
CIT 216 DATA STRUCTURES CIT 216 FUNDAMENTALS OF

1
1

1
1
1

CIT 216

FUNDAMENTALS OF DATA STRUCTURES

Dr. Vivian Nwaocha (Course Developer/Writer) - NOUN

Dr. S. Reju (Programme Leader) - NOUN

Dr. Vivian Nwaocha (Course Developer/Writer) - NOUN

 NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE

GUIDE

CIT 216 DATA STRUCTURES CIT 216 FUNDAMENTALS OF

2
2

2
2
2

© 2022 by NOUN Press

National Open University of Nigeria

Headquarters

University Village

Plot 91, Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island, Lagos

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

All rights reserved. No part of this book may be reproduced, in any

form or by any means, without permission in writing from the publisher.

First Printed 2009

Revised and Reprinted 2022

 ISBN: 978-058-031-X

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

DATA STRUCTURES CIT 216 FUNDAMENTALS OF

3
3

3
3
3

CONTENTS PAGE

Introduction……………………………………………………… 1

What this Course Will Help You Do………………….………… 1

Course Aims……………………………………..………………. 1

Course Objectives…………………………..……………………. 1

Working through this Course…………………….……………… 2

Course Materials………………………………………..……….. 2

Online Materials………………………………………………… 2

Equipment………………………………………………….……. 2

Study Units ……………………………………………………… 3

Assessment………………………………………………….…… 5

Course Overview………………………………………………... 5

How to Get the Most from this Course……………………..……. 5

Facilitators/Tutors and Tutorials………………………………… 6

Summary………………………………………………….……… 7

Introduction

The course, Data Structures, is a foundational course for students

studying towards acquiring the Bachelor of Science in Communication

Technology degree. In this course, we will study programming

techniques including data structures and basic algorithms for

manipulating them.

The overall aims of this course are to introduce you to programming

concepts as and algorithm techniques. Topics related to data structures

and storage management are equally discussed.

The bottom-up approach is adopted in structuring this course. We start

with the basic building blocks of object-oriented programming concepts

and move on to the fundamental principles of data structures and

algorithms.

What this Course Will Help You Do

The overall aims and objectives of this course provide guidance on what

you should be achieving in the course of your studies. Each unit also has

its own unit objectives which state specifically what you should be

achieving in the corresponding unit. To evaluate your progress

continuously, you are expected to refer to the overall course aims and

objectives as well as the corresponding unit objectives upon the

completion of each.

Course Aims

The overall aims and objectives of this course include:

DATA STRUCTURES CIT 216 FUNDAMENTALS OF

4 4

Develop your knowledge and understanding of the underlying

principles of foundational data structures.

Build up your capacity to evaluate different algorithm

techniques.

Develop your competence in analysing data structures.

Build up your capacity to write programmes for developing

simple applications.

Course Objectives

Upon completion of the course, you should be able to:

Describe the basic operations on stacks, lists and queue data

structures.

Explain the notions of trees, hashing and binary search trees.

Identify the basic concepts of object-oriented programming.

Develop java programmes for simple applications.

Discuss the underlying principles of basic data types: lists, stacks

and queues.
Describe structures and algorithms for external storage: external

sorting, external search trees.

Identify directed and undirected graphs.

Discuss sorting: internal and external sort.

Describe the efficiency of algorithms, recursion and recursive

programmes.

Discuss the algorithm design techniques: greedy algorithms, divide-

and-conquer algorithms, dynamic programming.

Working through this Course

We designed this course in a systematic way, so you need to work

through it from Module one, Unit 1 through to Module 6, Unit 6. This

will enable you appreciate the course better.

Course Materials

Basically, we made use of textbooks and online materials. You are

expected to search for more literature and web references for further

understanding. Each unit has references and web references that were

used to develop them.

DATA STRUCTURES CIT 216 FUNDAMENTALS OF

5 5

Online Materials
Feel free to refer to the websites provided for all the online reference

materials required in this course. The website is designed to integrate

with the print-based course materials. The structure follows the structure

of the units and all the reading and activity numbers are the same in both

media.

Equipment

In order to get the most from this course, it is essential that you make
use of a computer system which has internet access.

Recommended System Specifications:

Processor

2.0 GHZ Intel compatible processor

some laptops) are not

1GB RAM
80 GB hard drive with 5 GB free disk
CD-RW drive
3.5” Floppy Disk Drive
TCP/IP (installed)

Operating System

Windows XP Professional (Service Pack)
Microsoft Office 2007
Java Programming Language
Norton Antivirus

Monitor*

19-inch

1024 X 768 resolution
16-bit high color
*Non Standard resolutions (for example,
supported.

Hardware

Open Serial Port (for scanner)

120W Speakers

Mouse + pad

Windows keyboard

Laser Printer

DATA STRUCTURES CIT 216 FUNDAMENTALS OF

77 77
7

Hardware is constantly changing and improving, causing older

technology to become obsolete. An investment in newer, more efficient

technology will more than pay for itself in improved performance

results.

If your system does not meet the recommended specifications, you may

experience considerably slower processing when working in the

application. Systems that exceed the recommended specifications will

provide better handling of database files and faster processing time,

thereby significantly increasing your productivity.

Study Units

There are 6 modules in this course. Each module comprises 5 units

which you are expected to complete in 3 hours. The 6 modules and their

units are listed below.

Module 1 Foundational Data Structures

Unit 1 Fundamentals
Unit 2 Arrays
Unit 3 The List Data Structure

Unit 4 The Stack Data Structure

Unit 5 The Queue Data Structure

Module 2 Hashing and Trees

Unit 1 Hashing
Unit 2 Trees
Unit 3 Search Trees
Unit 4 Garbage Collection
Unit 5 Memory Allocation

Module 3 Introduction to Java Programming

Unit 1 Object-Oriented Programming Concepts
Unit 2 Variables
Unit 3 Operators
Unit 4 Expressions, Statements and Blocks
Unit 5 Control Flow Statements

Module 4 Java Programming

Unit 1 Classes

Unit 2 Objects

DATA STRUCTURES CIT 216 FUNDAMENTALS OF

88 88
8

Unit 3 Interfaces and Inheritances
Unit 4 Numbers and Strings
Unit 5 Generics

Module 5 Algorithms

Unit 1 Introduction to Algorithms
Unit 2 Vectors and Matrices
Unit 3 Greedy Algorithm
Unit 4 Divide-and-Conquer Algorithm
Unit 5 Dynamic Programming Algorithm

Module 6 Graphs and Sorting

Unit 1 Graph Algorithm
Unit 2 Sorting
Unit 3 Bubble Sort

Unit 4 Insertion Sort

Unit 5 Selection Sort

Unit 6 Merge Sorting
From the preceding, the content of the course can be divided into two
major blocks:

Foundational Data Structures

Introduction to Java Programming

Modules one and two describe the foundational data structures and their

underlying principles. Modules three and four define the basic concepts

of an object-oriented programming language (Java). It uses java as a

programming language to implement a variety of data structures, while

modules five and six discuss the analysis of algorithms and algorithm

techniques.

Assessment

The course, Data Structures entails attending a three-hour final

examination which contributes 50% to your final grading. The final

examination covers materials from all parts of the course with a style

similar to the Tutor-marked assignments.

The examination aims at testing your ability to apply the knowledge you

have gain throughout the course, rather than your ability to memorise

the materials. In preparing for the examination, it is essential that you

receive the activities and Tutor-marked assignments you have completed

in each unit. The other 50% will account for all the TMAs at the end of

each unit.

DATA STRUCTURES CIT 216 FUNDAMENTALS OF

9
9

Course Overview

This section proposes the number of weeks that you are expected to

spend on the three modules comprising 30 units and the assignments

that follow each of the units.

We recommend that each unit with its associated TMA is completed in

one week, bringing your study period to a maximum of 30 weeks.

How to Get the Most from this Course

In order for you to learn various concepts in this course, it is essential to

practice. Independent activities and case activities which are based on a

particular scenario are presented in the units. The activities include open

questions to promote discussion on the relevant topics, questions with

standard answers and programme demonstrations on the concepts. You

may try to delve into each unit adopting the following steps:

Read the study unit
Read the textbook, printed or online references
Perform the activities Participate in

group discussions Complete the tutor-

marked assignments Participate in

online discussions.

This course makes intensive use of materials on the world-wide web.

Specific web address will be given for your reference. There are also

optional readings in the units. You may wish to read these to extend

your knowledge beyond the required materials. They will not be

assessed.

Facilitators/Tutors and Tutorials

About 20 hours of tutorials will be provided in support of this course.

You will be notified of the dates, time and location for these tutorials,

together with the name and phone number of your tutor as soon as you

are allotted a tutorial group.

Your tutor will mark and comment on your assignments, keep a close

watch on your progress and on any difficulties you might encounter and

provide assistance to you during the course. You must mail your TMAs

to your tutor well before the due date (at least two working days are

required). They will be marked by your tutor and returned to you as

soon as possible.

DATA STRUCTURES CIT 216 FUNDAMENTALS OF

1
0
1
0

Do not hesitate to contact your tutor by phone or e-mail, if you need

help. The following might be circumstances in which you would find

help necessary. You can also contact your tutor if:

i. You do not understand any part of the study units or the assigned
readings.

ii. You have difficulty with the TMAs.

iii. You have a question or problem with your tutor’s comments on

an assignment or with the grading of an assignment.

You should try your best to attend tutorials, since it is the only

opportunity to have an interaction with your tutor and to ask questions

which are answered instantly. You can raise any problem encountered in

the course of your study. To gain maximum benefit from the course

tutorials, you are advised to prepare a list of questions before attending

the tutorial. You will learn a lot from participating in discussions

actively.

Summary

The course, Data Structures, is intended to develop your understanding

of the basic concepts of object-oriented programming, thus enabling you

acquire skills in programming using java. This course also provides you

with practical knowledge and hands-on experience in designing and

implementing foundational data structures.

We hope that you will find the course enlightening and that you will

find it both interesting and useful. In the longer term, we hope you

will get acquainted with the National Open University of Nigeria

and we wish you every success in your future.

DATA STRUCTURES CIT 216 FUNDAMENTALS OF

xiii

CONTENTS PAGE

Module 1 Foundational Data Structures………………… 1

Unit 1 Fundamentals………………………….…………. 1

Unit 2 Arrays………………………………….…………. 7

Unit 3 The List Data Structure………………..………….. 12

Unit 4 The Stack Data Structure………………..………… 18

Unit 5 The Queue Data Structure………………..……….. 24

Module 2 Foundational Data Structures…………………... 32

Unit 1 Hashing………………………………………….... 32

Unit 2 Trees………………………….………….……….. 43

Unit 3 Search Trees………………………….………….. 54

Unit 4 Garbage Collection………………………...……… 70

Unit 5 Memory Allocation……………………..………… 80

Module 3 Introduction to Java Programming…………..… 85

Unit 1 Object-Oriented Programming Concepts………… 85

Unit 2 Variables…………………………………………. 95

Unit 3 Operators…………………………………………. 99

Unit 4 Expressions, Statements and Blocks………….…… 107

Unit 5 Control Flow Statements…………………………. 112

Module 4 Introduction to Java Programming……………. 122

Unit 1 Classes……………………………………….……. 122

Unit 2 Objects ……………………………………….…… 129

Unit 3 Interfaces and Inheritances……………………….. 140

Unit 4 Numbers and Strings……………………….……… 150

Unit 5 Generics………………………………….………… 159

Module 5 Algorithms…………………………….………….. 168

Unit 1 Introduction to Algorithms…………….……….….. 168

Unit 2 Vectors and Matrices………………..…………….. 174

Unit 3 Greedy Algorithms………………………..………. 179

Unit 4 Divide-and-Conquer Algorithm………………..…. 182

Unit 5 Dynamic Programming Algorithm……………..…. 185

Module 6 Algorithms………………………….…………….. 189

Unit 1 Graph Algorithm……………………………..…….. 189

Unit 2 Sorting…………………………………………..….. 193

Unit 3 Bubble Sort……………………………………….... 197

Unit 4 Insertion Sort……………………….……………… 201

Unit 5 Selection Sort…………………………….……….. 205

Unit 6 Merge Sorting……………………………………... 210

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

1 1

MODULE 1 FOUNDATIONAL DATA STRUCTURES

Unit 1 Fundamentals

Unit 2 Arrays
Unit 3 The List Data Structure
Unit 4 The Stack Data Structure
Unit 5 The Queue Data Structure

UNIT 1 FUNDAMENTALS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Data Type
3.2 Data Type Classification

3.2.1 Examples of Data Type
3.3 Abstract Data Type

3.3.1 Examples of Abstract Data Type
3.4 What is a Data Structure?
3.5 Classification of Data Structures

3.5.1 Linear Data Structure
3.5.2 Non-Linear Data Structure

3.6 Data Structures and Programmes
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces some basic concepts that the student needs to be

familiar with before attempting to develop any software. It describes

data type and data structures, explaining the operations that may be

performed on them. The unit introduces you to the fundamental notions

of data structures, thus guiding you through and facilitating your

understanding of the subsequent units.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

2 2

2.0 OBJECTIVES

By the end of this unit, you will be able to:

 describe and use the following notions; data type, abstract

data type and data structure

 outline the classification of data type

give typical examples of data type
 explain the relevance of data structures in programming.

3.0 MAIN CONTENT

3.1 Data Type

In computer programming, a data type simply refers to a defined kind

of data, that is, a set of possible values and basic operations on those

values.

When applied in programming languages, a data type defines a set of

values and the allowable operations on those values.

Data types are important in computer programmes because they classify

data so that a translator (compiler or interpreter) can reserve appropriate

memory storage to hold all possible values, e.g. integers, real numbers,

characters, strings, and Boolean values, all have very different

representations in memory.

A data type consists of:

a domain (= a set of values)
a set of operations that may be applied to the values.

3.2 Data Type Classification

Some data items may be used singly whilst others may be combined

together and arranged to form other data items. The former are classified

as ‘simple data types’ whereas the latter are classified as ‘data

structures’. However, the following classification is appropriate for

study at this level .The simple data types are classified as follows:

a. Character
b. Numeric integer
c. Numeric real
d. Boolean (logical).

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

3 3

3.2.1 Examples of Data Types

Almost all programming languages explicitly include the notion of data

type, though different languages may use different terminology.

Common data types in programming languages include those that

represent integers, floating point numbers, and characters, and a

language may support many more.

Example 1: Boolean or logical data type provided by most

programming languages.

Two values: true, false.
Many operations, including: AND, OR, NOT, etc.

Example 2: In Java programming language, the “int” type represents

the set of 32-bit integers ranging in value from -2,147, 483, 648 to

2,147, 483, 647 and the operation such as addition, subtraction and

multiplication that can be performed on integers.

3.3 Abstract Data Type

An Abstract Data Type commonly referred to as ADT, is a collection of

data objects characterized by how the objects are accessed; it is an

abstract human concept meaningful outside of computer science. (Note

that "object", here, is a general abstract concept as well, i.e. it can be an

"element" (like an integer), a data structure (e.g. a list of lists), or an

instance of a class. (e.g. a list of circles). A data type is abstract in the

sense that it is independent of various concrete implementations.

Object-oriented languages such as C++ and Java provide explicit

support for expressing abstract data types by means of classes. A first

class abstract data type supports the creation of multiple instances of

ADT and the interface normally provides a constructor, which returns an

abstract handle to new data, and several operations, which are functions

accepting the abstract handle as an argument.

3.3.1 Examples of Abstract Data Type

Common abstract data types (ADT) typically implemented in

programming languages (or their libraries) include: Arrays, Lists,

Queues, Stacks and Trees.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

4 4

3.4 What is a Data Structure?

A data structure is the implementation of an abstract data type in a

particular programming language. Data structures can also be referred

to as “data aggregate”. A carefully chosen data structure will allow the

most efficient algorithm to be used. Thus, a well-designed data structure

allows a variety of critical operations to be performed using a few

resources, both execution time and memory spaces as possible.

3.5 Classification of Data Structures

Data structures are broadly divided into two:

Linear Data Structures

Non-Linear Data Structures.

3.5.1 Linear Data Structures

Linear data structures are data structures in which individual data

elements are stored and accessed linearly in the computer memory. For

the purpose of this course, the following linear data structures would be

studied: lists, stacks, queues and arrays in order to determine how

information is processed during implementation.

3.5.2 Non-Linear Data Structures

A non-linear data structure, as the name implies, is a data structure in

which the data items are not stored linearly in the computer memory, but

data items can be processed using some techniques or rules. Typical

non-linear data structures to be studied in this course are Trees.

3.6 Data Structures and Programmes

The structure of data in the computer is very important in software

programmes, especially where the set of data is very large. When data is

properly structured and stored in the computer, the accessibility of data

is easier and the software programme routines that make do with the

data are made simpler; time and storage spaces are also reduced.

In the design of many types of programmes, the choice of data structures

is a primary design consideration, as experience in building large

systems has shown that the difficulty of implementation and the quality

and performance of the final result depends heavily on choosing the best

data structure.

SELF ASSESSMENT EXERCISE 1

Define exhaustively the term ‘Abstract Data Type’.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

5 5

SELF ASSESSMENT EXERCISE 2

What are the constituents of a Data Type? Give 2 typical examples of
data types.

4.0 CONCLUSION

In this unit, you have learned about the classification of abstract data

type, commonly referred to as ADT. You have also been able to

understand the meaning of some notions such as; data type, abstract data

type and data structures. Finally, you have been able to appreciate the

significance of data structures in developing high-quality programmes.

5.0 SUMMARY

What you have learned borders on the basic notions of data structures.
The subsequent units shall build upon these fundamentals.

6.0 TUTOR-MARKED ASSIGNMENT

You have just been nominated as a Programmer of a Software firm

responsible for developing software for tertiary institutions. How would

your knowledge of this course facilitate your task?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme, (2nd

Edition). New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL, (2nd Edition), New Jersey: Prentice Hall,

Shaffer, Clifford A. (1998). A Practical Introduction to Data Structures

and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

6 6

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

7 7

UNIT 2 ARRAYS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Arrays
3.2 Arrays and Programming
3.3 Declaration of Arrays
3.4 Multi-Dimensional Arrays
3.5 Classification of Arrays
3.6 Application of Arrays

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will learn about arrays, their declaration, dimensionality

and applications. You will also learn how to distinguish between static

and dynamic arrays.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe an array, its dimensionality and declaration
explain the terms; element and array name
express a two-dimensional array linearly
distinguish between static and dynamic arrays
explain the importance of arrays in computer applications.

3.0 MAIN CONTENT

3.1 Arrays

In Computer Science, an array is a data structure consisting of a group

of elements that are accessed by indexing. Each data item of an array is

known as an element, and the elements are referenced by a common

name known as the array name.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

8 8

3.2 Arrays and Programming

In Java, as in most programmeming languages, an array is a structure

that holds multiple values of the same type. A Java array is also called

an object. An array can contain data of the primitive data types. As it is

an object, an array must be declared and instantiated. For example:

int[] anArray;
anArray = new int[10];

An array can also be created using a shortcut. For example:

int[] anArray = {1,2,3,4,5,6,7,8,9,10}

An array element can be accessed using an index value. For example:
int i = anArray[5]

The size of an array can be found using the length attribute. For

example:
int len = anArray.length

Before any array is used in the computer, some memory locations have

to be created for storage of the elements. This is often done by using the

DIM instruction of BASIC programming language or DIMENSION

instruction of FORTRAN programming language. For example, the

instruction:

DIM LAGOS (45)

will create 45 memory locations for storage of the elements of the array

called LAGOS.

In most programming languages, each element has the same data type

and the array occupies a contiguous area of storage. Most programming

languages have a built-in array data type. Some programming languages

support array programming which generalises operations and functions

to work transparently over arrays as they do with scalars, instead of

requiring looping over array members.

3.3 Declaration of Arrays

Variables normally only store a single value but, in some situations, it is

useful to have a variable that can store a series of related values - using

an array. For example, suppose a programme is required that will

calculate the average age among a group of six students. The ages of the

students could be stored in six integer variables in C:

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

9 9

int age1;

int age2;
int age3;

However, a better solution would be to declare a six-element array:

int age[6];This creates a six element array; the elements can be accessed

as age[0] through age[5] in C.

A two-dimensional array (in which the elements are arranged into rows

and columns) declared by say DIM X(3,4) can be stored as linear arrays

in the computer memory by determining the product of the subscripts.

The above can thus be expressed as DIM X (3 * 4) or DIM X (12).

Multi-dimensional arrays can be stored as linear arrays in order to

reduce the computation time and memory.

3.4 Multi-dimensional Arrays

Ordinary arrays are indexed by a single integer. Also useful, particularly

in numerical and graphics applications, is the concept of a

multi-dimensional array, in which we index into the array using an

ordered list of integers, such as in a[3,1,5]. The number of integers in

the list used to index into the multi-dimensional array is always the same

and is referred to as the array's dimensionality, and the bounds on each

of these are called the array's dimensions. An array with dimensionality

k, is often called k-dimensional. One-dimensional arrays correspond to

the simple arrays discussed thus far; two-dimensional arrays are a

particularly common representation for matrices. In practice, the

dimensionality of an array rarely exceeds three. Mapping a

one-dimensional array into memory is obvious, since memory is

logically itself a (very large) one-dimensional array. When we reach

higher-dimensional arrays, however, the problem is no longer obvious.

Suppose we want to represent this simple two-dimensional array:

It is most common to index this array using the RC-convention, where

elements are referred in row, column fashion or , such as:

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

10 10

Multi-dimensional arrays are typically represented by one-

dimensional arrays of references (Iliffe vectors) to other one-

dimensional arrays. The subarrays can be either the rows or columns.

3.5 Classification of Arrays

Arrays can be classified as static arrays (i.e. whose size cannot change

once their storage has been allocated), or dynamic arrays, which can be

resized.

3.6 Applications of Arrays

Arrays are employed in many computer applications in which data items

need to be saved in the computer memory for subsequent reprocessing.

Due to their performance characteristics, arrays are used to implement

other data structures, such as heaps, hash tables, deques, queues, stacks

and strings.

4.0 CONCLUSION

In this unit, you have learned about the arrays and their dimensionality.

You have also been able to understand the meaning of some notions

such as; array name, element and array declaration. Finally, you have

been able to distinguish between the static and dynamic arrays as well as

understand the applications of arrays.

5.0 SUMMARY

What you have learned in this unit is focused on arrays, their

declaration, classification and application. In the next unit, we will

discuss another data structure known as Lists.

