basic operations on the common C# operators.

5.0 SUMMARY

In this unit, we learnt the following: the process of operator overloading,
the syntax for declaring common operators as well as the procedure for
carrying out basic operations on C# operators. Let us now attempt the
questions below.

6.0 TUTOR MARKED ASSIGNMENT

 Define a binary operator?
 State the syntax for declaring a unary operator

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

168

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Joyce, F. (2006). Microsoft Visual C#.NET with Visual Studio
2005

12. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

13. Martin, A and Luca, C. (2005). A Theory of Objects.
14. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
15. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
16. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
17. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

18. Schreiner, A. (1993). Object oriented programming with ANSI-C.
19. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
20. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

169

UNIT 4 C# INDEXERS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 C# Indexer
3.2 One-dimensional Indexer
3.3 Creating a New Array-Like Class
3.4 Adding Class Variables
3.5 Adding the Constructor
3.6 Adding the Indexer

3.6.1 Testing MyArray Class
3.6.2 Creating a Multi-dimensional Indexer

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit describes indexers in C#, stating the syntax for declaring the
common types of indexers. You would require these syntax in C#
programming, so do take note of them.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• Define the term “C# Indexer”
• Describe the common types of indexers
• State the syntax for declaring one-dimensional indexers
• Identify the roles of the parts of the syntax for declaring indexers
• State the syntax for declaring two-dimensional indexers

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

170

3.0 MAIN CONTENT

3.1 C# Indexers

Defining a C# indexer is much like defining properties. We can say that
a C# indexer is a member that enables an object to be indexed in the
same way as an array.

<modifier> <return type> this [argument list]
{
get
{
// Get codes goes here

}
set
{
// Set codes goes here

}
}

where the modifier can be private, public, protected or internal. The
return type can be any valid C# types. The 'this' is a special keyword in
C# to indicate the object of the current class. The formal-argument-list
specifies the parameters of the indexer. The formal parameter list of an
indexer corresponds to that of a method, except that at least one
parameter must be specified, and that the ref and out parameter
modifiers are not permitted. Remember that indexers in C# must have at
least one parameter. Other wise the compiler will generate a compilation
error.

The following program shows a C# indexer in action

using System;
using System.Collections;

class MyClass
{
private string []data = new string[5];
public string this [int index]
{
get
{
return data[index];

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

171

}
set
{
data[index] = value;

}
}

}

class MyClient
{
public static void Main()
{
MyClass mc = new MyClass();
mc[0] = "Ayomide";
mc[1] = "A3-126";
mc[2] = "Epe";
mc[3] = "Ikeja";
mc[4] = "Badagry";

Console.WriteLine("{0},{1},{2},{3},{4}",mc[0],mc[1],mc[2],mc[3],m
c[4]);
}

}

SELF ASSESSMENT EXERCISE

Define the term “C# Indexer”

3.2 One-dimensional Indexer

The simplest version of an indexer is the one-dimensional type. A one-
dimensional indexer accepts a single value between the square brackets
when used. The standard syntax used to declare the indexer is similar to
that used to define the get and set accessors of a property. However,

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

172

instead of defining a property name, the accessors are declared for this[]
as follows:

public data-type this[index-type index-name]
{

get {}
set {}

}

In the syntax definition, data-type determines the type of information
that will be returned when the indexer is queried and the type that will
be required when setting a value. Index-type specifies the data type of
the indexer itself. This permits declaration of indexers that are not based
upon integer values, allowing similar functionality to that of a Hashtable
for example. The index-name is the variable containing the index value
that can be used during processing of the get and set accessors.

The get accessor is required for an indexer and must return a value of
the type data-type. The set accessor is defined for writeable indexers and
is omitted if a read-only variant is desired.

3.3 Creating a New Array-Like Class

To demonstrate the use of an indexer, in this unit we will create a new
class that behaves like a simple array of string variables. Unlike a
standard array that only permits zero-based indexing, the new class will
provide an integer-based array for which the programmer can specify the
upper and lower boundaries using a constructor during instantiation.