SELF ASSESSMENT EXERCISE 1

Interpret the instruction DIM Y (80).

SELF ASSESSMENT EXERCISE 2

Given DIMENSION A (5, 20), express the array linearly.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

11 11

6.0 TUTOR-MARKED ASSIGNMENT

Describe a suitable data structure for details of stock items numbered in

the range 1 to 100. Each stock item may be held at each of 20 locations.

The number of items held at each location needs to be recorded.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A, (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

12 12

UNIT 3 THE LIST DATA STRUCTURE

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 What is a List?
3.2 Elements of a List
3.3 Operation
3.4 List Implementation

3.4.1 Array List
3.4.2 Linked List

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

What you will learn in this unit borders on Lists, their operations and

implementations. Typical examples are given to facilitate the student’s

understanding of these features.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe a List
identify the elements of a List
explain the operations and implementations of Lists.

3.0 MAIN CONTENT

3.1 What is a List Data Structure?

A list data structure is a sequential data structure, i.e. a collection of

items accessible one after the other, beginning at the head and ending at

the tail. It is a widely used data structure for applications which do not

need random access.

Lists differ from the stacks and queues data structures in that additions
and removals can be made at any position in the list.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

13 13

3.2 Elements of a List

The sentence “Dupe is not a boy” can be written as a list as follows:

DUPE IS NOT A BOY

Fig. 1.0: Elements of a List

We regard each word in the sentence above as a data-item or datum,

which is linked to the next datum, by a pointer. Datum plus pointer

make one node of a list. The last pointer in the list is called a

terminator. It is often convenient to speak of the first item as the head

of the list, and the remainder of the list as the tail.

3.2 Operations

The main primitive operations of a list are known as:

Add adds a new node
Set updates the contents of a node
Remove removes a node
Get returns the value at a specified index
IndexOf returns the index in the list of a specified element

Additional primitives can be defined:

IsEmpty reports whether the list is empty

IsFull reports whether the list is full

Initialise creates/initialises the list

Destroy deletes the contents of the list (may be implemented by

re-initialising the list)
Initialise Creates the structure – i.e. ensures that the structure exists

but contains no elements e.g. Initialise(L) creates a new
empty queue named Q

Add

e.g. Add(1,X,L) adds the value X to list L at position 1 (the start of the

list is position 0), shifting subsequent elements up L

A B C

Fig. 1.1: List before adding value

L

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

14 14

A X B C

Fig. 1.2: List after adding value

Set

e.g. Set(2,Z,L) updates the values at position 2 to be Z

L

A X Z C

Fig. 1.3: List after update

Remove

e.g. Remove(Z,L) removes the node with value Z

L

A X Z C

Fig. 1.4: List before removal

L

A X C

Fig. 1.5: List after removal

Get

e.g. Get(2,L) returns the value of the third node, i.e. C

IndexOf

e.g. IndexOf(X,L) returns the index of the node with value X, i.e. 1

3.4 List Implementation

Lists can be implemented in many ways, depending on how the

programmer will use lists in their programme. Common

implementations include:

1. Array List

2. Linked List

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

15 15

3.4.1 Array Lists

This implementation stores the list in an array. The Array List has the

following properties:

1. The position of each element is given by an index from 0 to n-1,
where n is the number of elements.

2. Given any index, the element with that index can be accessed in

constant time – i.e. the time to access does not depend on the size

of the list.

3. To add an element at the end of the list, the time taken does not

depend on the size of the list. However, the time taken to add an

element at any other point in the list does depend on the size of

the list, as all subsequent elements must be shifted up. Additions

near the start of the list take longer than additions near the middle

or end.

4. When an element is removed, subsequent elements must be

shifted down, so removals near the start of the list take longer

than removals near the middle or end.

3.4.2 Linked List

The Linked List is stored as a sequence of linked nodes. As in the case

of the stack, each node in a linked list contains data AND a reference to

the next node. The Linked List has the following properties:

The list can grow and shrink as needed.

The position of each element is given by an index from 0 to n-1, where
n is the number of elements.
Given any index, the time taken to access an element with that index

depends on the index. This is because each element of the list must be
traversed until the required index is found.

The time taken to add an element at any point in the list does not

depend on the size of the list, as no shifts are required. It does, however,
depend on the index. Additions near the end of the list take longer than
additions near the middle or start. The same applies to the time taken to
remove an element. A list needs a reference to the front node.

There are many variations on the Linked List data structure, including:

i. Singly Linked Lists

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

16 16

A singly linked list is a data structure in which the data items are

chained (linked) in one direction. Figure 1 shows an example of a singly

linked list.

Figure 1.6: A singly linked list

ii. Circularly Linked Lists

In a circularly linked list, the tail of the list always points to the head of
the list.

iii. Doubly Linked Lists

These permits scanning or searching of the list in both directions. (To go

backwards in a simple list, it is necessary to go back to the start and scan

forwards.) In this case, the node structure is altered to have two links:

Figure 1.7: A doubly linked list

iii. Sorted Lists

Lists can be designed to be maintained in a given order. In this case, the

Add method will search for the correct place in the list to insert a new

data item.

SELF ASSESSMENT EXERCISE 1

‘Ola studies his courses’. Represent this statement as a list, identifying

the different elements.

SELF ASSESSMENT EXERCISE 2

Mention at least two types of lists.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

17 17

4.0 CONCLUSION

In this unit you have learned about Lists. You have also been able to

identify the elements of a List. You should also have learned about

operations and implementations of lists.

5.0 SUMMARY

What you have learned in this unit concerns the Lists, their operations

and implementations. In the next unit, you shall learn about another

linear data structure, known as Queues.

6.0 TUTOR-MARKED ASSIGNMENT

What would the contents of a list be after the following operation?
Add (1, X, L)

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data Structures
and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

18 18

UNIT 4 THE STACK DATA STRUCTURE

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 The Stack Data Structure
3.2 Application of Stacks
3.3 Operations on a Stack
3.4 Stack Storage Modes

3.4.1 Static Data Structures
3.4.2 Dynamic Data Structures

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, we will look at an abstract data structure – the Stack Data

Structure.

This structure stores and accesses data in different ways, which are

useful in different applications. In all cases, the stack data structure

follows the principle of data abstraction (the data representation can be

inspected and updated only by the abstract data type’s operations). Also,

the algorithms used to implement the operations do not depend on the

type of data to be stored.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

 describe the stack data structure

 identify two basic modes of implementing

a stack outline the applications of stacks in

computing
 explain the two methods of storing a stack.

3.0 MAIN CONTENT

3.1 The Stack Data Structure

A stack is a linear data structure in which all insertions and deletions of

data are made only at one end of the stack, often called the top of the

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

19 19

stack. For this reason, a stack is referred to as a LIFO (last-in-first-out)

structure.

Figure 1.0 shows a stack.

Fig. 1.0: Simple representation of a stack

A frequently used metaphor is the idea of a stack of plates in a spring

loaded cafeteria stack. In such a stack, only the top plate is visible and

accessible to the user, all other plates remain hidden. As new plates are

added, each new plate becomes the top of the stack, hiding each plate

below, pushing the stack of plates down. As the top plate is removed

from the stack, the plates pop back up, and the second plate becomes the

top of the stack.

3.2 Application of Stacks

Stacks are used extensively at every level of a modern computer system.

For example, a modern PC uses stacks at the architecture level, which

are used in the basic design of an operating system for interrupt handling

and operating system function calls. Among other uses, stacks are used

to run a Java Virtual Machine, and the Java language itself has a class

called "Stack", which can be used by the programmer.

Stacks have many other applications. For example, as processor

executes a programme, when a function call is made, the called function

must know how to return back to the programme, so the current address

of programme execution is pushed onto a stack. Once the function is

finished, the address that was saved is removed from the stack, and

execution of the programme resumes. If a series of function calls occur,

the successive return values are pushed onto the stack in LIFO order so

that each function can return back to calling programme. Stacks support

recursive function calls, subroutine calls, especially when “reverse

polish notation” is involved.

Solving a search problem, regardless of whether the approach is

exhaustive or optimal, needs stack space. Examples of exhaustive search

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

20 20

methods are bruteforce and backtracking. Examples of optimal search

exploring methods are branch and bound and heuristic solutions. All of

these algorithms use stacks to remember the search nodes that have been
noticed but not explored yet.

Another common use of stacks at the architecture level is as a means of

allocating and accessing memory.

Fig. 1.1: Basic Architecture of a Stack

3.3 Operations on a Stack

The stack is usually implemented with two basic operations known as

"push" and "pop". Thus, two operations applicable to all stacks are:

A push operation, in which a data item is placed at the location pointed

to by the stack pointer and the address in the stack pointer is adjusted by

the size of the data item; Push adds a given node to the top of the stack

leaving previous nodes below.

A pop or pull operation, in which a data item at the current location

pointed to by the stack pointer is removed, and the stack pointer is

adjusted by the size of the data item. Pop removes and returns the

current top node of the stack.

The main primitives of a stack are known as:

Push adds a new node

Pop removes a node

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

21 21

Figure 1.2 shows the insertion of three data X, Y and Z to a stack and

the removal of two data, Z and Y, from the stack.

 To
p

X To
p

Y To
p

Z To
p

Y To
p

X
 X Y X

 X

Empty Push X Push Y Push Z Pop Z Pop Y

Stack
Fig. 1. 2: Insertion and removal of data from stack

Additional primitives can be defined:

IsEmpty reports whether the stack is empty

IsFull reports whether the stack is full

Initialise creates/initialises the stack

Destroy deletes the contents of the stack
(may be implemented by
re-initialising the stack)

Initialise

Creates the structure – i.e. ensures that the structure exists but contains

no elements
e.g. Initialise(S) creates a new empty stack named S

e.g. Push(X,S) adds the value X to the Top of the stacks, S

X

S
Fig 1.4: Stack after adding the value X

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

22 22

Pop

e.g. Pop(S) removes the TOP node and returns its value

S
Fig. 1.5: Stack after removing the top node

3.4 Stack Storage Modes

A stack can be stored in two ways:

a static data structure

OR

a dynamic data structure

3.4.1 Static Data Structures

These define collections of data which are fixed in size when the
programme is compiled. An array is a static data structure.

3.4.2 Dynamic Data Structures

These define collections of data which are variable in size and structure.

They are created as the programme executes, and grow and shrink to

accommodate the data being stored.

SELF ASSESSMENT EXERCISE 1

A stack is referred to as a LIFO structure, true or false? Give reasons

for your answer.

SELF ASSESSMENT EXERCISE 2

Write on two applications of stacks.

4.0 CONCLUSION

In this unit, you have learned about the stack data structure. You have

also been able to understand the basic operations on a stack. You should

also have learned about applications of stacks in computing.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

23 23

5.0 SUMMARY

What you have learned in this unit concerns the stack data structure,

their operations and applications. In the next unit, you shall learn about

another linear data structure, known as Queues.

6.0 TUTOR-MARKED ASSIGNMENT

Applying the LIFO principle to the third stack S, what would be the

state of the stack S, after the operation S. POP () is executed? Illustrate

this with a simple diagram.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A, (1998). Practical Introduction to Data Structures
and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

24 24

UNIT 5 THE QUEUE DATA STRUCTURE

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 The Queue Data Structure
3.2 Application of Queues
3.3 Operations on a Queue

3.3.1 Other Queue Operations
3.4 Storing a Queue in a Static Data Structure
3.5 Storing a Queue in a Dynamic Data Structure

3.5.1 Adding a Node
3.5.2 Removing a Node

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, the student will gain knowledge of the queue data structure

as well as its applications and operations. Typical examples are given to

facilitate your understanding of these concepts.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe a queue data structure

give at least three applications of queues

explain the operations on a queue
describe two basic modes of queue storage.

3.0 MAIN CONTENT

3.1 The Queue Data Structure

The queue data structure is characterised by the fact that additions are

made at the end, or tail, of the queue while removals are made from the

front, or head of the queue. For this reason, a queue is referred to as a

FIFO structure (First-In First-Out). Figure 1.0 shows a queue of part of

English alphabets.

Insertion Deletion

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

25 25

Last data First data

Fig. 1.0: Example of a Queue

3.2 Application of Queues

Queues are very important structures in computer simulations, data

processing, information management, and in operating systems.

In simulations, queue structures are used to represent real-life events

such as car queues at traffic light junctions and petrol filling stations,

queues of people at the check-out point in super markets, queues of bank

customers, etc.

In operating systems, queue structures are used to represent different

programmes in the computer memory in the order in which they are

executed. For example, if a programme, J is submitted before

programme K, then programme J is queued before programme K in the

computer memory and programme J is executed before programme K.

3.3 Operations on a Queue

The main primitive operations on a queue are known as:

Add adds a new node

Remove removes a node

Additional primitives can be defined thus:

IsEmpty reports whether the queue is empty

IsFull reports whether the queue is full

Initialise creates/initialises the queue

Destroy deletes the contents of the queue (may be implemented by

re-initialising the queue)
Initialise

Creates the structure – i.e. ensures that the structure exists but contains

no elements.

e.g. Initialise(Q) creates a new empty queue named Q

Add

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

26 26

e.g. Add(X,Q) adds the value X to the tail of Q

Fig. 1.1: Queue after adding the value X to the tail of Q

then, Add (Y, Q) adds the value Y to the tail of Q

Fig. 1.2: Queue after adding the value Y to the tail of Q

Remove

e.g. Remove(Q) removes the head node and returns its value

Fig. 1.3: Queue after removing Q from the head node

3.3.1 Other Queue Operations

Action Contents of queue Q after operation Return value

Initialise (Q) empty

Add (A,Q) A -

Add (B,Q) A B -
Add(C,Q) A B C -

Remove (Q) B C A

Add (F,Q) B C F -

Remove (Q) C F B

Remove (Q) F C

Remove (Q) empty F

3.4 Storing a Queue in a Static Data Structure

This implementation stores the queue in an array. The array indices at

which the head and tail of the queue are currently stored must be

maintained. The head of the queue is not necessarily at index 0. The

array can be a “circular array” in which the queue “wraps round” if the

last index of the array is reached.

Figure 1.4 below is an example of storing a queue in an array of length

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

27 27

5:

3.5 Storing a Queue in a Dynamic Data Structure

A queue requires a reference to the head node AND a reference to the

tail node. The following diagram describes the storage of a queue called

Queue. Each node consists of data (DataItem) and a reference

(NextNode).

The first node is accessed using the name Queue.Head.
Its data is accessed using Queue.Head.DataItem
The second node is accessed using Queue.Head.NextNode
The last node is accessed using Queue.Tail

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

28 28

3.5.1 Adding a Node (Add)

The new node is to be added at the tail of the queue. The reference

Queue.Tail should point to the new node, and the NextNode reference

of the node previously at the tail of the queue should point to the

DataItem of the new node.

3.5.2 Removing a Node (Remove)

The value of Queue.Head.DataItem is returned. A temporary reference

Temp, is declared and set to point to head node in the queue (Temp =

Queue.Head). Queue.Head is then set to point to the second node

instead of the top node. The only reference to the original head node is

now Temp and the memory used by this node can then be freed.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

29 29

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

30 30

SELF ASSESSMENT EXERCISE 1

Why is a queue referred to as a FIFO structure?

SELF ASSESSMENT EXERCISE 2

Describe at least three applications of queues.

4.0 CONCLUSION

In this unit, you have learned about the queue data structure. Queue

applications and operations were equally considered. You should also

have learned about the queue storage in static and dynamic data

structures.

5.0 SUMMARY

What you have learned in this unit concerns queues, their operations and

applications. The units that follow shall build upon issues discussed in

this unit.

6.0 TUTOR-MARKED ASSIGNMENT

Taking up again the example given in figure 1.4 above, show the state of
the queue after the following operations:

Add (E,Q)

Remove (Q)

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data Structures

and Algorithm Analysis, Prentice Hall, pp. 77–102.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

31 31

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

32 32

MODULE 2 HASHING AND TREES

Unit 1 Hashing

Unit 2 Trees
Unit 3 Search Trees
Unit 4 Garbage Collection and Other Heap
Unit 5 Memory Allocation

UNIT 1 HASHING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Hashing-The Basic Idea
3.2 Hash Keys and Functions
3.3 Hash Function Implementation
3.4 What is a Hash Table?

3.4.1 Abstract Hash Tables
3.5 Separate Chaining
3.6 Applications

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, we will examine the basic idea of hashing. Hash keys and

functions are equally described, giving the basic implementation of hash

functions. We then define hash tables and give their applications.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

explain the basic idea of hashing
describe hash keys and functions
give the basic implementation of hash functions
define a hash table
explain the applications of hash tables.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

33 33

3.0 MAIN CONTENT

3.1 Hashing – The Basic Idea

Ideally we would build a data structure for which both the insertion and

find operations are O (1) in the worst case. However, this kind of

performance can only be achieved with complete a priori knowledge.

We need to know beforehand specifically which items are to be inserted

into the container. Unfortunately, we do not have this information in the

general case. So, if we cannot guarantee O (1) performance in the worst

case, then we make it our design objective to achieve O(1) performance

in the average case.

The constant time performance objective immediately leads us to the

following conclusion: Our implementation must be based in some way

on an array rather than a linked list. This is because we can access the

element of an array in constant time, whereas the same operation in a

linked list takes O(k) time.

In the previous chapter, we considered two searchable containers--the

ordered list and the sorted list. In the case of an ordered list, the cost of

an insertion is O(1) and the cost of the find operation is O(n). For a

sorted list, the cost of insertion is O(n) and the cost of the find operation

is for the array implementation.

Clearly, neither the ordered list nor the sorted list meets our performance

objectives. The essential problem is that a search, either linear or binary,

is always necessary. In the ordered list, the find operation uses a linear

search to locate the item. In the sorted list, a binary search can be used

to locate the item because the data is sorted. However, in order to keep

the data sorted, insertion becomes O(n).

In order to meet the performance objective of constant time insert and

find operations, we need a way to do them without performing a search.

That is, given an item x, we need to be able to determine directly from x

the array position where it is to be stored.

Example

We wish to implement a searchable container which will be used to

contain character strings from the set of strings K,

Suppose we define a function as given by the following table:

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

34 34

x h(x)

"ett" 1

"två" 2

"tre" 3

"fyra" 4

"fem" 5

"sex" 6

"sju" 7

"åtta" 8

"nio" 9

"tio" 10

"elva" 11

"tolv" 12

Table 1.0 Defining a Hash Function

Then, we can implement a searchable container using an array of length

n=12. To insert item x, we simply store it at position h(x)-1 of the array.

Similarly, to locate item x, we simply check to see if it is found at

position h(x)-1. If the function can be evaluated in constant time,

then both the insert and the find operations are O(1).

We expect that any reasonable implementation of the function will

run in constant time, since the size of the set of strings, K, is a constant!

This example illustrates how we can achieve O(1) performance in the

worst case when we have complete, a priori knowledge.

3.2 Hash Keys and Functions

We are designing a container which will be used to hold some number

of items of a given set, K. In this context, we call the elements of the set

K keys. The general approach is to store the keys in an array. The

position of a key in the array is given by a function , called a hash

function, which determines the position of a given key directly from that

key.

In the general case, we expect the size of the set of keys, |K|, to be

relatively large or even unbounded. For example, if the keys are 32-bit

integers, then . Similarly, if the keys are arbitrary character

strings of arbitrary length, then |K| is unbounded.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

35 35

On the other hand, we also expect the actual number of items stored in

the container to be significantly less than |K|. That is, if n is the number

of items actually stored in the container, then . Therefore, it

seems prudent to use an array of size M, where M is as least as great at

the maximum number of items to be stored in the container.

Consequently, what we need is a function .

This function maps the set of values to be stored in the container to

subscripts in an array of length M. This function is called a hash

function .

In general, since , the mapping defined by hash function will be

a many-to-one mapping . That is, there will exist many pairs of distinct

keys, x and y, such that , for which h(x)=h(y). This situation is

called a collision. Several approaches for dealing with collisions are

explored in the following sections.

What are the characteristics of a good hash function?

A good hash function avoids collisions.

A good hash function tends to spread keys evenly in the array.
A good hash function is easy to compute.

3.3 Hash Function Implementation

In reality, we cannot expect that the keys will always be integers.

Depending on the application, the keys might be letters, character strings

or even more complex data structures such as Associations or

Containers.

In general, given a set of keys, K, and a positive constant, M, a hash
function is a function of the form

In practice, it is convenient to implement the hash function, h, as the

composition of two functions, f and g. The function, f, maps keys into

integers:

where is the set of integers. The function, g, maps non-negative

integers into :

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

36 36

Given appropriate functions, f and g, the hash function, h, is simply
defined as the composition of those functions:

That is, the hash value of a key, x, is given by g(f(x)).

By decomposing the function, h, in this way, we can separate the

problem into two parts: The first involves finding a suitable mapping

from the set of keys, K, to the non-negative integers. The second

involves mapping non-negative integers into the interval [0,M-1].

Ideally, the two problems would be unrelated. That is, the choice of the

function, f, would not depend on the choice of g and vice versa.

Unfortunately, this is not always the case. However, if we are careful,

we can design the functions in such a way that is a good hash

function.

This is precisely the domain of the function g. Consequently, we have

already examined several different alternatives for the function, g. On

the other hand, the choice of a suitable function for f depends on the

characteristics of its domain.

In the following sections, we consider various different domains (sets of

keys) and develop suitable hash functions for each of them. Each

domain considered corresponds to a Java class. Recall that every Java

class is ultimately derived from the Object class and that the Object

class declares a method called hashCode:

public class Object
{
public int hashCode ();

// ...

}

The hashCode method corresponds to the function, f, which maps

keys into integers.

3.4 What is a Hash Table?

A hash table is a searchable container. As such, its interface provides

methods for putting an object into the container, finding an object in the

container, and removing an object from the container. The HashTable

interface extends the SearchableContainerInterface defined

in programme 1.0 below. One additional method, called

getLoadFactor, is declared.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

37 37

Programme 1.0: HashTable interface.

3.4.1 Abstract Hash Tables

As shown in Figure 1.0, we define an AbstractHashTable class

from which several concrete realizations are derived.

Fig. 1.0: Object class hierarchy

Programme 1.1 introduces the AbstracHashTable class. The

AbstractHashTable class extends the

AbstractSearchableContainer class introduced in

Programme 1.1 and it implements the HashTable interface.

Programme1.1: AbstractHashTable methods.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

38 38

Programme 1.1 introduces four methods--getLength, f, g, and h.

The getLength method is an abstract method. This function returns

the length of a hash table.

The methods f, g, and h correspond to the composition

discussed. The f method takes as an object and calls the hashCode

method on that object to compute an integer. The g method uses the

division method of hashing defined to map an integer into the interval

[0,M-1], where M is the length of the hash table. Finally, the h method

computes the composition of f and g.

We will consider various ways of implementing hash tables. In all cases,

the underlying implementation makes use of an array. The position of an

object in the array is determined by hashing the object. The main

problem to be resolved is how to deal with collisions--two different

objects cannot occupy the same array position at the same time. In the

following section, we consider an approach which solves the problem of

collisions by keeping objects that collide in a linked list.

3.5 Separate Chaining

Figure 1.1, shows a hash table that uses separate chaining to resolve

collisions. The hash table is implemented as an array of linked lists. To

insert an item into the table, it is appended to one of the linked lists. The

linked list to which it is appended is determined by hashing that item.

Figure 1.1: Hash table using separate chaining.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

39 39

Figure 1.1 illustrates an example in which there are M=16 linked lists.

The twelve character strings "ett"-"tolv" have been inserted into

the table using the hashed values and in the order given in Table 1.1.

Notice that in this example, since M=16, the linked list is selected by the

least significant four bits of the hashed value given in Table 1.0. In

effect, it is only the last letter of a string which determines the linked list

in which that string appears.

3.6 Applications

Hash and Scatter tables have many applications. The principal

characteristic of such applications is that keyed information needs to be

frequently accessed and the access pattern is either unknown or known

to be random. For example, hash tables are often used to implement the

symbol table of a programming language compiler. A symbol table is

used to keep track of information associated with the symbols (variable

and method names) used by a programmer. In this case, the keys are

character strings and each key has, associated with it, some information

about the symbol (e.g., type, address, value, lifetime, scope).

This section presents a simple application of hash and scatter tables.

Suppose we are required to count the number of occurrences of each

distinct word contained in a text file. We can do this easily using a hash

or scatter table. Programme gives an implementation.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

40 40

Programme 1.2: Hash/scatter table application--counting words.

The static inner class Counter extends the class Int defined in

Section . In addition to the functionality inherited from the base class,

the Counter class adds the method increment which increases the

value by one.

The wordCounter method does the actual work of counting the words

in the input file. The local variable table refers to a

ChainedHashTable that is used to keep track of the words and

counts. The objects which are put into the hash table are all instances of

the class Association. Each association has as its key a String

class instance, and as its value a Counter class instance.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

41 41

The wordCounter method reads words from the input stream one at a

time. As each word is read, a find operation is done on the hash table

to determine if there is already an association for the given key. If none

is found, a new association is created and inserted into the hash table.

The given word is used as the key of the new association and the value

is a counter which is initialised to one. On the other hand, if there is

already an association for the given word in the hash table, the

corresponding counter is incremented. When the wordCounter

method reaches the end of the input stream, it simply prints the hash

table on the given output stream.

The running time of the wordCounter method depends on a number

of factors, including the number of different keys, the frequency of

occurrence of each key, and the distribution of the keys in the overall

space of keys. Of course, the hash/scatter table implementation chosen

has an effect as does the size of the table used. For a reasonable set of

keys we expect the hash function to do a good job of spreading the keys,

uniformly in the table. Provided a sufficiently large table is used, the

average search and insertion time is bounded by a constant. Under these

ideal conditions, the running time should be O(n), where n is the number

of words in the input file.

SELF ASSESSMENT EXERCISE 1

What is a Hash table?

SELF ASSESSMENT EXERCISE 2

Describe at least one application of Hash Tables.

4.0 CONCLUSION

In this unit, you have learned about hashing, hash keys and functions.

You have also been able to understand what hash tables are and how to

implement hash functions. Finally, you have been able to appreciate the

applications of hash tables.

5.0 SUMMARY

What you have learned borders on the basic notions of hashing, hash

functions and hash tables and their applications.

6.0 TUTOR-MARKED ASSIGNMENT

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

42 42

What are the characteristics of a good hash function?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data

Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

43 43

UNIT 2 TREES

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Trees
3.2 Tree- Basics
3.3 Binary Trees
3.4 Tree Traversals

3.4.1 Preorder Traversal
3.4.2 Postorder Traversal
3.4.3 Inorder Traversal

3.5 Implementing Trees
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, we will consider different kinds of trees as well as different

tree traversal algorithms. In addition, we show how trees can be used to

represent arithmetic expressions and how we can evaluate an arithmetic

expression by doing a tree traversal.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

 give a basic definition of a

tree describe binary trees

 explain tree traversals

 evaluate arithmetic expressions by means of tree traversals.

3.0 MAIN CONTENT

3.1 Trees

A tree is often used to represent a hierarchy. This is because the

relationships between the items in the hierarchy suggest the branches of

a botanical tree. For example, a tree-like organisation chart is often

used to represent the lines of responsibility in a business as shown in

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

44 44

Figure 1.0. The president of the company is shown at the top of

the tree and the vice-presidents are indicated below her. Under

the vice- presidents, we find the managers and below the

managers the rest of the clerks. Each clerk reports to a manager,

each manager reports to a vice- president, and each vice-

president reports to the president.

Fig. 1.0: Representing a hierarchy

using a tree

It just takes a little imagination to see the tree in Figure 1.0. Of

course, the tree is upside-down. However, this is the usual

way the data structure is drawn. The president is called the root

of the tree and the clerks are the leaves.

A tree is extremely useful for certain kinds of

computations. For example, suppose we wish to determine the

total salaries paid to employees by division or by department.

The total of the salaries in division A can be found by

computing the sum of the salaries paid in departments A1 and

A2 plus the salary of the vice-president of division A.

Similarly, the total of the salaries paid in department A1 is the

sum of the salaries of the manager of department A1 and of the

two clerks below her.

Clearly, in order to compute all the totals, it is necessary to

consider the salary of every employee. Therefore, an

implementation of this computation must visit all the employees

in the tree. An algorithm that systematically visits all the items in

a tree is called a tree traversal.

3.2

Tree-

Basics

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

45 45

The following is a mathematical definition

of a tree:

Definition (Tree) A tree, T, is a finite, non-empty set

of nodes, with the following properties:

1. A designated node of the set, r, is called the root of the

tree; and

2. The remaining nodes are partitioned into subsets, , , ...,

, each of which is a tree.

For convenience, we shall use the notation to

denote the tree T.

Notice that this definition is recursive—that is, a tree is defined in terms

of itself! Fortunately, we do not have a problem with infinite recursion

because every tree has a finite number of nodes and because in the base

case, a tree has n=0 subtrees.

It follows from the definition that the minimal tree is a tree comprising a

single root node. For example is such a tree. When there is

more than one node, the remaining nodes are partitioned into subtrees.

For example, the is a tree which comprises of the root

node, B, and the subtree . Finally, the following is also a tree

How do , , and resemble their arboreal namesake? The similarity

becomes apparent when we consider the graphical representation of

these trees shown in Figure 1.1. To draw such a pictorial representation

of a tree, , the following recursive procedure is

used: First, we first draw the root node, r. Then, we draw each of the

subtrees, , , ..., , beside each other below the root. Finally, lines

are drawn from r to the roots of each of the subtrees.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

46 46

Fig. 1.1: Examples of trees.

Of course, trees drawn in this fashion are upside down. Nevertheless,

this is the conventional way in which tree data structures are drawn. In

fact, it is understood that when we speak of ``up'' and ``down,'' we do so

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

47 47

with respect to this pictorial representation. For example, when we move from

a root to a subtree, we will say that we are moving down the tree. The inverted

pictorial representation of trees is probably due to the way that genealogical

lineal charts are drawn. A lineal chart is a family tree that shows the

descendants of some person. And it is from genealogy that much of the

terminology associated with tree data structures is taken.

Terminology

Consider a tree , , as given by the definition: The

degree of a node is the number of subtrees associated with that

node. For example, the degree of tree T is n.
A node of degree zero has no subtrees. Such a node is called a leaf .

Each root of subtree of tree T is called a child of r. The term

grandchild is defined in a similar manner.
The root node, r, of tree T, is the parent of all the roots of the

subtrees , . The term, grandparent, is defined in a similar

manner.

Two roots and of distinct subtrees and of tree T are called

siblings.

There is still more terminology to be introduced, but in order to do that, we
need the following definition:

Definition (Path and Path Length) Given a tree, T, containing the set of

nodes R, a path in T is defined as a non-empty sequence of nodes

where , for such that the node in the sequence, , is the

parent of the node in the sequence . The length of path P
is k-1.

For example, consider again the tree shown in Figure 1.1. This tree

contains many different paths. In fact, if you count carefully, you should

find that there are exactly 29 distinct paths in tree . This includes the path

of length zero, ; the path of length one, ; and the path of length

three, .

3.3 Binary Trees

In this section, we will consider an extremely important and useful
category of tree structure--binary trees. A binary tree is an N-ary tree

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

48 48

for which N is two. Since a binary tree is an N-ary tree, all of the results

derived in the preceding section apply to binary trees. However, binary

trees have some interesting characteristics that arise from the restriction

that N is two. For example, there is an interesting relationship between

binary trees and the binary number system. Binary trees are also very

useful for the representation of mathematical expressions involving the

binary operations such as addition and multiplication.

Binary trees are defined as follows:

Definition (Binary Tree) A binary tree, T, is a finite set of nodes with
the following properties:

1. Either the set is empty, ; or

2. The set consists of a root, r, and exactly two distinct binary trees

and , .

The tree, is called the left subtree of T, and the tree, is called the

right subtree of T.

Binary trees are almost always considered to be ordered trees.

Therefore, the two subtrees and are called the left and right

subtrees, respectively. Consider the two binary trees shown in

Figure 1.2. Both trees have a root with a single non-empty subtree.

However, in one case, it is the left subtree which is non-empty; in the

other case, it is the right subtree that is non-empty. Since the order of the

subtrees matters, the two binary trees shown in Figure 1.2 are different.

Fig. 1.2: Two distinct binary trees

We can determine some of the characteristics of binary trees from the

theorems given in the preceding section by letting N=2. For example, we

know that a binary tree with internal nodes contains n+ 1 external

node. This result is true regardless of the shape of the tree.

Consequently, we expect that the storage overhead associated with the

empty trees will be O(n).

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

49 49

We thus learn that a binary tree of height has at most

internal nodes. Conversely, the height of a binary tree with n internal

nodes is at least . That is, the height of a binary tree with

n nodes is .

Finally, a binary tree of height has at most leaves. Conversely,

the height of a binary tree with l leaves is at least . Thus, the

height of a binary tree with l leaves is

3.4 Tree Traversals

There are many different applications of trees. As a result, there are

many different algorithms for manipulating them. However, many of the

different tree algorithms have in common the characteristic that they

systematically visit all the nodes in the tree. That is, the algorithm walks

through the tree data structure and performs some computation at each

node in the tree. This process of walking through the tree is called a tree

traversal.

There are essentially two different methods in which to visit

systematically all the nodes of a tree--depth-first traversal and

breadth-first traversal. Certain depth-first traversal methods occur

frequently enough that they are given names of their own: preorder

traversal, inorder traversal and postorder traversal.

The discussion that follows uses the tree in Figure 1.3 as an example.
The tree shown in the figure is a general tree:

However, we can also consider the tree in Figure 1.3 to be an N-ary tree

(specifically, a binary tree if we assume the existence of empty trees at

the appropriate positions:

Fig. 1.3: Sample tree

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

50 50

3.4.1 Preorder Traversal

The first depth-first traversal method we consider is called preorder

traversal. Preorder traversal is defined recursively as follows: To do a

preorder traversal of a general tree:

1. Visit the root first; and then

2. Do a preorder traversal each of the subtrees of the root

one-by-one in the order given.

Preorder traversal gets its name from the fact that it visits the root first.
In the case of a binary tree, the algorithm becomes:

1. Visit the root first; and then

2. Traverse the left subtree; and then
3. Traverse the right subtree.

For example, a preorder traversal of the tree visits the nodes in the

following order:

Notice that the preorder traversal visits the nodes of the tree in precisely

the same order in which they are written. A preorder traversal is often

done when it is necessary to print a textual representation of a tree.

3.4.2 Postorder Traversal

The second depth-first traversal method we consider is postorder

traversal. In contrast with preorder traversal, which visits the root first,

postorder traversal visits the root last. To do a postorder traversal of a

general tree:

1. Do a postorder traversal each of the subtrees of the root one-

by-one in the order given; and then
2. Visit the root.

To do a postorder traversal of a binary tree

1. Traverse the left subtree; and then

2. Traverse the right subtree; and then
3. Visit the root.

A postorder traversal of the tree shown in Figure visits the nodes in

the following order:

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

51 51

3.4.3 Inorder Traversal

The third depth-first traversal method is inorder traversal. Inorder

traversal only makes sense for binary trees. Whereas preorder traversal

visits the root first and postorder traversal visits the root last, inorder

traversal visits the root in between visiting the left and right subtrees:

1. Traverse the left subtree; and then
2. Visit the root; and then
3. Traverse the right subtree.

An inorder traversal of the tree visits the nodes in the following order:

3.5 Implementing Trees

In this section, we will consider the implementation of trees including

general trees, N-ary trees, and binary trees. The implementations

presented have been developed in the context of the abstract data type

framework. That is, the various types of trees are viewed as classes of

containers as shown in Figure 1.4.

Fig. 1.4: Object class hierarchy

Programme 1.0 defines the Tree interface. The Tree interface extends

the Container interface defined in Programme 1.0.

Programme 1.0: Tree interface.

http://www.brpreiss.com/books/opus5/html/page268.html#figclasses5

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

52 52

The Tree interface adds the following methods to those inherited from

the Container interface:

getKey

This method returns the object contained in the root node of a tree.

getSubtree

This method returns the subtree of the given tree.

isEmpty

This boolean-valued method returns true if the root of the tree is an

empty tree, i.e., an external node.

isLeaf

This boolean-valued method returns true if the root of the tree is a

leaf node.

getDegree

This method returns the degree of the root node of the tree. By

definition, the degree of an external node is zero.

getHeight

This method returns the height of the tree. By definition, the height of an

empty tree is -1.

depthFirstTraversal and breadthFirstTraversal

These methods are like the accept method of the container class (see

Section). Both of these methods perform a traversal. That is, all the

nodes of the tree are visited systematically. The former takes a

PrePostVisitor and the latter takes a Visitor. When a node is

visited, the appropriate methods of the visitor are applied to that node.

SELF ASSESSMENT EXERCISE 1

What do you understand by the term tree traversals?

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

53 53

SELF ASSESSMENT EXERCISE 2

Give a brief description of the implementation of trees.

4.0 CONCLUSION

In this unit, you have learned about trees. You have also learned about

binary trees and tree traversals. Finally, you have been able to learn how

to implement trees.

5.0 SUMMARY

What you have learned in this unit is focused on trees, the common

types and implementation of trees.

6.0 TUTOR-MARKED ASSIGNMENT

Describe trees and illustrate further by means of a diagram.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data Structures
and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

54 54

UNIT 3 SEARCH TREES

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Search Tree-Basics
3.2 Searching a Search Tree

3.2.1 Searching an M-way Tree
3.2.2 Searching a Binary Tree

3.3 Successful Search
3.4 Unsuccessful Search

3.5 AVL Search Trees
3.6 Implementing AVL Trees

3.6.1 Inserting Items into AVL Trees
3.6.2 Removing Items from an AVL Tree

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces Search Trees, describing successful and

unsuccessful searching. In addition, we show the implementation of

AVL search trees.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

explain what a search tree is

describe a successful search

describe an unsuccessful search

explain the implementation of AVL search trees.

3.0 MAIN CONTENT

3.1 Search Tree-Basics

A tree which supports efficient search, insertion, and withdrawal

operations is called a search tree. In this context, the tree is used to store

a finite set of keys drawn from a totally ordered set of keys, K. Each

node of the tree contains one or more keys and all the keys in the tree

are unique, i.e., no duplicate keys are permitted. What makes a tree into

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

55 55

a search tree is that the keys do not appear in arbitrary nodes of the tree.

Instead, there is a data ordering criterion which determines where a

given key may appear in the tree in relation to the other keys in that tree.

The subsequent sections present two related types of search trees,

M-way search trees and binary search trees.

3.2 Searching a Search Tree

The main advantage of a search tree is that the data ordering criterion

ensures that it is not necessary to do a complete tree traversal in order to

locate a given item. Since search trees are defined recursively, it is easy

to define a recursive search method.

3.2.1 Searching an M-way Tree

Consider the search for a particular item, say x, in an M-way search tree.

The search always begins at the root. If the tree is empty, the search

fails. Otherwise, the keys contained in the root node are examined to

determine if the object of the search is present. If it is, the search

terminates successfully. If it is not, there are three possibilities: Either

the object of the search, x, is less than , in which case subtree is

searched; or x is greater than , in which case subtree is

searched; or there exists an i such that for which

, in which case subtree is searched.

Notice that when x is not found in a given node, only one of the n

subtrees of that node is searched. Therefore, a complete tree traversal is

not required. A successful search begins at the root and traces a

downward path in the tree, which terminates at the node containing the

object of the search. Clearly, the running time of a successful search is

determined by the depth in the tree of object of the search.

When the object of the search is not in the search tree, the search method

described above traces a downward path from the root which terminates

when an empty subtree is encountered. In the worst case, the search path

passes through the deepest leaf node. Therefore, the worst-case running

time for an unsuccessful search is determined by the height of the search

tree.

3.2.2 Searching a Binary Tree

The search method described above applies directly to binary search

trees. As above, the search begins at the root node of the tree. If the

object of the search, x, matches the root r, the search terminates

successfully. If it does not, then if x is less than r, the left subtree is

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

56 56

searched; otherwise x must be greater than r, in which case the right

subtree is searched.

Figure 1.0 shows two binary search trees. The tree is an example of a

particularly bad search tree because it is not really very tree-like at all.

In fact, it is topologically isomorphic with a linear, linked list. In the

worst case, a tree which contains n items has height O(n). Therefore, in

the worst case an unsuccessful search must visit O(n) internal nodes.

s

Figure1.0: Examples of search trees

On the other hand, tree in Figure 1.0 is an example of a

particularly good binary search tree. This tree is an instance of

a perfect binary tree . Definition (Perfect Binary Tree) A

perfect binary tree of height is a binary tree

with the following properties:

1. If h=0, then

and .

2. Otherwise, h>0, in which case both and are both

perfect binary trees of height h-1.

It is fairly easy to show that a perfect binary tree of height h,

has exactly internal nodes. Conversely, the height of

a perfect binary tree with n internal nodes is . If

we have a search tree that has the shape of a perfect binary

tree, then every unsuccessful search visits

http://www.brpreiss.com/books/opus5/html/page304.html#figtree13

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

57 57

exactly h+1 internal nodes, where . Thus, the

worst case for unsuccessful search in a perfect tree is .

3.3

Successful

Search

When a search is successful, exactly d+1 internal nodes

are visited, where d is the depth in the tree of object of the

search. For example, if the object of the search is at the root

which has depth zero, the search visits just one node--the root

itself. Similarly, if the object of the search is at depth one,

two nodes are visited, and so on. We shall assume that it is

equally likely for the object of the search to appear in any

node of the search tree. In that case, the average number of

nodes visited during a

successful search is d 1, where is the average of the depths of the

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

58 58

nodes in a given tree. That is, given a binary search tree with n>0 nodes,

where is the depth of the node of the tree.

The quantity is called the internal path length . The internal path

length of a tree is simply the sum of the depths (levels) of all the internal

nodes in the tree. Clearly, the average depth of an internal node is equal

to the internal path length divided by n, the number of nodes in the tree.

Unfortunately, for any given number of nodes n, there are many

different possible search trees. Furthermore, the internal path lengths of

the various possibilities are not equal. Therefore, to compute the average

depth of a node in a tree with n nodes, we must consider all possible

trees with n nodes. In the absence of any contrary information, we shall

assume that all trees having n nodes are equiprobable and then compute

the average depth of a node in the average tree containing n nodes.

Let I(n) be the average internal path length of a tree containing n nodes.

Consider first the case of n=1. Clearly, there is only one binary tree that

contains one node--the tree of height zero. Therefore, I(1)=0.

Now consider an arbitrary tree, , having internal nodes

altogether, l of which are found in its left subtree, where . Such

a tree consists of a root, the left subtree with l internal nodes and and a
right subtree with n-l-1 internal nodes. The average internal path length

for such a tree is the sum of the average internal path length of the left

subtree, I(l), plus that of the right subtree, I(n-l-1), plus n-1 because the

nodes in the two subtrees are one level lower in .

In order to determine the average internal path length for a tree with n
nodes, we must compute the average of the internal path lengths of the

trees average over all possible sizes, l, of the (left) subtree,

.

To do this we consider an ordered set of n distinct keys,

. If we select the key, , to be the root of a binary

search tree, then there are l keys, , , ..., , in its left subtree and

n-l-1 keys, , , ..., in its right subtree.

If we assume that it is equally likely for any of the n keys to be selected

as the root, then all the subtree sizes in the range are equally

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

59 59

likely. Therefore, the average internal path length for a tree with

nodes is

Thus, in order to determine I(n), we need to solve the recurrence

To solve this recurrence, we consider the case n>1 and then multiply
Equation by n to get

Since this equation is valid for any n>1, by substituting n-1 for n, we
can also write

which is valid for n>2. Subtracting Equation from Equation gives

which can be rewritten as:

Thus, we have shown the solution to the recurrence in the equation is the
same as the solution of the recurrence

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

60 60

3.4 Unsuccessful Search

All successful searches terminate when the object of the search is found.

Therefore, all successful searches terminate at an internal node. In

contrast, all unsuccessful searches terminate at an external node. In

terms of the binary tree shown in Figure 1.0, a successful search

terminates in one of the nodes which are drawn as circles and an

unsuccessful search terminates in one of the boxes.

The preceding analysis shows that the average number of nodes visited

during a successful search depends on the internal path length, which is

simply the sum of the depths of all the internal nodes. Similarly, the

average number of nodes visited during an unsuccessful search depends

on the external path length, which is the sum of the depths of all the

external nodes. Fortunately, there is a simple relationship between the

internal path length and the external path length of a binary tree.