To start, create a new console application named "IndexerDemo" and
add a new class file named "MyArray".

3.4 Adding the Class Variables

The new array-like class requires three private variables. Two integer
values will hold the upper and lower boundaries. An array of strings will
also be required to store the items added to the MyArray class. This will
be a zero-based array with the same length as the created MyArray
object. The indexer will interpret the index number supplied and map it
against this underlying array for get and set operations.

To add the class level variables, add the following code to the MyArray
class' code block:

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

173

int _lowerBound;
int _upperBound;
string[] _items;

3.5 Adding the Constructor

The constructor for the new class will accept two integer parameters that
define the upper and lower boundaries. These values will be stored in
the two associated class variables. Using these boundaries the length of
the underlying array can be calculated and the _items array can be
initialised accordingly.

To create the constructor, add the following code to the class:

public MyArray(int lowerBound, int upperBound)
{

_lowerBound = lowerBound;
_upperBound = upperBound;
_items = new string[1 + upperBound - lowerBound];

}

3.6 Adding the Indexer

Now that the preparation work is complete we can add the indexer to the
class. For this simple array-like class the indexer accepts a single integer
parameter containing the index of the string that is being read from or
written to. This index needs to be adjusted to correctly map to the
underlying data before returning the value from the array or writing the
new value into the array.

The code to add the indexer is shown below. Note that, as with property
declarations, the set accessor uses the 'value' variable to determine the
value that has been assigned by the calling function:

public string this[int index]
{

get
{

return _items[index - _lowerBound];
}
set
{

_items[index - _lowerBound] = value;

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

174

}
}

3.6.1 Testing the MyArray Class

The new class can be tested using the Main method of the program.
Open the Program class and add the following code to create a new
instance of MyArray and to populate it with values.

static void Main(string[] args)
{

MyArray fruit = new MyArray(-2, 1);
fruit[-2] = "Apple";
fruit[-1] = "Orange";
fruit[0] = "Banana";
fruit[1] = "Blackcurrant";
Console.WriteLine(fruit[-1]); // Outputs "Orange"
Console.WriteLine(fruit[0]); // Outputs "Banana"

}

3.6.2 Creating a Multidimensional Indexer

Indexers are not limited to a single dimension. By including more than
one index variable in the square brackets of the indexer declaration,
multiple dimensions may be added. For example, to declare a two-
dimensional indexer the syntax is as follows:

public data-type this[index-type1 index-name1, index-type2 index-
name2]
{

get {}
set {}

}

4.0 CONCLUSION

In this unit, we were made to understand the following: that a C#
indexer is a member that enables an object to be indexed in the same
way as an array, a one-dimensional indexer accepts a single value
between the square brackets. We also learnt that by including more than
one index variable in the square brackets of the indexer declaration,
multiple dimensions may be added.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

175

5.0 SUMMARY

In this unit, we defined C# indexer and described the common types of
indexers. We equally discovered the syntax for declaring one-
dimensional and two-dimensional indexers. We hope you enjoyed your
studies. Let us attempt the questions below.

6.0 TUTOR MARKED ASSIGNMENT

Outline the procedure for creating a multidimensional indexer

7.0 REFERENCES/FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Joyce, F. (2006). Microsoft Visual C#.NET with Visual Studio
2005

12. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

176

13. Martin, A and Luca, C. (2005). A Theory of Objects.
14. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
15. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
16. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
17. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

18. Schreiner, A. (1993). Object oriented programming with ANSI-C.
19. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
20. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

177

UNIT 5 C# INHERITANCE AND POLYMORPHISM

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Inheritance
3.2 Types of Inheritance

3.2.1 Single Inheritance
3.2.2 Multiple Inheritance

3.3 Demonstrating Inheritance
3.3.1 Procedure for Demonstrating Inheritance
3.3.2 Instantiating and Testing a New Class

3.4 Polymorphism
3.5 Polymorphism and Inheritance

4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

178

1.0 INTRODUCTION

This last unit provides an overview of two object-oriented programming
concepts. It begins with the discussion of inheritance, its’ uses and
types. It then proceeds to explain the concept of polymorphism and its’
relationship with inheritance. Enjoy your studies!