Theorem: Consider a binary tree T with n internal nodes and an internal

path length of I. The external path length of T is given by

In other words, Theorem says that the difference between the internal

path length and the external path length of a binary tree with n internal

nodes is E-I=2n.

extbfProof (By induction).

Base Case: Consider a binary tree with one internal node and internal

path length of zero. Such a tree has exactly two empty subtrees

immediately below the root and its external path length is two.

Therefore, the theorem holds for n=1.

Inductive Hypothesis: Assume that the theorem holds for

for some . Consider an arbitrary tree, , that has k

internal nodes. According to Theorem , has k+1 external nodes. Let

and be the internal and external path length of , respectively,

According to the inductive hypothesis, .

Consider what happens when we create a new tree by removing an

external node from and replacing it with an internal node that has two

empty subtrees. Clearly, the resulting tree has k+1 internal nodes.

Furthermore, suppose the external node we remove is at depth d. Then

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

61 61

the internal path length of is and the external path

length of is .

The difference between the internal path length and the external path

length of is

Therefore, by induction on k, the difference between the internal path

length and the external path length of a binary tree with n internal nodes

is 2n for all .

Since the difference between the internal and external path lengths of

any tree with n internal nodes is 2n, then we can say the same thing

about the average internal and external path lengths average over all

search trees. Therefore, E(n), the average external path length of a

binary search tree is given by

A binary search tree with internal n nodes has n+1 external nodes. Thus,

the average depth of an external node of a binary search tree with n

internal nodes, , is given by

These very nice results are the raison d'être for binary search trees.

What they say is that the average number of nodes visited during either

a successful or an unsuccessful search in the average binary search tree

having n nodes is . We must remember, however, that these

results are premised on the assumption that all possible search trees of n

nodes are equiprobable. It is important to be aware that in practice, this

may not always be the case.

3.5 AVL Search Trees

The problem with binary search trees is that while the average running

times for search, insertion, and withdrawal operations are all ,

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

62 62

any one operation is still O(n) in the worst case. This is so because we
cannot say anything in general about the shape of the tree.

For example, consider the two binary search trees shown in Figure .

Both trees contain the same set of keys. The tree, is obtained by

starting with an empty tree and inserting the keys in the following order

The tree is obtained by starting with an empty tree and inserting the

keys in this order

Clearly, is a better search tree than . In fact, since is a perfect

binary tree, its height is . Therefore, all three operations,

search, insertion, and withdrawal, have the same worst case asymptotic

running time .

The reason that is better than is that it is the more balanced tree. If

we could ensure that the search trees we construct are balanced, then the

worst-case running time of search, insertion, and withdrawal, could be

made logarithmic rather than linear. But under what conditions is a tree

balanced?

If we say that a binary tree is balanced if the left and right subtrees of

every node have the same height, then the only trees which are balanced

are the perfect binary trees. A perfect binary tree of height h, has exactly

internal nodes. Therefore, it is only possible to create perfect

trees with n nodes for . Clearly, this is an

unsuitable balance condition because it is not possible to create a

balanced tree for every n.

What are the characteristics of a good balance condition?

1. A good balance condition ensures that the height of a tree with n

nodes is .

2. A good balance condition can be maintained efficiently. That is, the

additional work necessary to balance the tree when an item is

inserted or deleted is O(1).

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

63 63

Adelson-Velskii and Landis were the first to propose the following
balance condition and show that it has the desired characteristics.

Definition (AVL Balance Condition): An empty binary tree is AVL

balanced. A non-empty binary tree, , is AVL balanced if

both and are AVL balanced and

where is the height of and is the height of .

Clearly, all perfect binary trees are AVL balanced. What is not so clear

is that heights of all trees that satisfy the AVL balance condition are

logarithmic in the number of internal nodes.

Theorem: The height, h, of an AVL balanced tree with n internal nodes
satisfies

extbfProof: The lower bound follows directly from Theorem . It is in

fact true for all binary trees regardless of whether they are AVL

balanced or not.

To determine the upper bound, we turn the problem around and ask the

question, what is the minimum number of internal nodes in an AVL

balanced tree of height h?

Let represent an AVL balanced tree of height h which has the smallest

possible number of internal nodes, say . Clearly, must have at least

one subtree of height h-1 and that subtree must be . To remain AVL

balanced, the other subtree can have height h-1 or h-2. Since we want

the smallest number of internal nodes, it must be . Therefore, the

number of internal nodes in is , where .

Clearly, contains a single internal node, so . Similarly,

contains exactly two nodes, so . Thus, is given by the

recurrence

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

64 64

The remarkable thing about Equation is its similarity with the

definition of Fibonacci numbers (Equation). In fact, it can easily be

shown by induction that

for all , where is the Fibonacci number.

Base Cases

Inductive Hypothesis: Assume that for .

Then

Therefore, by induction on k, , for all .

According to Theorem , the Fibonacci numbers are given by

where and . Furthermore, since

, .
Therefore,

This completes the proof of the upper bound.

So, we have shown that the AVL balance condition satisfies the first

criterion of a good balance condition--the height of an AVL balanced

tree with n internal nodes is . What remains to be shown is that

the balance condition can be efficiently maintained. To see that it can,

we need to look at an implementation.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

65 65

3. 6 Implementing AVL Trees

Having already implemented a binary search tree class,

BinarySearchTree, we can make use of much of the

existing code to implement an AVL tree class.

Programme introduces the AVLTree class which

extends the BinarySearchTree class introduced in

Programme . The AVLTree class inherits most of its

functionality from the binary tree class. In particular, it

uses the inherited insert and withdraw methods!

However, the inherited balance, attachKey and

detachKey methods are overridden and a number of new

methods are declared.

Programme1.0:

AVLTree fields.

Programme indicates that an additional field is

added in the AVLTree class. This turns out to be

necessary because we need to be able to determine

quickly, i.e., in O(1) time, that the AVL balance condition is

satisfied at a given node in the tree. In general, the running

time required to compute the height of a tree containing n

nodes is O(n). Therefore, to determine whether the AVL

balance condition is satisfied at a given node, it is

necessary to traverse completely the subtrees of the given

node. But this cannot be done in constant time.

To make it possible to verify the AVL balance condition

in constant time, the field, height, has been added.

Thus, every node in an AVLTree keeps track of its own

height. In this way, it is possible for the getHeight

method to run in constant time--all it needs to do is to

return the value of the height field. And this makes it

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

66 66

possible to test whether the AVL balanced condition is

satisfied at a given node in constant time.

3.6.1 Inserting Items into

an AVL Tree

Inserting an item into an AVL tree is a two-part process.

First, the item is inserted into the tree using the usual

method for insertion in binary search trees. After the item

has been inserted, it is necessary to check that the

resulting tree is still AVL balanced and to balance the tree

when it is not.

Just as in a regular binary search tree, items are inserted into AVL trees

by attaching them to the leaves. To find the correct leaf, we pretend that

the item is already in the tree and follow the path taken by the find

method to determine where the item should go. Assuming that the item

is not already in the tree, the search is unsuccessful and terminates at an

external, empty node. The item to be inserted is placed in that external

node.

Inserting an item in a given external node affects potentially the heights

of all of the nodes along the access path , i.e., the path from the root to

that node. Of course, when an item is inserted in a tree, the height of the

tree may increase by one. Therefore, to ensure that the resulting tree is

still AVL balanced, the heights of all the nodes along the access path

must be recomputed and the AVL balance condition must be checked.

Sometimes increasing the height of a subtree does not violate the AVL

balance condition. For example, consider an AVL tree .

Let and be the heights of and , respectively. Since T is an AVL

tree, then . Now, suppose that . Then, if we

insert an item into , its height may increase by one to . The

resulting tree is still AVL balanced since . In fact, this
particular insertion actually makes the tree more balanced! Similarly if

initially, an insertion in either subtree will not result in a

violation of the balance condition at the root of T.

On the other hand, if and the insertion of an item into the

left subtree increases the height of that tree to , the AVL

balance condition is no longer satisfied because . Therefore,
it is necessary to change the structure of the tree to bring it back into

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

67 67

balance.

3.6.2 Removing Items from an AVL Tree

The method for removing items from an AVL tree is inherited from the

BinarySearchTree class in the same way as AVL insertion. All the

differences are encapsulated in the detachKey and balance

methods. The balance method is discussed above. The detachKey

method is defined in the programme below:

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

68 68

Programme 1.1: AVLTree class detachKey method

SELF ASSESSMENT EXERCISE

When is a search said to be successful?

4.0 CONCLUSION

In this unit, you have learned about trees. You have also learned about

binary trees and tree traversals. Finally, you have been able to learn how

to implement trees.

5.0 SUMMARY

What you have learned in this unit is focused on trees, the common

types and implementation of trees.

6.0 TUTOR-MARKED ASSIGNMENT

What are the characteristics of a good balance condition?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.
Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

69 69

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented

Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

70 70

UNIT 4 GARBAGE COLLECTION AND OTHER HEAP

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 What is Garbage?
3.2 Reduce, Reuse, Recycle
3.3 Helping the Garbage Collector
3.4 Reference Counting Garbage Collection
3.5 Mark-and-Sweep Garbage Collection
3.6 The Fragmentation Problem

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit describes garbage and garbage collection. It describes three

strategies for reducing garbage cost. Finally, it discusses the fragmentation

problem.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe garbage
explain garbage collection

describe the mark-and-sweep garbage collection
explain the fragmentation problem.

3.0 MAIN CONTENT

3.1 What is Garbage?

While Java provides the means to create an object, the language does not

provide the means to destroy an object explicitly. As long as a

programme contains a reference to some object instance, the Java virtual

machine is required to ensure that the object exists. If the Java language

provided the means to destroy objects, it would be possible for a programme

to destroy an object even when a reference to that object still existed. This

situation is unsafe because the programme could attempt later to invoke a

method on the destroyed object, leading to unpredictable results.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

71 71

The situation which arises when a programme contains a reference (or

pointer) to a destroyed object is called a dangling reference (or dangling

pointer). By disallowing the explicit destruction of objects, Java eliminates
the problem of dangling references.

Languages that support the explicit destruction of objects typically require the

programme to keep track of all the objects it creates and to destroy them

explicitly when they are not longer needed. If a programme somehow

loses track of an object it has created then that object cannot be destroyed.

And if the object is never destroyed, the memory occupied by that object

cannot be used again by the programme.

A programme that loses track of objects before it destroys them suffers from a

memory leak. If we run a programme that has a memory leak for a very long

time, it is quite possible that it will exhaust all the available memory and

eventually fail because no new objects can be created. It would seem that by

disallowing the explicit destruction of objects, a Java programme is

doomed to eventual failure due to memory exhaustion. Indeed, this would be

the case, were it not for the fact that the Java language specification requires

the Java virtual machine to be able to find unreferenced objects and to reclaim

the memory locations allocated to those objects.

An unreferenced object is called garbage and the process of finding all the

unreferenced objects and reclaiming the storage is called garbage collection.

Just as the Java language does not specify precisely how objects are to be

represented in the memory of a virtual machine, the language specification

also does not stipulate how the garbage collection is to be implemented or

when it should be done.

Garbage collection is usually invoked when the total amount of memory

allocated to a Java programme exceeds some threshold. Typically, the

programme is suspended while the garbage collection is done.

In the analyses presented in the preceding chapters, we assume that the

running time of the new operator is a fixed constant, and we

completely ignore the garbage collection overhead. In reality, neither

assumption is valid. Even if sufficient memory is available, the time required

by the Java virtual machine to locate an unused region of memory depends

very much on the data structures used to keep track of the memory regions

allocated to a programme as well as on the way in which a programme uses

the objects it creates. Furthermore, invoking the new operator may

trigger the garbage collection process. The running time for garbage

collection can be a significant fraction of the total running time of a

programme.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

72 72

3.2 Reduce, Reuse, Recycle

Modern societies produce an excessive amount of waste. The costs of doing

so include the direct costs of waste disposal as well as the damage to the

environment caused by the manufacturing, distribution, and ultimate disposal

of products. The slogan ``reduce, reuse, recycle,'' prescribes three strategies

for reducing the environmental costs associated with waste materials.

These strategies apply equally well to Java programmes! A Java programme

that creates excessive garbage may require more frequent garbage collection

than a programme that creates less garbage. Since garbage collection can take

a significant amount of time to do, it makes sense to use strategies that

decrease the cost of garbage collection.

3.3 Helping the Garbage Collector

The preceding section presents strategies for avoiding garbage

collection. However, there are times when garbage collection is actually

desirable. Imagine a programme that requires a significant amount of

memory. Suppose the amount of memory required is very close to the amount

of memory available for use by the Java virtual machine. The performance of

such a programme is going to depend on the ability of the garbage collector

to find and reclaim as much unused storage as possible. Otherwise, the

garbage collector will run too often. In this case, it pays to help out the

garbage collector.

How can we help out the garbage collector? Since the garbage collector

collects only unreferenced objects it is necessary to eliminate all references to

objects which are no longer needed. This is done by assigning the value null

to every variable that refers to an object that is no longer needed.

Consequently, helping the garbage collector requires a programme to do a bit

more work.

3.4 Reference Counting Garbage Collection

The difficulty in garbage collection is not the actual process of

collecting the garbage--it is the problem of finding the garbage in the first

place. An object is considered to be garbage when no references to that object

exist. But how can we tell when no references to an object exist?

A simple expedient is to keep track in each object, the total number of

references to that object. That is, we add a special field to each object called a

reference count. The idea is that the reference count field is not accessible to

the Java programme. Instead, the reference count field is updated by the Java

virtual machine itself.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

73 73

Consider the statement:

Object p = new Integer (57);

which creates a new instance of the Integer class. Only a single

variable, p, refers to the object. Thus, its reference count should be one.

Figure: Objects with reference counters.

Now consider the following sequence of statements:

Object p = new Integer (57);
Object q = p;

This sequence creates a single Integer instance. Both p and q refer to the

same object. Therefore, its reference count should be two.

In general, every time one reference variable is assigned to another, it may be

necessary to update several reference counts. Suppose p and q are both

reference variables. The assignment
p = q;
would be implemented by the Java virtual machine as follows:

if (p != q)
{
if (p != null)
--p.refCount;
p = q;
if (p != null)
++p.refCount;
}

For example, suppose p and q are initialised as follows:

Object p = new Integer (57);

Object q = new Integer (99);

As shown in Figure (a), two Integer objects are created, each with a

reference count of one. Now, suppose we assign q to p using the code

sequence given above. Figure (b) shows that after the assignment, both

p and q refer to the same object--its reference count is two. And

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

74 74

the reference count on Integer (57) has gone to zero which

indicates that it is garbage.

Figure: Reference counts before and after the assignment p = q.

The costs of using reference counts are twofold: First, every object

requires the special reference count field. Typically, this means an extra

word of storage must be allocated in each object. Second, every time

one reference is assigned to another, the reference counts must be

adjusted as above. This increases significantly the time taken by

assignment statements.

The advantage of using reference counts is that garbage is easily

identified. When it becomes necessary to reclaim the storage from

unused objects, the garbage collector needs only to examine the

reference count fields of all the objects that have been created by the

programme. If the reference count is zero, the object is garbage.

It is not necessary to wait until there is insufficient memory before

initiating the garbage collection process. We can reclaim memory used

by an object immediately when its reference goes to zero. Consider what

happens if we implement the Java assignment p = q in the Java virtual

machine as follows:

if (p != q)

{
if (p != null)
if (--p.refCount == 0)
heap.release (p);
p = q;
if (p != null)
++p.refCount;
}

Notice that the release method is invoked immediately when the

reference count of an object goes to zero, i.e., when it becomes garbage.

In this way, garbage may be collected incrementally as it is created.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

75 75

3.5 Mark-and-Sweep Garbage Collection

This section presents the mark-and-sweep garbage collection

algorithm. The mark-and-sweep algorithm was the first garbage

collection algorithm to be developed that is able to reclaim cyclic data

structures. Variations of the mark-and-sweep algorithm continue to be

among the most commonly used garbage collection techniques.

When using mark-and-sweep, unreferenced objects are not reclaimed

immediately. Instead, garbage is allowed to accumulate until all

available memory has been exhausted. When that happens, the

execution of the programme is suspended temporarily while the mark-

and-sweep algorithm collects all the garbage. Once all unreferenced

objects have been reclaimed, the normal execution of the programme

can resume.

The mark-and-sweep algorithm is called a tracing garbage collector

because is traces out the entire collection of objects that are directly or

indirectly accessible by the programme. The objects that a programme

can access directly are those objects which are referenced by local

variables on the processor stack as well as by any static variables that

refer to objects. In the context of garbage collection, these variables are

called the roots. An object is indirectly accessible if it is referenced by a

field in some other (directly or indirectly) accessible object. An

accessible object is said to be live. Conversely, an object which is not

live is garbage.

The mark-and-sweep algorithm consists of two phases: In the first

phase, it finds and marks all accessible objects. The first phase is called

the mark phase. In the second phase, the garbage collection algorithm

scans through the heap and reclaims all the unmarked objects. The

second phase is called the sweep phase. The algorithm can be expressed

as follows:

for each root variable r
mark (r);
sweep ();

In order to distinguish the live objects from garbage, we record the state

of an object in each object. That is, we add a special boolean field to

each object called, say, marked. By default, all objects are unmarked

when they are created. Thus, the marked field is initially false.

An object p and all the objects indirectly accessible from p can be

marked by using the following recursive mark method:

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

76 76

void mark (Object p)

if (!p.marked)

p.marked = true;

for each Object q referenced by p

mark (q);

Notice that this recursive mark algorithm does nothing when it

encounters an object that has already been marked. Consequently, the

algorithm is guaranteed to terminate. And it terminates only when all

accessible objects have been marked.

In its second phase, the mark-and-sweep algorithm scans through all the

objects in the heap, in order to locate all the unmarked objects. The

storage allocated to the unmarked objects is reclaimed during the scan.

At the same time, the marked field on every live object is set back to

false in preparation for the next invocation of the mark-and-sweep

garbage collection algorithm:

void sweep ()

for each Object p in the heap

if (p.marked)

p.marked = false

else
heap.release (p);

Figure illustrates the operation of the mark-and-sweep garbage

collection algorithm. Figure (a) shows the conditions before garbage

collection begins. In this example, there is a single root variable.

Figure (b) shows the effect of the mark phase of the algorithm. At this

point, all live objects have been marked. Finally, Figure (c) shows the

objects left after the sweep phase has been completed. Only live objects

remain in memory and the marked fields have all been set to false

again.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

77 77

Figure: Mark-and-sweep garbage collection

Because the mark-and-sweep garbage collection algorithm traces out the

set of objects accessible from the roots, it is able to correctly identify

and collect garbage even in the presence of reference cycles. This is the

main advantage of mark-and-sweep over the reference counting

technique presented in the preceding section. A secondary benefit of the

mark-and-sweep approach is that the normal manipulations of reference

variables incur no overhead.

The main disadvantage of the mark-and-sweep approach is the fact that

normal programme execution is suspended while the garbage collection

algorithm runs. In particular, this can be a problem in a programme that

interacts with a human user or that must satisfy real-time execution

constraints. For example, an interactive application that uses mark-and-

sweep garbage collection becomes unresponsive periodically.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

78 78

3.6 The Fragmentation Problem

Fragmentation is a phenomenon that occurs in a long-running

programme that has undergone garbage collection several times. The

problem is that objects tend to become spread out in the heap. Live

objects end up being separated by many, small unused memory regions.

The problem in this situation is that it may become impossible to

allocate memory for an object. While there may indeed be sufficient

unused memory, the unused memory is not contiguous. Since objects

typically occupy consecutive memory locations, it is impossible to

allocate storage.

The mark-and-sweep algorithm does not address fragmentation. Even

after reclaiming the storage from all garbage objects, the heap may still

be too fragmented to allocate the required amount of space. The next

section presents an alternative to the mark-and-sweep algorithm that

also defragments (or compacts) the heap.

SELF ASSESSMENT EXERCISE 1

What do you understand by garbage collection?

SELF ASSESSMENT EXERCISE 2

Describe three strategies for reducing garbage cost.

4.0 CONCLUSION

In this unit, you have learned about garbage and garbage collection. You

have also been able to learn about reference counting garbage collection

and mark-and-sweep garbage collection. Finally, you have been able to

understand the fragmentation problem.

5.0 SUMMARY

What you have learned borders on the garbage, garbage collection and

the fragmentation problem.

6.0 TUTOR-MARKED ASSIGNMENT

The mark-and-sweep algorithm is referred to as a tracing garbage

collection. True or False? Discuss.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

79 79

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data

Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented

Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

80 80

UNIT 5 MEMORY ALLOCATION

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Memory Allocation
3.2 First Fit
3.3 Best Fit
3.4 Fragmentation
3.5 Buddy System
3.6 Suballocators

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit describes the process of memory allocation. Different

techniques of memory allocation are equally considered.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

explain the concept of memory allocation

discuss the first fit allocation technique

explain the best fit allocation technique

describe the buddy system.

3.0 MAIN CONTENT

3.1 Memory Allocation

Memory allocation is the process of assigning blocks of memory on

request. Typically, the allocator receives memory from the operating

system in a small number of large blocks that it must divide up to satisfy

the requests for smaller blocks. It must also make any returned blocks

available for reuse. There are many common ways to perform this, with

different strengths and weaknesses. A few are described briefly here:

http://www.memorymanagement.org/glossary/a.html#allocator

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

81 81

First fit

Best fit

Buddy system

Suballocators

These techniques can often be used in combination.

3.2 First Fit

In the first fit algorithm, the allocator keeps a list of free blocks (known

as the free list) and, on receiving a request for memory, scans along the

list for the first block that is large enough to satisfy the request. If the

chosen block is significantly larger than that requested, then it is usually

split, and the remainder added to the list as another free block.

The first fit algorithm performs reasonably well, as it ensures that

allocations are quick. When recycling free blocks, there is a choice as to

where to add the blocks to the list effectively in order the free list is

kept:

3.3 Best Fit

The best fit is the allocation policy that always allocates from the

smallest suitable free block. Suitable allocation mechanisms include

sequential fit searching for a perfect fit, first fit on a size-ordered free

block chain, segregated fits, and indexed fits. Many good fit allocators

are also described as best fit.

In theory, best fit may exhibit bad fragmentation, but in practice, this is

not commonly observed.

3.4 Fragmentation

Fragmentation is the inability to use memory because of the

arrangement of memory already in use. It is usually divided into external

fragmentation and internal fragmentation.

3.5 Buddy System

In a buddy system, the allocator will only allocate blocks of certain

sizes, and has many free lists, one for each permitted size. The permitted

sizes are usually either powers of two, or form a Fibonacci sequence

(see below for example), such that any block except the smallest, can be

divided into two smaller blocks of permitted sizes.

http://www.memorymanagement.org/articles/alloc.html#first.fit%23first.fit
http://www.memorymanagement.org/articles/alloc.html#buddy.system%23buddy.system
http://www.memorymanagement.org/articles/alloc.html#suballocator%23suballocator
http://www.memorymanagement.org/glossary/f.html#first.fit
http://www.memorymanagement.org/glossary/f.html#free.list
http://www.memorymanagement.org/glossary/a.html#allocation.policy
http://www.memorymanagement.org/glossary/f.html#free.block
http://www.memorymanagement.org/glossary/s.html#sequential.fit
http://www.memorymanagement.org/glossary/p.html#perfect.fit
http://www.memorymanagement.org/glossary/f.html#first.fit
http://www.memorymanagement.org/glossary/f.html#free.block.chain
http://www.memorymanagement.org/glossary/f.html#free.block.chain
http://www.memorymanagement.org/glossary/s.html#segregated.fit
http://www.memorymanagement.org/glossary/i.html#indexed.fit
http://www.memorymanagement.org/glossary/g.html#good.fit
http://www.memorymanagement.org/glossary/b.html#best.fit%23best.fit
http://www.memorymanagement.org/glossary/f.html#fragmentation
http://www.memorymanagement.org/glossary/m.html#memory-1
http://www.memorymanagement.org/glossary/e.html#external.fragmentation
http://www.memorymanagement.org/glossary/e.html#external.fragmentation
http://www.memorymanagement.org/glossary/i.html#internal.fragmentation

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

82 82

When the allocator receives a request for memory, it rounds the

requested size off to a permitted size, and returns the first block from

that size's free list. If the free list for that size is empty, the allocator

splits a block from a larger size and returns one of the pieces, adding the

other to the appropriate free list.

When blocks are recycled, there may be some attempt to merge adjacent

blocks into ones of a larger permitted size (coalescence). To make this

easier, the free lists may be stored in order of address. The main

advantage of the buddy system is that coalescence is cheap because the

"buddy" of any free block can be calculated from its address.

A binary buddy heap before allocation

A binary buddy heap after allocating a 8 kB block

A binary buddy heap after allocating a 10 kB block; note the 6 kB
wasted because of rounding off

For example, an allocator in a binary buddy system might have sizes of

16, 32,... 64 kB. It might start off with a single block of 64 kB. If the

application requests a block of 8 kB, the allocator would check its 8 kB

free list and find no free blocks of that size. It would then split the 64 kB

block into two block of 32 kB, split one of them into two blocks of 16

kB, and split one of them into two blocks of 8 kB. The allocator would

then return one of the 8 kB blocks to the application and keep the

remaining three blocks of 8 kB, 16 kB, and 32 kB on the appropriate

free lists. If the application then requested a block of 10 kB, the

allocator would round this request off to 16 kB, and return the 16 kB

block from its free list, wasting 6 kB in the process.

A Fibonacci buddy system might use block sizes 16, 32, 48, 80, 128,

208,... bytes, such that each size is the sum of the two preceding sizes.

When splitting a block from one free list, the two parts get added to the

two preceding free lists.

http://www.memorymanagement.org/glossary/c.html#coalesce

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

83 83

A buddy system can work very well or very badly, depending on how
the chosen sizes interact with typical requests for memory and what the

pattern of returned blocks is. The rounding typically leads to a

significant amount of wasted memory, which is called internal

fragmentation. This can be reduced by making the permitted block sizes

closer together.

3.6 Suballocators

There are many examples of application programmes that include

additional memory management code called a suballocator. A

suballocator obtains large blocks of memory from the system memory

manager and allocates the memory to the application in smaller pieces.

Suballocators are usually written for one of the following reasons:

To avoid general inefficiency in the system memory manager;

To take advantage of special knowledge of the application's memory

requirements that cannot be expressed to the system memory manager;

To provide memory management services that the system memory

manager does not supply.

In general, suballocators are less efficient than having a single memory

manager that is well-written and has a flexible interface. It is also harder

to avoid memory management bugs if the memory manager is composed

of several layers, and if each application has its own variation of

suballocator.

Many applications have one or two sizes of blocks that form the vast

majority of their allocations. One of the most common uses of a

suballocator is to supply the application with objects of one size. This

greatly reduces the problem of external fragmentation. Such a

suballocator can have a very simple allocation policy.

There are dangers involved in making use of special knowledge of the

application's memory requirements. If those requirements change, then

the performance of the suballocator is likely to be much worse than that

of a general allocator. It is often better to have a memory manager that

can respond dynamically to changing requirements.

SELF ASSESSMENT EXERCISE 1

State the main advantage of the buddy system

SELF ASSESSMENT EXERCISE 2

What do you understand by the phrase ‘first fit’?

http://www.memorymanagement.org/glossary/i.html#internal.fragmentation
http://www.memorymanagement.org/glossary/i.html#internal.fragmentation
http://www.memorymanagement.org/glossary/e.html#external.fragmentation

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

84 84

4.0 CONCLUSION

In this unit, you have learned about memory allocation. You have also

been able to learn about the first fit, best fit and buddy systems of

memory allocation.

5.0 SUMMARY

What you have learned borders on memory allocation and the

techniques of memory allocation.

6.0 TUTOR-MARKED ASSIGNMENT

Describe the buddy system.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A, (1998). Practical Introduction to Data Structures
and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented

Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

85 85

MODULE 3 INTRODUCTION TO JAVA

PROGRAMMING

Unit 1 Object-Oriented Programming Concepts

Unit 2 Variables
Unit 3 Operators
Unit 4 Expressions, Statements and Blocks
Unit 5 Control Flow Statements

UNIT 1 OBJECT-ORIENTED PROGRAMMING

CONCEPTS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Objects
3.2 What is a Class?
3.3 Inheritance
3.4 What is an Interface?
3.5 What is a Package?
3.6 Object-Oriented Programming

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

If you've never used an object-oriented programming language before,

you'll need to learn a few basic concepts before you can begin writing

any code. This unit will introduce you to objects, classes, inheritance,

interfaces, and packages. Each discussion focuses on how these

concepts relate to the real world, while simultaneously providing an

introduction to the syntax of the Java programming language.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe an object

explain what a class is

define an Inheritance
explain the term ‘object-oriented programming’.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

86 86

3.0 MAIN CONTENT

3.1 Objects

An object is a software bundle of related state and behaviour. Software

objects are often used to model the real-world objects that you find in

everyday life. This unit explains how state and behaviour are

represented within an object, introduces the concept of data

encapsulation, and explains the benefits of designing your software in

this manner.

Objects are key to understanding object-oriented technology. Look

around right now and you'll find many examples of real-world objects:

your dog, your desk, your television set, your bicycle.

Real-world objects share two characteristics: They all have state and

behaviour. Dogs have state (name, colour, breed, hungry) and behaviour

(barking, fetching, wagging tail). Bicycles also have state (current gear,

current pedal cadence, current speed) and behaviour (changing gear,

changing pedal cadence, applying brakes). Identifying the state and

behaviour for real-world objects is a great way to begin thinking in

terms of object-oriented programming.

Take a minute right now to observe the real-world objects that are in

your immediate area. For each object that you see, ask yourself two

questions: "What possible states can this object be in?" and "What

possible behaviour can this object put up?” Make sure to write down

your observations. As you do, you'll notice that real-world objects vary

in complexity; your desktop lamp may have only two possible states (on

and off) and two possible behaviours (turn on, turn off), but your

desktop radio might have additional states (on, off, current volume,

current station) and behaviour (turn on, turn off, increase volume,

decrease volume, seek, scan, and tune). You may also notice that some

objects, in turn, will also contain other objects. These real-world

observations all translate into the world of object-oriented programming.

A software object

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

87 87

Software objects are conceptually similar to real-world objects: they too

consist of state and related behaviour. An object stores its state in fields

(variables in some programming languages) and exposes its behaviour

through methods (functions in some programming languages). Methods

operate on an object's internal state and serve as the primary mechanism

for object-to-object communication. Hiding internal state and requiring

all interaction to be performed through an object's methods is known as

data encapsulation – a fundamental principle of object-oriented

programming.

Consider a bicycle, for example:

A bicycle modeled as a software object

By attributing state (current speed, current pedal cadence, and current

gear) and providing methods for changing that state, the object remains

in control of how the outside world is allowed to use it. For example, if

the bicycle only has six gears, a method to change gears could reject any

value that is less than 1 or greater than 6.

Bundling code into individual software objects provides a number of

benefits, including:

1. Modularity: The source code for an object can be written and

maintained independently of the source code for other objects. Once

created, an object can be easily passed around inside the system.

2. Information-hiding: By interacting only with an object's methods,

the details of its internal implementation remain hidden from the
outside world.

3. Code re-use: If an object already exists (perhaps written by another

software developer), you can use that object in your programme.

This allows specialists to implement/test/debug complex, task-

specific objects, which you can then trust to run in your own code.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

88 88

4. Pluggability and debugging ease: If a particular object turns out to

be problematic, you can simply remove it from your application and

plug in a different object as its replacement. This is analogous to

fixing mechanical problems in the real world. If a bolt breaks, you
replace it, not the entire machine.

3.2 What is a Class?

A class is a blueprint or prototype from which objects are created.

This section defines a class that models the state and behaviour of a

real-world object. It intentionally focuses on the basics, showing how

even a simple class can clearly model state and behaviour.

In the real world, you'll often find many individual objects all of the

same kind. There may be thousands of other bicycles in existence, all of

the same make and model. Each bicycle was built from the same set of

blueprints and therefore contains the same components. In

object-oriented terms, we say that your bicycle is an instance of the

class of objects known as bicycles. A class is the blueprint from which

individual objects are created.

The following Bicycle class is one possible implementation of a

bicycle:

class Bicycle {

int cadence = 0;

int speed = 0;

int gear = 1;

void changeCadence(int newValue) {
cadence = newValue;
}

void changeGear(int newValue) {
gear = newValue;
}

void speedUp(int increment) {
speed = speed + increment;
}

void applyBrakes(int decrement) {
speed = speed - decrement;
}

http://java.sun.com/docs/books/tutorial/java/concepts/class.html

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

89 89

void printStates() {

System.out.println("cadence:"+cadence+"speed:"+speed+" gear:"+gear);
}

}

The syntax of the Java programmeming language will look new to you.

The fields cadence, speed, and gear represent the object's state,

and the methods (changeCadence, changeGear, speedUp etc.)

define its interaction with the outside world.

You may have noticed that the Bicycle class does not contain a main

method. That's because it's not a complete application; it's just the

blueprint for bicycles that might be used in an application. The

responsibility of creating and using new Bicycle objects belongs to

some other class in your application.

Here's a BicycleDemo class that creates two separate Bicycle

objects and invokes their methods:

class BicycleDemo {
public static void main(String[] args) {

// Create two different Bicycle objects

Bicycle bike1 = new Bicycle();

Bicycle bike2 = new Bicycle();

// Invoke methods on those objects

bike1.changeCadence(50);

bike1.speedUp(10);

bike1.changeGear(2);

bike1.printStates();

bike2.changeCadence(50);

bike2.speedUp(10);

bike2.changeGear(2);

bike2.changeCadence(40);

bike2.speedUp(10);

bike2.changeGear(3);

bike2.printStates();
}
}

The output of this test prints the ending pedal cadence, speed, and gear
for the two bicycles:

cadence:50 speed:10 gear:2

cadence:40 speed:20 gear:3

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

90 90

3.3 Inheritance

Inheritance provides a powerful and natural mechanism for organising

and structuring your software. This section explains how classes inherit

state and behaviour from their superclasses, and explains how to derive

one class from another using the simple syntax provided by the Java

programming language.

Different kinds of objects often have a certain amount in common with

each other. Mountain bikes, road bikes, and tandem bikes, for example,

all share the characteristics of bicycles (current speed, current pedal

cadence, current gear). Yet, each also defines additional features that

make them different: tandem bicycles have two seats and two sets of

handlebars; road bikes have drop handlebars; some mountain bikes have

an additional chain ring, giving them a lower gear ratio.

Object-oriented programming allows classes to inherit commonly used

state and behaviour from other classes. In this example, Bicycle now

becomes the superclass of MountainBike, RoadBike, and

TandemBike. In the Java programming language, each class is

allowed to have one direct superclass, and each superclass has the

potential for an unlimited number of subclasses:

A hierarchy of bicycle classes

The syntax for creating a subclass is simple. At the beginning of your

class declaration, use the extends keyword, followed by the name of

the class to inherit from:

http://java.sun.com/docs/books/tutorial/java/concepts/inheritance.html

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

91 91

class MountainBike extends Bicycle {

// new fields and methods defining a mountain bike would go here

}

This gives MountainBike all the same fields and methods as

Bicycle, yet allows its code to focus exclusively on the features that

make it unique. This makes code for your subclasses easy to read.

However, you must take care to properly document the state and

behaviour that each superclass defines, since that code will not appear in

the source file of each subclass.

3.4 What is an Interface?

An interface is a contract between a class and the outside world. When a

class implements an interface, it promises to provide the behaviour

published by that interface. This section defines a simple interface and

explains the necessary changes for any class that implements it.

In its most common form, an interface is a group of related methods

with empty bodies. A bicycle's behaviour, if specified as an interface,

might appear as follows:

interface Bicycle {

void changeCadence(int newValue);

void changeGear(int newValue);

void speedUp(int increment);

void applyBrakes(int decrement);

}

To implement this interface, the name of your class would change (to

ACMEBicycle, for example), and you'd use the implements

keyword in the class declaration:

class ACMEBicycle implements Bicycle {

// remainder of this class implemented as before

}

Implementing an interface allows a class to become more formal about

the behaviour it promises to provide. Interfaces form a contract between

http://java.sun.com/docs/books/tutorial/java/concepts/interface.html

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

92 92

the class and the outside world, and this contract is enforced at build

time by the compiler. If your class claims to implement an interface, all

methods defined by that interface must appear in its source code before

the class will successfully compile.

3.5 What is a Package?

A package is a namespace for organising classes and interfaces in a

logical manner. Placing your code into packages makes large software

projects easier to manage. This section explains why this is useful, and

introduces you to the Application Programming Interface (API)

provided by the Java platform.

Conceptually, you can think of packages as being similar to different

folders on your computer. You might keep HTML pages in one folder,

images in another, and scripts or applications in yet another. Because

software written in the Java programming language can be composed of

hundreds or thousands of individual classes, it makes sense to keep

things organised by placing related classes and interfaces into packages.

The Java platform provides an enormous class library (a set of

packages) suitable for use in your own applications. This library is

known as the "Application Programming Interface” or “API for short.

Its packages represent the tasks most commonly associated with

general-purpose programming. For example, a String object contains

state and behaviour for character strings; a File object allows a

programmer to easily create, delete, inspect, compare, or modify a file

on the file system; a Socket object allows for the creation and use of

network sockets; various GUI objects control buttons and checkboxes

and anything else related to graphical user interfaces. There are literally

thousands of classes to choose from. This allows you, the programmer,

to focus on the design of your particular application, rather than the

infrastructure required to make it work.

3.6 Object-Oriented Programming

Object-oriented programming (OOP) is a programming language model

organised around "objects" rather than "actions" and data rather than

logic.

Historically, a programme has been viewed as a logical procedure that

takes input data, processes it, and produces output data. The

programming challenge was seen as how to write the logic, not how to

define the data. Object-oriented programming takes the view that what

we really care about are the objects we want to manipulate rather than

the logic required to manipulate them. Examples of objects range from

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

93 93

human beings (described by name, address, and so forth) to buildings

and floors (whose properties can be described and managed) down to

the little widgets on your computer desktop (such as buttons and scroll
bars).

The first step in OOP is to identify all the objects you want to

manipulate and how they relate to each other, an exercise often known

as data modeling. Once you've identified an object, you generalise it as a

class of objects (think of Plato's concept of the "ideal" chair that stands

for all chairs) and define the kind of data it contains and any logic

sequences that can manipulate it. Each distinct logic sequence is known

as a method. A real instance of a class is called (no surprise here) an

"object" or, in some environments, an "instance of a class." The object

or class instance is what you run in the computer. Its methods provide

computer instructions and the class object characteristics provide

relevant data. You communicate with objects - and they communicate

with each other - with well-defined interfaces called messages.

The concepts and rules used in object-oriented programming provide
these important benefits:

The concept of a data class makes it possible to define subclasses of

data objects that share some or all of the main class characteristics.

Called inheritance, this property of OOP forces a more thorough data

analysis, reduces development time, and ensures more accurate coding.

Since a class defines only the data it needs to be concerned with, when

an instance of that class (an object) is run, the code will not be able to

accidentally access other programme data. This characteristic of data

hiding provides greater system security and avoids unintended data

corruption.

The definition of a class is reusable not only by the programme for

which it is initially created but also by other object-oriented programmes

(and, for this reason, can be more easily distributed for use in networks).

The concept of data classes allows a programmer to create any new

data type that is not already defined in the language itself.One of

the first object-oriented computer languages was called Smalltalk. C++

and Java are the most popular object-oriented languages today.

The Java programming language is designed especially for use in

distributed applications on corporate networks and the Internet.

4.0 CONCLUSION

In this unit you have learned about the object-oriented programming

concepts-objects, class, inheritance, interface and package. You have

also been able to understand object-oriented programming in general.

5.0 SUMMARY

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

94 94

What you have learned borders on the basic concepts of object-oriented

programming. The subsequent units shall build upon these

fundamentals.

SELF ASSESSMENT EXERCISE 1

Define a class.

SELF ASSESSMENT EXERCISE 2

What is an inheritance?

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by object-oriented programming?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented

Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

95 95

UNIT 2 VARIABLES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Basics
3.2 Java Programming Variables
3.3 Naming Conventions

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will learn about variables and their naming conventions.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

define a variable
describe types of java programming variables
explain the naming conventions of variables.

3.0 MAIN CONTENT

3.1 Basics

In computer science, a variable (sometimes called an object or

identifier) is a symbolic representation used to denote a quantity or

expression.

However, in computer programming, a variable is a special value (also

often called a reference) that has the property of being able to be

associated with another value (or not). What is variable across time is

the association. Obtaining the value associated with a variable is often

called dereferencing, and creating or changing the association is called

assignment.

Variables are usually named by an identifier, but they can be

anonymous, and variables can be associated with other variables. In the

computing context, variable identifiers often consist of alphanumeric

strings. These identifiers are then used to refer to values in computer

memory. This convention of matching identifiers to values is but one of

http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Value_(computer_science)
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Computer_memory

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

96 96

several alternative programmatic conventions for accessing values in
computer memory.

3.2 Java Programming Variables

In the Java programming language, the terms "field" and "variable" are

both used; this is a common source of confusion among new developers,

since both often seem to refer to the same thing.

The Java programming language defines the following kinds of

variables:

Instance Variables (Non-Static Fields): Technically speaking, objects

store their individual states in "non-static fields", that is, fields declared

without the static keyword. Non-static fields are also known as

instance variables because their values are unique to each instance of a

class (to each object, in other words); the currentSpeed of one

bicycle is independent of the currentSpeed of another.

Class Variables (Static Fields): A class variable is any field declared

with the static modifier; this tells the compiler that there is exactly

one copy of this variable in existence, regardless of how many times the

class has been instantiated. A field defining the number of gears for a

particular kind of bicycle could be marked as static since

conceptually, the same number of gears will apply to all instances. The

code, static int numGears = 6; would create such a static

field. Additionally, the keyword final could be added to indicate that

the number of gears will never change.

Local Variables: Similar to how an object stores its state in fields, a

method will often store its temporary state in local variables. The syntax

for declaring a local variable is similar to declaring a field (for example,

int count = 0;). There is no special keyword designating a

variable as local; that determination comes entirely from the location in

which the variable is declared — which is between the opening and

closing braces of a method. As such, local variables are only visible to

the methods in which they are declared; they are not accessible from the

rest of the class.

Parameters: You've already seen examples of parameters, both in the

Bicycle class and in the main method of the "Hello World!"

application. Recall that the signature for the main method is public

static void main (String [] args). Here, the args

variable is the parameter to this method. The important thing to

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

97 97

remember is that parameters are always classified as "variables" not

"fields". This applies to other parameter-accepting constructs as well

(such as constructors and exception handlers) that you'll learn about later

in the tutorial.

3.3 Naming Conventions

Every programming language has its own set of rules and conventions

for the kinds of names that you're allowed to use, and the Java

programming language is no different. The rules and conventions for

naming your variables can be summarised as follows:

Variable names are case-sensitive. A variable's name can be any legal

identifier — an unlimited-length sequence of Unicode letters and digits,

beginning with a letter, the dollar sign "$", or the underscore character

"_". The convention, however, is to always begin your variable names

with a letter, not "$" or "_". Additionally, the dollar sign character, by

convention, is never used at all. You may find some situations where

auto-generated names will contain the dollar sign, but your variable

names should always avoid using it. A similar convention exists for the

underscore character; while it's technically legal to begin your variable's

name with "_", this practice is discouraged. White space is not

permitted.

Subsequent characters may be letters, digits, dollar signs, or underscore

characters. Conventions (and common sense) apply to this rule as well.

When choosing a name for your variables, use full words instead of

cryptic abbreviations. Doing so will make your code easier to read and

understand. In many cases, it will also make your code self-

documenting; fields named cadence, speed, and gear, for example,

are much more intuitive than abbreviated versions, such as s, c, and g.

Also keep in mind that the name you choose must not be a keyword or

reserved word.

SELF ASSESSMENT EXERCISE 1

What do you understand by variables? Give at least two examples.

4.0 CONCLUSION

In this unit, you have learned about variables, types of Java
programming language variable as well as their naming conventions.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

98 98

5.0 SUMMARY

What you have learned in this unit is based on variables and the
conventions for naming them.

6.0 TUTOR-MARKED ASSIGNMENT

Variable names are case-sensitive. True or False? Discuss.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data

Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

99 99

UNIT 3 OPERATORS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Operators
3.2 The Simple Assignment Operators
3.3 The Arithmetic Operators
3.4 The Unary Operators
3.5 The Equality and Relational Operators
3.6 The Conditional Operators

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

What you will learn in this unit borders on operators. The common types
of operators will equally be discussed.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

explain the term ‘operators’
describe simple assignment operators
explain arithmetic operators
discuss unary operators

explain equality and relational operators

discuss the conditional operators.