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• Explain the concept of inheritance
• List and describe the 2 types of inheritance
• Give the procedure for demonstrating inheritance
• Explain the concept of polymorphism
• Identify the relationship between polymorphism and inheritance

3.0 MAIN CONTENT

3.1 Inheritance

Inheritance is a powerful object-oriented concept that permits the
creation of hierarchical groups of classes that share common
functionality.

Using inheritance, one class can be derived from another. The derived

class, also known as the child class or subclass, inherits functionality
from the base class, also known as the parent class or superclass. The
subclass can add methods and properties or modify the functionality that
it has inherited to provide a more specialised version of the base class.

Using inheritance, classes become grouped together in a hierarchical
tree structure. The more generalised classes appear at the root of the
hierarchy with the more specific classes appearing on the tree's
branches. This categorisation of classes into related types is why
inheritance is sometimes referred to as generalisation (or
generalization).

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

179

When using inheritance, all of the base class' methods, properties,
events, indexers, operators and some internal variables are all
automatically provided to every subclass. As this functionality is
automatically available in the child class, there is no need to duplicate
code. This reduces maintenance problems, as changes need only to be
made in one class, rather than throughout a series of related classes.

SELF ASSESSMENT EXERCISE

Inheritance can also be referred to as generalisation. True or False? Give
reasons for your answer.

3.2 Types of Inheritance

There are two types of inheritance used in modern programming
languages, they are:

 Single Inheritance
 Multiple Inheritance

3.2.1 Single Inheritance

C# and other .NET languages use single inheritance. This means that a
subclass may only inherit functionality from a single base class.

3.2.2 Multiple Inheritance

Multiple inheritance permits a subclass to have two or more
superclasses. In this situation the derived class inherits functionality
from several base classes. Multiple inheritance is not supported by C# or
the .NET framework. However, this does not stop a class from providing
many public interfaces as will be seen in a later unit.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

180

3.3 Demonstrating Inheritance

To demonstrate the use of inheritance with real-world objects, during the
rest of this unit we will create an example project based around the
Vehicle class. This general class will provide methods and properties
that all vehicles provide. We will then create subclasses of Vehicle with
more specialised functionality.

3.3.1 Procedure for Demonstrating Inheritance

To begin, create a new console application named "InheritanceDemo".
Create a class file named "Vehicle" and add the following code to the
new class to provide a Speed property and Accelerate and Decelerate
methods to all vehicles:

private int _speed; // Miles per hour

public int Speed
{

get
{

return _speed;
}

}

public void Accelerate(int mph)
{

_speed += mph;
}
ssss
public void Decelerate(int mph)
{

_speed -= mph;
}

3.3.2 Instantiating and Testing a New Class

The new Vehicle class can be instantiated and tested in its own right. To
ensure the class is working correctly, we can modify the Main method of
the program to test the methods and the property:

static void Main(string[] args)
{

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

181

Vehicle v = new Vehicle();
Console.WriteLine("Speed: {0}mph", v.Speed); // Outputs "Speed

0mph"
v.Accelerate(25);
Console.WriteLine("Speed: {0}mph", v.Speed); // Outputs "Speed

25mph"
v.Decelerate(15);
Console.WriteLine("Speed: {0}mph", v.Speed); // Outputs "Speed

10mph"
}

3.4 Polymorphism

Another key concept of object-oriented programming is polymorphism.
This is the ability for an object to change its behaviour according to how
it is being used. This is an important part of inheritance and means that a
subclass can be used as if it were an instance of its base class. If, for
example, you were to create a class with generic functionality for
processing the control of vehicles, and you created a more specialised
subclass for cars, the Car objects could be passed to methods that
expected a Vehicle object. The method would operate on the using the
public interface of the Vehicle class. However, the underlying
functionality of the Car class would be used. The same routine could be
used to process bicycles, buses and other vehicle types.

This type of polymorphism relies heavily on the encapsulation principle.
As the method using the Vehicle object is aware only of the Vehicle
class' public interface and not its internal workings, it is easy to
substitute a Car object because cars are just a special type of vehicle.

3.5 Polymorphism and Inheritance

Polymorphism is an important object-oriented programming concept.
Polymorphism is the ability for an object to change its public interface
according to how it is being used. When using inheritance,
polymorphism is achieved when an object of a derived class is
substituted where an instance of its parent class is expected. This uses a
process known as upcasting. With upcasting, the object of the more
specialised class is implicitly cast to the base class type required.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

182

4.0 CONCLUSION

To wrap up, recall the following: inheritance is a powerful object-
oriented concept that permits the creation of hierarchical groups of
classes that share common functionality; the object of the more
specialised class is implicitly cast to the base class type required through
the process of upcasting; polymorphism is achieved when an object of a
derived class is substituted where an instance of its parent class is
expected. Remember that with more practise, you will acquire skills for
advanced object-oriented programming using C#. All the best!

5.0 SUMMARY

In this unit we discovered the concept of inheritance and polymorphism.
We also spotted the relationship between the two concepts. Hope you
enjoyed this course. Let us now attempt the questions below.

6.0 TUTOR MARKED ASSIGNMENT

List and explain the two types of inheritance employed in modern
programming.

7.0 REFERENCES.FURTHER READINGS

1. Abelson, H and Gerald J. S. (1997). Structure and Interpretation
of Computer Programs. The MIT Press.

2. Armstrong, Deborah J. (2006). "The Quarks of Object-Oriented
Development". Communications of the ACM 49 (2): 123–128.
http://portal.acm.org/citation.cfm?id=1113040. Retrieved 2006-
08-08.

3. Booch, Grady (1997). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

4. Date, C. J and Hugh, D. (2006). Foundation for Future Database
Systems: The Third Manifesto (2nd Edition)

5. Date, C. J and Hugh, D. (2007). Introduction to Database
Systems: The Sixth Manifesto (6th Edition)

6. Eeles, P and Oliver, S. (1998). Building Business Objects. John
Wiley & Sons.

CIT 834 OBJECT-ORIENTED PROGRAMMING USING C#

183

7. Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides
(1995). Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

8. Harmon, Paul; William Morrissey (1996). The Object Technology
Casebook - Lessons from Award-Winning Business Applications.
John Wiley & Sons.

9. Jacobson, Ivar (1992). Object-Oriented Software Engineering: A
Use Case-Driven Approach. Addison-Wesley.

10. John C. Mitchell, Concepts in programming languages,
Cambridge University Press, 2003, p.278

11. Joyce, F. (2006). Microsoft Visual C#.NET with Visual Studio
2005

12. Kay, Alan. The Early History of Smalltalk.
http://gagne.homedns.org/%7etgagne/contrib/EarlyHistoryST.ht
ml.

13. Martin, A and Luca, C. (2005). A Theory of Objects.
14. Meyer, Bertrand (1997). Object-Oriented Software Construction.

Prentice Hall.
15. Michael Lee Scott (2006). Programming language pragmatics,

(2nd Edition) p. 470
16. Pierce, Benjamin (2002). Types and Programming Languages.

MIT Press.
17. Rumbaugh, James; Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen (1991). Object-Oriented
Modeling and Design. Prentice Hall.

18. Schreiner, A. (1993). Object oriented programming with ANSI-C.
19. Taylor, David A. (1992). Object-Oriented Information Systems -

Planning and Implementation. John Wiley & Sons.
20. Trofimov, M. (1993) OOOP - The Third "O" Solution: Open

OOP. First Class, OMG, Vol. 3, issue 3, p.14.