3.0 MAIN CONTENT

3.1 Operators

Operators are special symbols that perform specific operations on one,

two, or three operands, and then return a result.

As we explore the operators of the Java programming language, it may

be helpful for you to know ahead of time which operators have the

highest precedence. The operators in the following table are listed

according to precedence order. The closer to the top of the table an

operator appears, the higher its precedence. Operators with higher

precedence are evaluated before operators with relatively lower

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

100 100

precedence. Operators on the same line have equal precedence. When

operators of equal precedence appear in the same expression, a rule must

govern which is evaluated first. All binary operators except for the

assignment operators are evaluated from left to right; assignment

operators are evaluated from right to left.

Operator Precedence

Operators

Precedence

Postfix

expr++ expr--

Unary

++expr --expr +expr -expr ~ !

Multiplicative

* / %

Additive

+ -

Shift

<< >> >>>

Relational

< > <= >= instanceof

Equality

== !=

bitwise AND

&

bitwise exclusive OR

^

bitwise inclusive OR

|

logical AND

&&

logical OR

||

Ternary

? :

assignment

= += -= *= /= %= &= ^= |= <<= >>= >>>=

In general-purpose programming, certain operators tend to appear more

frequently than others; for example, the assignment operator "=" is far

more common than the unsigned right shift operator ">>>". With that in

mind, the following discussion focuses first on the operators that you're

most likely to use on a regular basis, and ends focusing on those that are

less common. Each discussion is accompanied by sample code that you

can compile and run. Studying its output will help reinforce what you've

just learned.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

101 101

3.2 The Simple Assignment Operator

One of the most common operators that you'll encounter is the simple

assignment operator "=". You saw this operator in the Bicycle class; it

assigns the value on its right to the operand on its left:

int cadence = 0;

int speed = 0;
int gear = 1;

This operator can also be used on objects to assign object references, as
discussed in Creating Objects.

3.3 The Arithmetic Operators

The Java programming language provides operators that perform

addition, subtraction, multiplication, and division. There's a good chance

you'll recognize them by their counterparts in basic mathematics. The

only symbol that might look new to you is "%", which divides one

operand by another and returns the remainder as its result.

+ additive operator (also used for String concatenation)

- subtraction operator
* multiplication operator
/ division operator
% remainder operator

The following programme, ArithmeticDemo, tests the

arithmetic operators.

class ArithmeticDemo {
public static void main (String[] args){

int result = 1 + 2; // result is now 3

System.out.println(result);

result = result - 1; // result is now 2
System.out.println(result);

result = result * 2; // result is now 4

System.out.println(result);

result = result / 2; // result is now 2
System.out.println(result);

result = result + 8; // result is now 10

result = result % 7; // result is now 3

http://java.sun.com/docs/books/tutorial/java/javaOO/objectcreation.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ArithmeticDemo.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

102 102

System.out.println(result);
}
}
You can also combine the arithmetic operators with the simple
assignment operator to create compound assignments. For example, x

+=1; and x=x+1; both increment the value of x by 1.

The + operator can also be used for concatenating (joining) two strings

together, as shown in the following ConcatDemo programme:

class ConcatDemo

{
public static void main(String[] args){
String firstString = "This is";
String secondString = “a concatenated string.”;
String thirdString = firstString+secondString;
System.out.println(thirdString);

}
}

By the end of this programme, the variable, thirdString, contains

"This is a concatenated string.", which gets printed to standard
output.

3.4 The Unary Operators

The unary operators require only one operand; they perform various

operations such as incrementing/decrementing a value by one, negating

an expression, or inverting the value of a boolean.

+ Unary plus operator; indicates positive value (numbers are
 positive without this, however)

- Unary minus operator; negates an expression

++ Increment operator; increments a value by 1

-- Decrement operator; decrements a value by 1

! Logical complement operator; inverts the value of a boolean

The following programme, UnaryDemo, tests the unary operators:

class UnaryDemo {

public static void main(String[] args){
int result = +1; // result is now 1
System.out.println(result);
result--; // result is now 0
System.out.println(result);
result++; // result is now 1
System.out.println(result);

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ConcatDemo.java
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/UnaryDemo.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

103 103

result = -result; // result is now -1
System.out.println(result); boolean

success = false;

System.out.println(success); // false

System.out.println(!success); // true

}

}

The increment/decrement operators can be applied before (prefix) or

after (postfix) the operand. The code, result++; and ++result;

will both end in result being incremented by one. The only difference

is that the prefix version (++result) evaluates to the incremented

value, whereas the postfix version (result++) evaluates to the

original value. If you are just performing a simple increment/decrement,

it doesn't really matter which version you choose. But if you use this

operator in part of a larger expression, the one that you choose may

make a significant difference.

The following programme, PrePostDemo, illustrates the

prefix/postfix unary increment operator:

class PrePostDemo {

public static void main(String[] args){
int i = 3;
i++;
System.out.println(i); // "4"
++i;

System.out.println(i); // "5"

System.out.println(++i); // "6"
System.out.println(i++); // "6"
System.out.println(i); // "7"
}
}

3.5 The Equality and Relational Operators

The equality and relational operators determine if one operand is greater

than, less than, equal to, or not equal to another operand. The majority

of these operators will probably look familiar to you as well. Keep in

mind that you must use "==", not "=", when testing if two primitive

values are equal.

== equal to

!= not equal to
> greater than
>= greater than or equal to

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/PrePostDemo.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

104 104

< less than
<= less than or equal to

The following programme, ComparisonDemo, tests the comparison

operators:

class ComparisonDemo {

public static void main(String[] args){

int value1 = 1;
int value2 = 2;
if(value1 == value2) System.out.println("value1 == value2");

if(value1 != value2) System.out.println("value1 != value2");

if(value1 > value2) System.out.println("value1 > value2");

if(value1 < value2) System.out.println("value1 < value2");

if(value1 <= value2) System.out.println("value1 <= value2");

}

}

Output:
value1 != value2
value1 < value2
value1 <= value2

3.6 The Conditional Operators

The && and || operators perform Conditional-AND and Conditional-

OR operations on two boolean expressions. These operators exhibit

"short-circuiting" behaviour, which means that the second operand is

evaluated only if needed.

&& Conditional-AND

|| Conditional-OR

The following programme, ConditionalDemo1, tests

these operators:

class ConditionalDemo1 {

public static void main(String[] args){

int value1 = 1;
int value2 = 2;
if((value1 == 1) && (value2 == 2)) System.out.println("value1 is 1
AND value2 is 2");
if((value1 == 1) || (value2 == 1)) System.out.println("value1 is 1 OR
value2 is 1");

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ComparisonDemo.java
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ConditionalDemo1.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

105 105

}

}

Another conditional operator is?:, which can be thought of as shorthand

for an if-then-else statement (discussed in the Control Flow

Statements section of this lesson). This operator is also known as the

ternary operator because it uses three operands. In the following

example, this operator should be read as: "If someCondition is

true, assign the value of value1 to result. Otherwise, assign the

value of value2 to result."

The following programme, ConditionalDemo2, tests

the?:

operator:

class ConditionalDemo2 {

public static void main(String[] args){
int value1 = 1;
int value2 = 2;
int result;
boolean someCondition = true;
result = someCondition ? value1 : value2;

System.out.println(result);

}

}

Because someCondition is true, this programme prints "1" to the

screen. Use the?: operator instead of an if-then-else statement if

it makes your code more readable; for example, when the expressions

are compact and without side-effects (such as assignments).

SELF ASSESSMENT EXERCISE

Discuss the term, operators.

4.0 CONCLUSION

In this unit you have learned about operators. You have also been able to

identify the common types of operators.

5.0 SUMMARY

What you have learned in this unit concerns operators and the common

types.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flow.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flow.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ConditionalDemo2.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

106 106

6.0 TUTOR-MARKED ASSIGNMENT

Mention 4 common types of operators, stating their functions.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

107 107

UNIT 4 EXPRESSIONS, STATEMENTS AND BLOCKS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 Expressions
3.2 Statements
3.3 Blocks

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

Now that you understand variables and operators, it's time to learn about

expressions, statements, and blocks. Operators may be used in building

expressions, which compute values; expressions are the core

components of statements; statements may be grouped into blocks.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

define an expression
describe statements, giving typical examples of expression statements
discuss the concept of blocks.

3.0 MAIN CONTENT

3.1 Expressions

An expression is a construct made up of variables, operators, and

method invocations, which are constructed according to the syntax of

the language that evaluates to a single value.

You've already seen examples of expressions, illustrated in bold below:

int cadence = 0;

anArray[0] = 100;
System.out.println("Element 1 at index 0: " + anArray[0]);

int result = 1 + 2; // result is now 3

if(value1 == value2) System.out.println("value1 == value2");

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

108 108

The data type of the value returned by an expression depends on the

elements used in the expression. The expression, cadence = 0,

returns an int because the assignment operator returns a value of the

same data type as its left-hand operand; in this case, cadence is an

int. As you can see from the other expressions, an expression can

return other types of values as well, such as boolean or String.

The Java programming language allows you to construct compound

expressions from various smaller expressions as long as the data type

required by one part of the expression matches the data type of the other.

Here's an example of a compound expression:

1 * 2 * 3

In this particular example, the order in which the expression is evaluated

is unimportant because the result of multiplication is independent of

order; the outcome is always the same, no matter in which order you

apply the multiplications. However, this is not true of all expressions.

For example, the following expression gives different results, depending

on whether you perform the addition or the division operation first:

x + y / 100 // ambiguous

You can specify exactly how an expression will be evaluated using

balanced parenthesis: (and). For example, to make the previous

expression unambiguous, you could write the following:

(x + y) / 100 // unambiguous, recommended

If you don't explicitly indicate the order for the operations to be

performed, the order is determined by the precedence assigned to the

operators in use within the expression. Operators that have a higher

precedence get evaluated first. For example, the division operator has a

higher precedence than does the addition operator. Therefore, the

following two statements are equivalent:

x + y / 100

x + (y / 100) // unambiguous, recommended

When writing compound expressions, be explicit and indicate with

parentheses which operators should be evaluated first. This practice

makes code easier to read and to maintain.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

109 109

3.2 Statements

Statements are roughly equivalent to sentences in natural languages. A

statement forms a complete unit of execution.

The following types of expressions can be made into a statement by

terminating the expression with a semicolon (;).

Assignment expressions

Any use of ++ or --

Method invocations
Object creation expressions.

Such statements are called expression statements. Here are some

examples of expression statements.

aValue = 8933.234; // assignment statement aValue++;

// increment statement System.out.println("Hello World!"); //

method invocation statement Bicycle myBike = new Bicycle (); //

object creation statement

In addition to expression statements, there are two other kinds of

statements: declaration statements and control flow statements. A

declaration statement declares a variable. You've seen many examples

of declaration statements already:

double aValue = 8933.234; //declaration statement

Finally, control flow statements regulate the order in which statements

get executed. You'll learn about control flow statements in the next
section, Control Flow Statements

3.3 Blocks

A block is a group of zero or more statements between balanced braces

and can be used anywhere a single statement is allowed. The following

example, BlockDemo, illustrates the use of blocks:

class BlockDemo {
public static void main(String[] args) {
boolean condition = true;
if (condition) { // begin block 1
System.out.println("Condition is true.");
} // end block one
else { // begin block 2
System.out.println("Condition is false.");
} // end block 2
}

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flow.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/BlockDemo.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

110 110

}
SELF ASSESSMENT EXERCISE 1

What are the core components of statements?

SELF ASSESSMENT EXERCISE 2
Distinguish between statements and sentences.

4.0 CONCLUSION

In this unit you have learned about the expressions. You have also been

able to distinguish between statements and sentences. You should also

have learned about blocks.

5.0 SUMMARY
What you have learned in this unit concerns expressions, statements and

blocks. In the next unit, you shall learn about control flow statements.

6.0 TUTOR-MARKED ASSIGNMENT
Identify the following kinds of expression statements:

aValue = 8933.234;

aValue++;

System.out.println("Hello World!");

Bicycle myBike = new Bicycle();

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data

Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources
http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

111 111

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

112 112

UNIT 5 CONTROL FLOW STATEMENTS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 The Control Flow Statements
3.2 The If-Then Statements
3.3 The If-Then-Else Statements
3.4 The Switch Statements
3.5 The While and Do-While Statements
3.6 The For Statements

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, the student will gain knowledge of control flow statements.

The unit describes the decision-making statements (if-then, if-

then-else, switch) and the looping statements (for, while, do-

while), supported by the Java programming language.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe control flow statements

gain knowledge of the decision-making statements

explain the looping statements.

3.0 MAIN CONTENT

3.1 The Control Flow Statement

The statements inside your source files are generally executed from top

to bottom, in the order that they appear. Control flow statements,

however, break up the flow of execution by employing decision making,

looping, and branching, enabling your programme to conditionally

execute particular blocks of code.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

113 113

3.2 The If-Then Statements

The if-then statement is the most basic of all the control flow

statements. It tells your programme to execute a certain section of code

only if a particular test evaluates to true. For example, the Bicycle

class could allow the brakes to decrease the bicycle's speed only if the

bicycle is already in motion. One possible implementation of the

applyBrakes method could be as follows:

void applyBrakes(){

if (isMoving){ // the "if" clause: bicycle must be moving

currentSpeed--; // the "then" clause: decrease current speed
}
}

If this test evaluates to false (meaning that the bicycle is not in

motion), control jumps to the end of the if-then statement.

In addition, the opening and closing braces are optional, provided that

the "then" clause contains only one statement:
void applyBrakes(){
if (isMoving) currentSpeed--; // same as above, but without braces
}

Deciding when to omit the braces is a matter of personal taste. Omitting

them can make the code more brittle. If a second statement is later added

to the "then" clause, a common mistake would be forgetting to add the

newly required braces. The compiler cannot catch this sort of error;

you'll just get the wrong results.

3.3 The If-Then-Else Statement

The if-then-else statement provides a secondary path of execution

when an "if" clause evaluates to false. You could use an if-then-

else statement in the applyBrakes method to take some action if

the brakes are applied when the bicycle is not in motion. In this case, the

action is to simply print an error message stating that the bicycle has

already stopped.

void applyBrakes(){ if

(isMoving) {

currentSpeed--;

} else {
System.err.println("The bicycle has already stopped!");
}

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

114 114

}

The following programme, IfElseDemo, assigns a grade based on the

value of a test score: an A for a score of 90% or above, a B for a score of

80% or above, and so on.

class IfElseDemo {

public static void main(String[] args) {

int testscore = 76;
char grade;

if (testscore >= 90) {

grade = 'A';
} else if (testscore >= 80) {
grade = 'B';
} else if (testscore >= 70) {
grade = 'C';
} else if (testscore >= 60) {
grade = 'D';
} else {
grade = 'F';
}
System.out.println("Grade = " + grade);
}
}
The output from the programme is:

Grade = C

You may have noticed that the value of testscore can satisfy more

than one expression in the compound statement: 76 >= 70 and 76

>= 60. However, once a condition is satisfied, the appropriate

statements are executed (grade = 'C';) and the remaining

conditions are not evaluated.

3.4 The Switch Statement

Unlike if-then and if-then-else, the switch statement allows

for any number of possible execution paths. A switch works with the

byte, short, char, and int primitive data types. It also works with

enumerated types (discussed in Classes and Inheritance) and a few

special classes that "wrap" certain primitive types: Character, Byte,

Short, and Integer (discussed in Simple Data Objects.)

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/IfElseDemo.java
http://java.sun.com/docs/books/tutorial/java/javaOO/enum.html
http://java.sun.com/javase/6/docs/api/java/lang/Character.html
http://java.sun.com/javase/6/docs/api/java/lang/Byte.html
http://java.sun.com/javase/6/docs/api/java/lang/Short.html
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html
http://java.sun.com/docs/books/tutorial/java/data/index.html

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

115 115

The following programme, SwitchDemo, declares an int named

month whose value represents a month out of the year. The programme

displays the name of the month, based on the value of month, using the

switch statement.

class SwitchDemo {
public static void main(String[] args) {

int month = 8;

switch (month) {
case 1: System.out.println("January"); break;
case 2: System.out.println("February"); break;

case 3: System.out.println("March"); break;

case 4: System.out.println("April"); break; case

5: System.out.println("May"); break;

case 6: System.out.println("June"); break;

case 7: System.out.println("July"); break; case

8: System.out.println("August"); break;
case 9: System.out.println("September"); break;
case 10: System.out.println("October"); break; case

11: System.out.println("November"); break; case 12:

System.out.println("December"); break; default:

System.out.println("Invalid month.");break;

}
}
}

In this case, "August" is printed to standard output.

The body of a switch statement is known as a switch block. Any

statement immediately contained by the switch block may be labeled

with one or more cases or default labels. The switch statement

evaluates its expression and executes the appropriate case.

Of course, you could also implement the same thing with if-then-

else statements:

int month = 8;

if (month == 1) {

System.out.println("January");
} else if (month == 2) {
System.out.println("February");
}
. . . // and so on

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/SwitchDemo.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

116 116

Deciding whether to use if-then-else statements or a switch

statement is sometimes a judgment call. You can decide which one to

use based on readability and other factors. An if-then-else

statement can be used to make decisions based on ranges of values or

conditions, whereas a switch statement can make decisions based only

on a single integer or enumerated value.

Another point of interest is the break statement after each case. Each

break statement terminates the enclosing switch statement. Control

flow continues with the first statement following the switch block.

The break statements are necessary because without them, case

statements fall through; that is, without an explicit break, control will

flow sequentially through subsequent case statements. The following

programme, SwitchDemo2, illustrates why it might be useful to have

case statements fall through:

class SwitchDemo2 {
public static void main(String[] args) {

int month = 2; int

year = 2000; int

numDays = 0;

switch (month) {

case 1:

case 3:

case 5:

case 7:

case 8:

case 10:

case 12:
numDays = 31;
break;

case 4:

case 6:

case 9:

case 11:
numDays = 30;
break;
case 2:
if (((year % 4 == 0) && !(year % 100 == 0))
|| (year % 400 == 0))
numDays = 29;
else

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/SwitchDemo2.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

117 117

numDays = 28;
break;
default:
System.out.println("Invalid month.");

break;

}
System.out.println("Number of Days = " + numDays);
}
}

This is the output from the programme.

Number of Days = 29

Technically, the final break is not required because flow would fall out

of the switch statement anyway. However, we recommend using a

break so that modifying the code is easier and less error-prone. The

default section handles all values that aren't explicitly handled by

one of the case sections.

3.5 The While and Do-While Statements

The while statement continually executes a block of statements while a

particular condition is true. Its syntax can be expressed as:

while (expression) {
statement(s)
}

The while statement evaluates expression, which must return a

boolean value. If the expression evaluates to true, the while

statement executes the statement(s) in the while block. The while

statement continues testing the expression and executing its block until the

expression evaluates to false. Using the while statement to print the

values from 1 through 10 can be accomplished as in the following

WhileDemo programme:

class WhileDemo {
public static void main(String[] args){
int count = 1;

while (count < 11) {

System.out.println("Count is: " + count);
count++;
}

implement an infinite loop using the while statement as follows:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/WhileDemo.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

118 118

while (true){

// your code goes here
}

The Java programming language also provides a do-while statement,

which can be expressed as follows:

do {

statement(s)
} while (expression);

The difference between do-while and while is that do-while

evaluates its expression at the bottom of the loop instead of the top.

Therefore, the statements within the do block are always executed at

least once, as shown in the following DoWhileDemo programme:

class DoWhileDemo {
public static void main(String[] args){
int count = 1;
do {
System.out.println("Count is: " + count);
count++;
} while (count <= 11);
}
}

3.6 The For Statement

The For Statement provides a compact way to iterate over a range of

values. Programmers often refer to it as the "for loop" because of the

way in which it repeatedly loops until a particular condition is satisfied.

The general form of the for-statement can be expressed as follows:

for (initialization; termination; increment) {
statement(s)
}

When using this version of the for-statement, keep in mind that:

The initialisation expression initialises the loop; it's executed once, as the
loop begins.

When the termination expression evaluates to false, the loop
terminates.
The increment expression is invoked after each iteration through the

loop; it is perfectly acceptable for this expression to increment or

decrement a value.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/DoWhileDemo.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

119 119

The following programme, ForDemo, uses the general form of the for

statement to print the numbers 1 through 10 to standard output:
class ForDemo {
public static void main(String[] args){

for(int i=1; i<11; i++){

System.out.println("Count is: " + i);

}
}
}

The output of this programme is:

Count is: 1
Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
Count is: 10

Notice how the code declares a variable within the initialisation

expression. The scope of this variable extends from its declaration to the

end of the block governed by the for-statement, so it can be used in the

termination and increment expressions as well. If the variable that controls

a for-statement is not needed outside of the loop, it's best to declare the

variable in the initialisation expression. The names i, j, and k are often

used to control for loops; declaring them within the initialisation

expression limits their life span and reduces errors.

The three expressions of the for-loop are optional; an infinite loop can

be created as follows:

for (; ;) { // infinite loop

// your code goes here

}

The for-statement also has another form designed for iteration through

Collections and arrays. This form is sometimes referred to as the enhanced

for statement, and can be used to make your loops more compact

and easy to read. To demonstrate, consider the following array, which

holds the numbers 1 through 10:

int[] numbers = {1,2,3,4,5,6,7,8,9,10};

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ForDemo.java
http://java.sun.com/docs/books/tutorial/collections/index.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/arrays.html

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

120 120

The following programme, EnhancedForDemo, uses the enhanced

for to loop through the array:

class EnhancedForDemo {

public static void main(String[] args){
int[] numbers = {1,2,3,4,5,6,7,8,9,10};

for (int item : numbers) {
System.out.println("Count is: " + item);
}
}
}

In this example, the variable item holds the current value from the

numbers array. The output from this programme is the same as before:

Count is: 1

Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
Count is: 10

We recommend using this form of the for-statement instead of the

general form whenever possible.

SELF ASSESSMENT EXERCISE 1

Explain the If-Then-Statement.

SELF ASSESSMENT EXERCISE 2

Distinguish between the Do-While statement and the While statement

4.0 CONCLUSION

The if-then statement is the most basic of all the control flow

statements. It tells your programme to execute a certain section of code

only if a particular test evaluates to true. The if-then-else

statement provides a secondary path of execution when an "if" clause

evaluates to false. Unlike if-then and if-then-else, the

switch statement allows for any number of possible execution paths.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/EnhancedForDemo.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

121 121

The while and do-while statements continually execute a block of

statements while a particular condition is true. The difference between

do-while and while is that do-while evaluates its expression at

the bottom of the loop instead of the top. Therefore, the statements

within the do block are always executed at least once. The for-

statement provides a compact way to iterate over a range of values.

5.0 SUMMARY

What you have learned in this unit concerns control flow statements.

6.0 TUTOR-MARKED ASSIGNMENT

How do you write an infinite loop using the for-statement?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data

Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

122 122

MODULE 4 JAVA PROGRAMMING

Unit 1 Classes
Unit 2 Objects
Unit 3 Interfaces and Inheritances
Unit 4 Numbers and Strings
Unit 5 Generics

UNIT 1 CLASSES

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Classes
3.2 Declaring Classes
3.3 Declaring Member Variables
3.4 Access Modifiers
3.5 Types
3.6 Variable Names

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

With the knowledge you now have of the basics of the Java

programming language, you can learn to write your own classes. In this

unit, you will find information about defining your own classes,

including declaring member variables, methods, and constructors. This

unit also covers nesting classes within other classes, enumerations, and

annotations

2.0 OBJECTIVES

By the end of this unit, you will be able to:

define your own classes

describe how to declare member variables

explain how to nest classes within other classes.

3.0 MAIN CONTENT

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

123 123

3.1 Classes

The introduction to object-oriented concepts in the unit titled

Object-Oriented Programming Concepts, used a bicycle class as an

example, with racing bikes, mountain bikes, and tandem bikes as

subclasses. Here is a sample code for a possible implementation of a

Bicycle class, to give you an overview of a class declaration.

Subsequent sections of this lesson will back up and explain class

declarations step by step. For the moment, don't concern yourself with

the details.
public class Bicycle {

// the Bicycle class has three fields

public int cadence;

public int gear;

public int speed;

// the Bicycle class has one constructor
public Bicycle(int startCadence, int startSpeed, int startGear) {
gear = startGear; cadence

= startCadence; speed =

startSpeed;
}

// the Bicycle class has four methods

public void setCadence(int newValue) {

cadence = newValue;

}

public void setGear(int newValue) {
gear = newValue;
}

public void applyBrake(int decrement) {
speed -= decrement;
}

public void speedUp(int increment) {
speed += increment;
}

}

A class declaration for a MountainBike class that is a subclass of

Bicycle might look like this:

public class MountainBike extends Bicycle {

http://java.sun.com/docs/books/tutorial/java/concepts/index.html

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

124 124

// the MountainBike subclass has one field

public int seatHeight;

// the MountainBike subclass has one constructor

public MountainBike(int startHeight, int startCadence, int startSpeed, int
startGear) {
super(startCadence, startSpeed, startGear);
seatHeight = startHeight;
}

// the MountainBike subclass has one method

public void setHeight(int newValue) {

seatHeight = newValue;
}

}

MountainBike inherits all the fields and methods of Bicycle and

adds the field seatHeight, and a method to set it (mountain bikes

have seats that can be moved up and down as the terrain demands).

3.2 Declaring Classes

You've seen classes defined in the following way:

class MyClass {

//field, constructor, and method declarations

}

This is a class declaration. The class body (the area between the braces)

contains all the code that provides for the life cycle of the objects

created from the class: constructors for initialising new objects,

declarations for the fields that provide the state of the class and its objects,

and methods to implement the behaviour of the class and its objects.

The preceding class declaration is a minimal one—it contains only those

components of a class declaration that are required. You can provide more

information about the class, such as the name of its superclass, whether it

implements any interfaces, and so on, at the start of the class declaration.

For example,

class MyClass extends MySuperClass implements YourInterface {

//field, constructor, and method declarations
}

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

125 125

means that MyClass is a subclass of MySuperClass and that it

implements the YourInterface interface.

You can also add modifiers like public or private at the very beginning

—so you can see that the opening line of a class declaration can become

quite complicated. The modifiers public and private, which determine

what other classes can access MyClass, are discussed later in this

lesson. The lesson on interfaces and inheritance will explain how and why

you would use the extends and implements keywords in a class

declaration. For the moment, you do not need to worry about these extra

complications.

In general, class declarations can include these components, in order:

1. Modifiers such as public, private, and a number of others that you

will encounter later.
2. The class name, with the initial letter capitalised by convention.
3. The name of the class's parent (superclass), if any, preceded by the

keyword extends. A class can only extend (subclass) one parent.
4. A comma-separated list of interfaces implemented by the class, if

any, preceded by the keyword, implements. A class can implement
more than one interface.

5. The class body, surrounded by braces, {}.

3.3 Declaring Member Variables

There are several kinds of variables:

Member variables in a class—these are called fields.

Variables in a method or block of code—these are called local

variables.
Variables in method declarations—these are called parameters.

The Bicycle class uses the following lines of code to define its fields:

public int cadence;

public int gear;

public int speed;

Field declarations are composed of three components, in order:

1. Zero or more modifiers, such as public or private.

2. The field's type.
3. The field's name.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

126 126

The fields of Bicycle are named cadence, gear, and speed and

are all of data type integer (int). The public keyword identifies these

fields as public members, accessible by any object that can access the

class.

3.4 Access Modifiers

The first (left-most) modifier used lets you control what other classes have

access to, a member field. For the moment, consider only public and

private. Other access modifiers will be discussed later.

public modifier—the field is accessible from all classes.

private modifier—the field is accessible only within its own

class.

In the spirit of encapsulation, it is common to make fields private. This

means that they can only be directly accessed from the Bicycle class.

We still need access to these values, however. This can be done

indirectly by adding public methods that obtain the field values for us:

public class Bicycle {

private int cadence;

private int gear;

private int speed;

public Bicycle(int startCadence, int startSpeed, int startGear) {
gear = startGear;
cadence = startCadence;
speed = startSpeed;
}

public int getCadence() {
return cadence;
}

public void setCadence(int newValue) {
cadence = newValue;
}

public int getGear() {
return gear;
}

public void setGear(int newValue) {
gear = newValue;

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

127 127

}

public int getSpeed() {
return speed;
}

public void applyBrake(int decrement) {

speed -= decrement;
}

public void speedUp(int increment) {

speed += increment;
}

}

3.5 Types

All variables must have a type. You can use primitive types such as

int, float, boolean, etc. Or you can use reference types, such as

strings, arrays, or objects.

3.6 Variable Names

All variables, whether they are fields, local variables, or parameters,

follow the same naming rules and conventions that were covered in the

Language Basics lesson, Variables—Naming.

Note that the same naming rules and conventions are used for method
and class names, except that

the first letter of a class name should be capitalised

the first (or only) word in a method name should be a verb.

SELF ASSESSMENT EXERCISE 1

Enumerate three kinds of variables.

SELF ASSESSMENT EXERCISE 2

What are parameters?

4.0 CONCLUSION

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/variables.html#naming

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

128 128

In this unit, you have learned about classes. You have also been able to

understand how to declare classes and member variables.

5.0 SUMMARY

What you have learned borders on classes and their declarations.

6.0 TUTOR-MARKED ASSIGNMENT

What are the components of field declarations?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented

Design Pattern in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

129 129

UNIT 2 OBJECTS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Objects
3.2 Creating Objects
3.3 Declaring a Variable to Refer to an Object
3.4 Instantiating a Class
3.5 Initialising an Object
3.6 Referencing an Object’s Fields
3.7 Calling an Object’s Methods
3.8 The Garbage Collector

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit covers creating and using objects. You will learn how to

instantiate an object, and, once instantiated, how to use the dot operator

to access the object's instance variables and methods.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe how to create objects

write a programme to create objects

explain how to initialise objects

describe the process of garbage collection.

3.0 MAIN CONTENT

3.1 Objects

A typical Java programme creates many objects, which as you know,

interact by invoking methods. Through these object interactions, a

programme can carry out various tasks, such as implementing a GUI,

running an animation, or sending and receiving information over a

network. Once an object has completed the work for which it was created,

its resources are recycled for use by other objects.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

130 130

Here's a small programme, called CreateObjectDemo, that creates

three objects: one Point object and two Rectangle objects. You

will need all three source files to compile this programme.

public class CreateObjectDemo {

public static void main(String[] args) {

//Declare and create a point object
//and two rectangle objects.
Point originOne = new Point(23, 94);

Rectangle rectOne = new Rectangle(originOne, 100, 200);

Rectangle rectTwo = new Rectangle(50, 100);

//display rectOne's width, height, and area

System.out.println("Width of rectOne: " + rectOne.width);

System.out.println("Height of rectOne: " + rectOne.height);

System.out.println("Area of rectOne: " + rectOne.getArea());

//set rectTwo's position

rectTwo.origin = originOne;

//display rectTwo's position

System.out.println("X Position of rectTwo: " + rectTwo.origin.x);

System.out.println("Y Position of rectTwo: " + rectTwo.origin.y);

//move rectTwo and display its new position
rectTwo.move(40, 72);
System.out.println("X Position of rectTwo: " + rectTwo.origin.x);
System.out.println("Y Position of rectTwo: " + rectTwo.origin.y);
}
}

This programme creates, manipulates, and displays information about

various objects. Here's the output:

Width of rectOne: 100
Height of rectOne: 200
Area of rectOne: 20000
X Position of rectTwo: 23
Y Position of rectTwo: 94
X Position of rectTwo: 40
Y Position of rectTwo: 72

The following three sections use the above example to describe the life

cycle of an object within a programme. From them, you will learn how

to write code that creates and uses objects in your own programmes.

http://java.sun.com/docs/books/tutorial/java/javaOO/examples/CreateObjectDemo.java
http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Point.java
http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Rectangle.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

131 131

You will also learn how the system cleans up after an object when its

life has ended.

3.2 Creating Objects

As you know, a class provides the blueprint for objects; you create an

object from a class. Each of the following statements taken from the

CreateObjectDemo programme creates an object and assigns it to a

variable:

Point originOne = new Point(23, 94);

Rectangle rectOne = new Rectangle(originOne, 100, 200);
Rectangle rectTwo = new Rectangle(50, 100);

The first line creates an object of the Point class, and the second and

third lines each create an object of the Rectangle class.

Each of these statements has three parts (discussed in detail below):

1. Declaration: The code set in bold are all variable declarations that

associate a variable name with an object type.
2. Instantiation: The new keyword is a Java operator that creates the

object.

3. Initialisation: The new operator is followed by a call to a

constructor, which initializes the new object.

3.3 Declaring a Variable to Refer to an Object

Previously, you learned that to declare a variable, you write:
type name;

This notifies the compiler that you will use name to refer to data whose

type is type. With a primitive variable, this declaration also reserves the

proper amount of memory for the variable.

You can also declare a reference variable on its own line. For example:

Point originOne;

If you declare originOne like this, its value will be undetermined

until an object is actually created and assigned to it. Simply declaring a

reference variable does not create an object. For that, you need to use the

new operator, as described in the next section. You must assign an

object to originOne before you use it in your code. Otherwise, you

will get a compiler error.

A variable in this state, which currently references no object, can be

illustrated as follows (the variable name, originOne, plus a reference

http://java.sun.com/docs/books/tutorial/java/javaOO/examples/CreateObjectDemo.java
http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Point.java
http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Rectangle.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

132 132

pointing to nothing):

3.4 Instantiating a Class

The new operator instantiates a class by allocating memory for a new

object and returning a reference to that memory. The new operator also

invokes the object constructor.

Note: The phrase "instantiating a class" means the same thing as

"creating an object." When you create an object, you are creating an

"instance" of a class, therefore "instantiating" a class.

The new operator requires a single, postfix argument: a call to a

constructor. The name of the constructor provides the name of the class to

instantiate.

The new operator returns a reference to the object it created. This

reference is usually assigned to a variable of the appropriate type, like:

Point originOne = new Point (23, 94);

The reference returned by the new operator does not have to be assigned

to a variable. It can also be used directly in an expression. For example:

int height = new Rectangle().height;
This statement will be discussed in the next section.

3.5 Initialising an Object

Here's the code for the Point class:

public class Point {

public int x = 0;

public int y = 0;
//constructor

public Point(int a, int b) {
x = a;

y = b;
}
}

This class contains a single constructor. You can recognise a constructor

because its declaration uses the same name as the class and it has no return

type. The constructor in the Point class takes two integer

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

133 133

arguments, as declared by the code (int a, int b). The following

statement provides 23 and 94 as values for those arguments:

Point originOne = new Point(23, 94);

The result of executing this statement can be illustrated in the next

figure:

Here's the code for the Rectangle class,

constructors:

which contains four

public class Rectangle {

public int width = 0;

public int height = 0;

public Point origin;

// four constructors

public Rectangle() {

origin = new Point(0, 0);

}
public Rectangle(Point p) {
origin = p;
}
public Rectangle(int w, int h) {
origin = new Point(0, 0);
width = w;
height = h;
}
public Rectangle(Point p, int w, int h) {
origin = p;

width = w;

height = h;
}

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

134 134

// a method for moving the rectangle

public void move(int x, int y) {

origin.x = x;
origin.y = y;
}

// a method for computing the area of the rectangle

public int getArea() {
return width * height;
}
}

Each constructor lets you provide initial values for the rectangle's size and

width, using both primitive and reference types. If a class has multiple

constructors, they must have different signatures. The Java compiler

differentiates the constructors based on the number and the type of the

arguments. When the Java compiler encounters the following code, it

knows to call the constructor in the Rectangle class that requires a

Point argument followed by two integer arguments:

Rectangle rectOne = new Rectangle(originOne, 100, 200);

This calls one of Rectangle's constructors that initialises origin to

originOne. Also, the constructor sets width to 100 and height to

200. Now, there are two references to the same Point object— an

object can have multiple references to it, as shown in the next figure:

The following line of code calls the Rectangle constructor that

requires two integer arguments, which provide the initial values for

width and height. If you inspect the code within the constructor, you

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

135 135

will see that it creates a new Point object whose x and y values are

initialised to 0:
Rectangle rectTwo = new Rectangle(50, 100);

The Rectangle constructor used in the following statement doesn't

take any arguments, so it's called a no-argument constructor:
Rectangle rect = new Rectangle();

All classes have at least one constructor. If a class does not explicitly

declare any, the Java compiler automatically provides a no-argument

constructor, called the default constructor. This default constructor calls

the class parent's no-argument constructor, or the Object constructor if

the class has no other parent. If the parent has no constructor (Object

does have one), the compiler will reject the programme.

Using Objects

Once you've created an object, you probably want to use it for

something. You may need to use the value of one of its fields, change

one of its fields, or call one of its methods to perform an action.

3.6 Referencing Object’s Fields

Object fields are accessed by their name. You must use a name that is
unambiguous.

You may use a simple name for a field within its own class. For

example, we can add a statement within the Rectangle class that

prints the width and height:

System.out.println("Width and height are: " + width + ", " + height);

In this case, width and height are simple names.

Code that is outside the object's class must use an object reference or

expression, followed by the dot (.) operator, followed by a simple field

name, as in:

objectReference.fieldName

For example, the code in the CreateObjectDemo class is outside the

code for the Rectangle class. So to refer to the origin, width, and

height fields within the Rectangle object named rectOne, the

CreateObjectDemo class must use the names rectOne.origin,

rectOne.width, and rectOne.height, respectively. The

programme uses two of these names to display the width and the

height of rectOne:

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

136 136

System.out.println("Width of rectOne: " + rectOne.width);
System.out.println("Height of rectOne: " + rectOne.height);
Attempting to use the simple names - width and height, from the

code in the CreateObjectDemo class doesn't make sense — those

fields exist only within an object — and results in a compiler error.

Later, the programme uses similar code to display information about

rectTwo. Objects of the same type have their own copy of the same

instance fields. Thus, each Rectangle object has fields named

origin, width, and height. When you access an instance field

through an object reference, you reference that particular object's field.

The two objects, rectOne and rectTwo, in the

CreateObjectDemo programme have different origin, width,

and height fields.

To access a field, you can use a named reference to an object, as in the

previous examples, or you can use any expression that returns an object

reference. Recall that the new operator returns a reference to an object.

So you could use the value returned from new to access a new object's

fields:

int height = new Rectangle().height;

This statement creates a new Rectangle object and immediately gets

its height. In essence, the statement calculates the default height of a

Rectangle. Note that after this statement has been executed, the

programme no longer has a reference to the created Rectangle, because

the programme never stored the reference anywhere. The object is

unreferenced, and its resources are free to be recycled by the Java Virtual

Machine.

3.7 Calling an Object's Methods

An object reference is used to invoke an object's method. You append

the method's simple name to the object reference, with an intervening

dot operator (.). Also, you provide, within enclosing parentheses, any

arguments to the method. If the method does not require any arguments,

use empty parentheses.

objectReference.methodName(argumentList);

or

objectReference.methodName();

The Rectangle class has two methods: getArea() to compute the

rectangle's area and move() to change the rectangle's origin. Here's the

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

137 137

CreateObjectDemo code that invokes these two methods:

System.out.println("Area of rectOne: " + rectOne.getArea());

...
rectTwo.move(40, 72);

The first statement invokes rectOne's getArea() method and

displays the results. The second line moves rectTwo because the

move() method assigns new values to the object's origin.x and

origin.y.

As with instance fields, objectReference must be a reference to an

object. You can use a variable name, but you also can use any

expression that returns an object reference. The new operator returns an

object reference, so you can use the value returned from new to invoke a

new object's methods:

new Rectangle(100, 50).getArea()

The expression new Rectangle(100, 50) returns an object

reference that refers to a Rectangle object. As shown, you can use

the dot notation to invoke the new Rectangle's getArea() method

to compute the area of the new rectangle.

Some methods, such as getArea(), return a value. For methods that

return a value, you can use the method invocation in expressions. You can

assign the return value to a variable, use it to make decisions, or control a

loop. This code assigns the value returned by getArea() to the

variable areaOfRectangle:

int areaOfRectangle = new Rectangle(100, 50).getArea();

Remember, invoking a method on a particular object is the same as

sending a message to that object. In this case, the object that getArea()

is invoked on is the rectangle returned by the constructor.

3.8 The Garbage Collector

Some object-oriented languages require that you keep track of all the

objects you create and that you explicitly destroy them when they are no

longer needed. Managing memory explicitly is tedious and error-prone.

The Java platform allows you to create as many objects as you want

(limited, of course, by what your system can handle), and you don't have

to worry about destroying them. The Java runtime environment deletes

objects when it determines that they are no longer being used. This

process is called garbage collection.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

138 138

An object is eligible for garbage collection when there are no more

references to that object. References that are held in a variable are

usually dropped when the variable goes out of scope. Or, you can

explicitly drop an object reference by setting the variable to the special

value, null. Remember that a programme can have multiple references

to the same object; all references to an object must be dropped before
the object is eligible for garbage collection.

The Java runtime environment has a garbage collector that periodically

frees the memory used by objects that are no longer referenced. The

garbage collector does its job automatically when it determines that the

time is right.

SELF ASSESSMENT EXERCISE

What do you understand by the phrase ‘instantiating a class’?

4.0 CONCLUSION

In this unit, you have learned about objects. You have also learned how to

create and initialise objects. Finally, you have been able to learn the

process of garbage collections.

5.0 SUMMARY

What you have learned in this unit is focused on objects, creating,
initialising and using these objects.

6.0 TUTOR-MARKED ASSIGNMENT

Explain the process of garbage collection.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

139 139

Shaffer, Clifford A. A. (1998). Practical Introduction to Data

Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented

Design Pattern in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

140 140

UNIT 3 INTERFACES AND INHERITANCE

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Interfaces-Basics
3.2 Interfaces in Java
3.3 Interfaces as APIs
3.4 Interfaces and Multiple Inheritance
3.5 Inheritance
3.6 Definitions
3.7 The Java Platform Class Hierarchy
3.8 What You can Do in a Subclass
3.9 Private Members in a Superclass
3.10 Casting Objects

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit describes the way in which you can derive one class from

another. That is, how a subclass can inherit fields and methods from a

superclass. You will learn that all classes are derived from the Object

class, and how to modify the methods that a subclass inherits from

superclasses. This unit also covers interface-like abstract classes.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

derive one class from another

describe how to modify methods that a subclass inherits from

superclasses

define subclass and superclass

explain what an interface is.

3.0 MAIN CONTENT

3.1 Interface-Basics

There are a number of situations in software engineering when it is

important for disparate groups of programmemers to agree to a

"contract" that spells out how their software interacts. Each group

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

141 141

should be able to write their code without any knowledge of how the other

group's code is written. Generally speaking, interfaces are such contracts.

For example, imagine a futuristic society where computer-

controlled robotic cars transport passengers through city streets

without a human operator. Automobile manufacturers write software

(Java, of course) that operates the automobile – stop, start, accelerate, turn

left, and so forth. Another industrial group, electronic

guidance instrument manufacturers, make computer systems that receive

GPS (Global Positioning Satellite) position data and wireless transmission

of traffic conditions and use that information to drive the car.

The auto manufacturers must publish an industry-standard interface that

spells out in detail what methods can be invoked to make the car move

(any car, from any manufacturer). The guidance manufacturers can then

write software that invokes the methods described in the interface to

command the car. Neither industrial group needs to know how the other

group's software is implemented. In fact, each group considers its software

highly proprietary and reserves the right to modify it at any time, as

long as it continues to adhere to the published interface.

3.2 Interfaces in Java

In the Java programming language, an interface is a reference type, similar

to a class that can contain only constants, method signatures, and nested

types. There are no method bodies. Interfaces cannot be instantiated—they

can only be implemented by classes or extended by other interfaces.

Extension is discussed later in this lesson.

Defining an interface is similar to creating a new class:

public interface OperateCar {

// constant declarations, if any

// method signatures
int turn(Direction direction, // An enum with values RIGHT, LEFT
double radius, double startSpeed, double endSpeed);

int changeLanes(Direction direction, double startSpeed, double

endSpeed);
int signalTurn(Direction direction, boolean signalOn);
int getRadarFront(double distanceToCar, double speedOfCar);
int getRadarRear(double distanceToCar, double speedOfCar);
......
// more method signatures
}

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

142 142

Note that the method signatures have no braces and are terminated with a

semicolon.

To use an interface, you write a class that implements the interface.

When an instantiable class implements an interface, it provides a

method body for each of the methods declared in the interface. For

example,

public class OperateBMW760i implements OperateCar {

// the OperateCar method signatures, with implementation --

// for example:

int signalTurn(Direction direction, boolean signalOn) {
//code to turn BMW's LEFT turn indicator lights on
//code to turn BMW's LEFT turn indicator lights off
//code to turn BMW's RIGHT turn indicator lights on
//code to turn BMW's RIGHT turn indicator lights off
}

// other members, as needed -- for example, helper classes

// not visible to clients of the interface

}

In the robotic car example above, it is the automobile manufacturers

who will implement the interface. Chevrolet's implementation will be
substantially different from that of Toyota, of course, but both
manufacturers will adhere to the same interface. The guidance

manufacturers, who are the clients of the interface, will build systems

that use GPS data on a car's location, digital street maps, and traffic data to

drive the car. In so doing, the guidance systems will invoke the interface

methods: turn, change lanes, brake, accelerate, and so forth.

3.3 Interfaces as APIs

The robotic car example shows an interface being used as an industry

standard Application Programming Interface (API). APIs are also

common in commercial software products. Typically, a company sells a

software package that contains complex methods that another company

wants to use in its own software product. An example would be a package

of digital image processing methods that are sold to companies making

end-user graphics programmes. The image processing company writes its

classes to implement an interface, which it makes public to its customers.

The graphics company then invokes the image processing methods using

the signatures and return types defined in the interface. While the image

processing company's API is made public (to its customers), its

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

143 143

implementation of the API is kept as a closely guarded secret—in fact, it

may revise the implementation at a later date as long as it continues to

implement the original interface that its customers have relied on.

3.4 Interfaces and Multiple Inheritance

Interfaces have another very important role in the Java programming

language. Interfaces are not part of the class hierarchy, although they work

in combination with classes. The Java programming language does not

permit multiple inheritance (inheritance is discussed later in this lesson),

but interfaces provide an alternative.

In Java, a class can inherit from only one class but it can implement

more than one interface. Therefore, objects can have multiple types: the

type of their own class and the types of all the interfaces that they

implement. This means that if a variable is declared to be a type of an

interface, its value can reference any object that is instantiated from any

class that implements the interface. This is discussed later in this lesson, in

the section titled "Using an Interface as a Type."

3.5 Inheritance

In the preceding units, you have seen inheritance mentioned several times.

In the Java language, classes can be derived from other classes, thereby

inheriting fields and methods from those classes.

3.6 Definitions

A class that is derived from another class is called a subclass (also a

derived class, extended class, or child class). The class from which the

subclass is derived is called a superclass (also a base class or a parent

class).

Excepting Object, which has no superclass, every class has one and only

one direct superclass (single inheritance). In the absence of any other

explicit superclass, every class is implicitly a subclass of Object.

Classes can be derived from classes that are derived from classes that

are derived from classes, and so on, and ultimately derived from the

topmost class, Object. Such a class is said to be descended from all

the classes in the inheritance chain stretching back to Object.

The idea of inheritance is simple but powerful: When you want to create a

new class and there is already a class that includes some of the code

that you want, you can derive your new class from the existing class. In

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

144 144

doing this, you can reuse the fields and methods of the existing class

without having to write (and debug!) them yourself.

A subclass inherits all the members (fields, methods, and nested classes)

from its superclass. Constructors are not members, so they are not

inherited by subclasses, but the constructor of the superclass can be

invoked from the subclass.

3.7 The Java Platform Class

Hierarchy

The Object class, defined in the java.lang package, defines

and implements behaviour common to all classes—including the ones

that you write. In the Java platform, many classes derive directly from

Object, other classes derive from some of those classes, and so on,

forming a hierarchy of classes.

Fig. 1.0: All Classes in the Java Platform are Descendants of

Object

At the top of the hierarchy, Object is the most general of all

classes. Classes near the bottom of the hierarchy provide more

specialised behaviour.

An Example of

Inheritance

Here is the sample code for a possible implementation of a
Bicycle

class that was presented in the Classes and Objects
lesson:
public class Bicycle

{

http://java.sun.com/javase/6/docs/api/java/lang/Object.html

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

145 145

// the Bicycle class has three

fields
public int
cadence;
public int

gear;
public int
speed;

// the Bicycle class has one

constructor
public Bicycle(int startCadence, int startSpeed, int startGear)
{
gear = startGear;

cadence =

startCadence; speed =

startSpeed;
}

// the Bicycle class has four methods

public void setCadence(int newValue) {

cadence = newValue;
}

public void setGear(int newValue) {

gear = newValue;
}

public void applyBrake(int decrement) {

speed -= decrement;
}

public void speedUp(int increment) {

speed += increment;
}

}

A class declaration for a MountainBike class that is a subclass of

Bicycle might look like this:

public class MountainBike extends Bicycle {

// the MountainBike subclass adds one field

public int seatHeight;

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

146 146

// the MountainBike subclass has one constructor

public MountainBike(int startHeight, int startCadence, int startSpeed, int

startGear) {
super(startCadence, startSpeed, startGear);
seatHeight = startHeight;
}

// the MountainBike subclass adds one method

public void setHeight(int newValue) {
seatHeight = newValue;
}

}

MountainBike inherits all the fields and methods of Bicycle and

adds the field seatHeight and a method to set it. Except for the

constructor, it is as if you had written a new MountainBike class

entirely from scratch, with four fields and five methods. However, you

didn't have to do all the work. This would be especially valuable if the

methods in the Bicycle class were complex and had taken substantial

time to debug.

3.8 What You Can Do in a Subclass

A subclass inherits all of the public and protected members of its parent,

no matter what package the subclass is in. If the subclass is in the same

package as its parent, it also inherits the package – private members of the

parent. You can use the inherited members as follows: replace them, hide

them, or supplement them with new members:

The inherited fields can be used directly, just like any other field.

You can declare a field in the subclass with the same name as the one
in the superclass, thus hiding it (not recommended).

You can declare new fields in the subclass that are not in the

superclass.

The inherited methods can be used directly as they are.

You can write a new instance method in the subclass that has the same

signature as the one in the superclass, thus overriding it.

You can write a new static method in the subclass that has the same

signature as the one in the superclass, thus hiding it.

You can declare new methods in the subclass that are not in the

superclass.
You can write a subclass constructor that invokes the constructor of the

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

147 147

superclass, either implicitly or by using the keyword, super.

The following sections in this unit will expand on these topics.

3.9 Private Members in a Superclass

A subclass does not inherit the private members of its parent class.

However, if the superclass has public or protected methods for accessing

its private fields, these can also be used by the subclass.

A nested class has access to all the private members of its enclosing

class—both fields and methods. Therefore, a public or protected nested

class inherited by a subclass has indirect access to all of the private

members of the superclass.

3.10 Casting Objects

We have seen that an object is of the data type of the class from which it
was instantiated. For example, if we write
public MountainBike myBike = new MountainBike();

then myBike is of type MountainBike.

MountainBike is descended from Bicycle and Object.

Therefore, a MountainBike is a Bicycle and is also an Object,

and it can be used wherever Bicycle or Object objects are called

for.

The reverse is not necessarily true: a Bicycle may be a

MountainBike, but it isn't necessarily. Similarly, an Object may be a

Bicycle or a MountainBike, but it isn't necessarily.

Casting shows the use of an object of one type in place of another type,

among the objects permitted by inheritance and implementations. For

example, if we write

Object obj = new MountainBike();

then obj is both an Object and a Mountainbike (until such time

as obj is assigned another object that is not a Mountainbike). This

is called implicit casting.

If, on the other hand, we write

MountainBike myBike = obj;

we would get a compile-time error because obj is not known to the

compiler to be a MountainBike. However, we can tell the compiler that

we promise to assign a MountainBike to obj by explicit

casting:

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

148 148

MountainBike myBike = (MountainBike)obj;

This cast inserts a runtime check that obj is assigned a

MountainBike so that the compiler can safely assume that obj is a

MountainBike. If obj is not a Mountainbike at runtime, an

exception will be thrown.

Note: You can make a logical test as to the type of a particular object

using the instanceof operator. This can save you from a runtime

error owing to an improper cast. For example:
if (obj instanceof MountainBike) {
MountainBike myBike = (MountainBike)obj;
}

Here, the instanceof operator verifies that obj refers to a

MountainBike so that we can make the cast with knowledge that

there will be no runtime exception thrown.

SELF ASSESSMENT EXERCISE 1

Is the following interface valid?
public interface Marker {
}

SELF ASSESSMENT EXERCISE 2

What do you understand by the term, interface?

4.0 CONCLUSION

In this unit you have learned about inheritance. You have also learned

about interfaces. Finally, you have been able to learn how to modify

methods.

5.0 SUMMARY

What you have learned in this unit borders on inheritance and interfaces.

6.0 TUTOR-MARKED ASSIGNMENT

What is wrong with the following interface?

public interface SomethingIsWrong {

void aMethod(int aValue){

System.out.println("Hi Mom");

}

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

149 149

}

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Pattern in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

150 150

UNIT 4 NUMBERS AND STRINGS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 The Number Classes
3.2 Creating Strings
3.3 String Length
3.4 Concatenating Strings
3.5 Creating Format Strings

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit begins with a discussion of the Number class in the

java.lang package, its subclasses, and the situations where you

would use instantiations of these classes rather than the primitive

number types. It also presents the PrintStream and

DecimalFormat classes, which provide methods for writing

formatted numerical output. Finally, the Math class in java.lang is

discussed.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe number classes explain

how to create strings explain

concatenating of strings.

3.0 MAIN CONTENT

3.1 The Number Classes

When working with numbers, most of the time you use the primitive
types in your code. For example:
int i = 500;

float gpa = 3.65;

byte mask = 0xff;

There are, however, reasons to use objects in place of primitives, and the

http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

151 151

Java platform provides wrapper classes for each of the primitive data

types. These classes "wrap" the primitive in an object. Often, the wrapping

is done by the compiler—if you use a primitive where an object is

expected, the compiler boxes the primitive in its wrapper class for you.

Similarly, if you use a number object when a primitive is expected,

the compiler unboxes the object for you.

Here is an example of boxing and unboxing:

Integer x, y;

x = 12; y = 15;

System.out.println(x+y);

When x and y are assigned integer values, the compiler boxes the

integers because x and y are integer objects. In the println()

statement, x and y are unboxed so that they can be added as integers.

All of the numeric wrapper classes are subclasses of the abstract class

Number:

Note: There are four other subclasses of Number that are not discussed

here. BigDecimal and BigInteger are used for high-precision

calculations. AtomicInteger and AtomicLong are used for

multi-threaded applications.

There are three reasons why you might use a Number object rather than

a primitive:

1. As an argument of a method that expects an object (often used when

manipulating collections of numbers).

2. To use constants defined by the class, such as MIN_VALUE and

MAX_VALUE, that provide the upper and lower bounds of the data

type.

3. To use class methods for converting values to and from other

primitive types, for converting to and from strings, and for

converting between number systems (decimal, octal, hexadecimal,

binary).

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

152 152

The following table lists the instance methods that all the subclasses of

the Number class implement.

Methods Implemented by all Subclasses of Number

Method

Description

byte byteValue()

short shortValue()

int intValue()

long longValue()

float floatValue()

double doubleValue()

Converts the value of this Number

object to the primitive data type

returned.

int compareTo(Byte

anotherByte)

int compareTo(Double

anotherDouble)

int compareTo(Float

anotherFloat)

int compareTo(Integer

anotherInteger)

int compareTo(Long

anotherLong)

int compareTo(Short

anotherShort)

Compares this Number object to

the argument.

boolean equals(Object

obj)

Determines whether this number

object is equal to the argument.

The methods return true if the

argument is not null and is an

object of the same type and with the

same numeric value.

There are some extra requirements

for Double and Float objects

that are described in the Java API

documentation.

Each Number class contains other methods that are useful for

converting numbers to and from strings and for converting between

number systems. The following table lists these methods in the

Integer class. Methods for the other Number subclasses are similar:

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

153 153

Conversion Methods, Integer Class

Method

Description

static Integer

decode(String s)

Decodes a string into an integer.

Can accept string representations of

decimal, octal, or hexadecimal

numbers as input.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

154 154

static int

parseInt(String s)

Returns an integer (decimal only).

static int

parseInt(String s, int

radix)

Returns an integer, given a string

representation of decimal, binary,

octal, or hexadecimal (radix

equals 10, 2, 8, or 16 respectively)

numbers as input.

String toString()

Returns a String object

representing the value of this

Integer.

static String

toString(int i)

Returns a String object

representing the specified integer.

static Integer

valueOf(int i)

Returns an Integer object

holding the value of the specified

primitive.

static Integer

valueOf(String s)

Returns an Integer object

holding the value of the specified

string representation.

static Integer

valueOf(String s, int

radix)

Returns an Integer object

holding the integer value of the

specified string representation,

parsed with the value of radix. For

example, if s = "333" and radix = 8,

the method returns the base-ten

integer equivalent of the octal

number 333.

3.2 Creating Strings

The most direct way to create a string is to write:
String greeting = "Hello world!";

In this case, "Hello world!" is a string literal—a series of characters in

your code that is enclosed in double quotes. Whenever it encounters a

string literal in your code, the compiler creates a String object with its

value—in this case, Hello world!.

As with any other object, you can create String objects by using the

new keyword and a constructor. The String class has 11 constructors

that allow you to provide the initial value of the string using different

sources, such as an array of characters:

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

155 155

char[] helloArray = { 'h', 'e', 'l', 'l', 'o',

'.'};

String helloString = new String(helloArray);

System.out.println(helloString);

The last line of this code snippet displays hello.

Note: The String class is immutable, so that once it is created, a

String object cannot be changed. The String class has a number of

methods, some of which will be discussed below, that appear to modify

strings. Since strings are immutable, what these methods really do is

create and return a new string that contains the result of the operation.

3.3 String Length

Methods used to obtain information about an object are known as

accessor methods. One accessor method that you can use with strings is

the length() method, which returns the number of characters

contained in the string object. After the following two lines of code have

been executed, len equals 17:

String palindrome = "Dot saw I was Tod";

int len = palindrome.length();

A palindrome is a word or sentence that is symmetric—it is spelled the

same forward and backward, ignoring case and punctuation. Here is a

short and inefficient programme to reverse a palindrome string. It

invokes the String method charAt(i), which returns the ith

character in the string, counting from 0.

public class StringDemo {

public static void main(String[] args) {

String palindrome = "Dot saw I was Tod";

int len = palindrome.length();

char[] tempCharArray = new char[len];

char[] charArray = new char[len];

// put original string in an array of chars

for (int i = 0; i < len; i++) {

tempCharArray[i] = palindrome.charAt(i);

}

// reverse array of chars

for (int j = 0; j < len; j++) {

charArray[j] = tempCharArray[len - 1 - j];

}

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

156 156

String reversePalindrome = new

String(charArray);

System.out.println(reversePalindrome);

}

}

Running the programme produces this output:
doT saw I was toD

To accomplish the string reversal, the programme had to convert the

string to an array of characters (first for loop), reverse the array into a

second array (second for loop), and then convert back to a string. The

String class includes a method, getChars(), to convert a string, or

a portion of a string, into an array of characters so we could replace the

first for loop in the programme above with

palindrome.getChars(0, len - 1, tempCharArray,

0);

3.4 Concatenating Strings

The String class includes a method for concatenating two strings:

string1.concat(string2);

This returns a new string that is string1 with string2 added to it at the

end.

You can also use the concat() method with string literals, as in:

"My name is ".concat("Rumplestiltskin");

Strings are more commonly concatenated with the + operator, as in
"Hello," + " world" + "!"

which results in
"Hello, world!"

The + operator is widely used in print statements. For example:
String string1 = "saw I was ";

System.out.println("Dot " + string1 + "Tod");

which prints
Dot saw I was Tod

Such a concatenation can be a mixture of any objects. For each object

that is not a String, its toString() method is called to convert it to

a String.

Note: The Java programming language does not permit literal strings to

span lines in source files, so you must use the + concatenation operator

at the end of each line in a multi-line string. For example,
String quote = "Now is the time for all good” +

"men to come to the aid of their country.";

http://java.sun.com/javase/6/docs/api/java/lang/String.html

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

157 157

Breaking strings between lines using the + concatenation operator is,

once again, very common in print statements.

3.5 Creating Format Strings

You have seen the use of the printf() and format() methods to

print output with formatted numbers. The String class has an

equivalent class method, format(), that returns a String object

rather than a PrintStream object.

Using String's static format() method allows you to create a

formatted string that you can reuse, as opposed to a one-time print

statement. For example, instead of

System.out.printf("The value of the float

variable is %f, while the value of the " +

"integer variable is %d, and the string is %s",

floatVar, intVar, stringVar);

you can write
String fs;

fs = String.format("The value of the float

variable is %f, while the value of the " +

"integer variable is %d, and the string is %s",

floatVar, intVar, stringVar);

System.out.println(fs);

SELF ASSESSMENT EXERCISE 1

What would be the result of concatenating these strings with the +

operator?
"Hello," + " world" + "!"

SELF ASSESSMENT EXERCISE 2

State three reasons why might use a Number object rather than a

primitive

4.0 CONCLUSION

In this unit you have learned about number classes. You have also

learned how to create and concatenate strings.

5.0 SUMMARY

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

158 158

What you have learned in this unit is focused on numbers and strings.

6.0 TUTOR-MARKED ASSIGNMENT

What Integer method would you use to convert a string expressed in

base 5 into the equivalent int? For example, how would you convert

the string "230" into the integer value 65?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented

Design Pattern in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

159 159

UNIT 5 GENERICS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Generics–Basics
3.2 A Simple Box Class

3.3 Generic Types
3.4 Type Parameter Naming Conventions
3.5 Generic Methods and Constructors

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit will focus primarily on simple "collections-like" examples that

we'll design from scratch. This hands-on approach will teach you the

necessary syntax and terminology while demonstrating the various kinds

of problems that generics were designed to solve.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

explain the notion of generics

identify generic types

list the type parameter naming conventions

describe generic methods.

3.0 MAIN CONTENT

3.1 Generics – Basics

In any nontrivial software project, bugs are simply a fact of life. Careful

planning, programming, and testing can help reduce their pervasiveness,

but somehow, somewhere, they'll always find a way to creep into your

code. This becomes especially apparent as new features are introduced

and your code base grows in size and complexity.

Fortunately, some bugs are easier to detect than others. Compile-time

bugs, for example, tell you immediately that something is wrong; you

can use the compiler's error messages to figure out what the problem is

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

160 160

and fix it, right then and there. Runtime bugs, however, can be much

more problematic; they don't always surface immediately, and when

they do, it may be at a point in time that's far removed from the actual

cause of the problem.

Generics add stability to your code by making more of your bugs

detectable at compile time. Some programmers choose to learn generics

by studying the Java Collections Framework; after all, generics are

heavily used by those classes.

3.2 A Simple Box Class

Let's begin by designing a nongeneric Box class that operates on objects

of any type. It need only provide two methods: add, which adds an

object to the box, and get, which retrieves it:

public class Box {

private Object object;

public void add(Object object) {

this.object = object;

}

public Object get() {

return object;

}

}

Since its methods accept or return Object, you're free to pass in

whatever you want, provided that it's not one of the primitive types.

However, should you need to restrict the contained type to something

specific (like Integer), your only option would be to specify the

requirement in documentation (or in this case, a comment), which of

course the compiler knows nothing about:

public class BoxDemo1 {

public static void main(String[] args) {

// ONLY place Integer objects into this box!

Box integerBox = new Box();

integerBox.add(new Integer(10));

Integer someInteger = (Integer)integerBox.get();

System.out.println(someInteger);

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

161 161

}

}

The BoxDemo1 programme creates an Integer object, passes it to

add, then assigns that same object to someInteger by the return

value of get. It then prints the object's value (10) to standard output.

We know that the cast from Object to Integer is correct because

we have honoured the "contract" specified in the comment. But

remember, the compiler knows nothing about this — it just trusts that

our cast is correct. Furthermore, it will do nothing to prevent a careless

programmer from passing in an object of the wrong type, such as

String:

public class BoxDemo2 {

public static void main(String[] args) {

// ONLY place Integer objects into this box!

Box integerBox = new Box();

// Imagine this is one part of a large

application

// modified by one programmer.

integerBox.add("10"); // note how the type is

now String

// ... and this is another, perhaps written

// by a different programmer

Integer someInteger = (Integer)integerBox.get();

System.out.println(someInteger);

}

}

In BoxDemo2 we've stored the number 10 as a String, which

could be the case when, say, a GUI collects input from the user.

However, the existing cast from Object to Integer has

mistakenly been overlooked. This is clearly a bug, but because the

code still compiles, you wouldn't know anything is wrong until

runtime, when the application crashes with a

ClassCastException:

Exception in thread "main"

java.lang.ClassCastException:

java.lang.String cannot be cast to

java.lang.Integer

http://java.sun.com/docs/books/tutorial/java/generics/examples/BoxDemo1.java
http://java.sun.com/docs/books/tutorial/java/generics/examples/BoxDemo2.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

162 162

at BoxDemo2.main(BoxDemo2.java:6)

If the Box class had been designed with generics in mind, this mistake
would have been caught by the compiler, instead of crashing the
application at runtime.

3.3 Generic Types

Let's update our Box class to use generics. We'll first create a generic

type declaration by changing the code "public class Box" to

"public class Box<T>"; this introduces one type variable, named

T, that can be used anywhere inside the class. This same technique can

be applied to interfaces as well. There's nothing particularly complex

about this concept. In fact, it's quite similar to what you already know

about variables in general. Just think of T as a special kind of variable,

whose "value" will be whatever type you pass in; this can be any class

type, any interface type, or even another type variable. It just can't be

any of the primitive data types. In this context, we also say that T is a

formal type parameter of the Box class.

/**

* Generic version of the Box class.

*/

public class Box<T> {

private T t; // T stands for "Type"

public void add(T t) {

this.t = t;

}

public T get() {

return t;

}

}

As you can see, we've replaced all occurrences of Object with T. To

reference this generic class from within your own code, you must

perform a generic type invocation, which replaces T with some concrete

value, such as Integer:

Box<Integer> integerBox;

You can think of a generic type invocation as being similar to an

ordinary method invocation, but instead of passing an argument to a

method, you're passing a type argument — Integer in this case — to

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

163 163

the Box class itself. Like any other variable declaration, this code does

not actually create a new Box object. It simply declares that

integerBox will hold a reference to a "Box of Integer", which is

how Box<Integer> is read.

An invocation of a generic type is generally known as a parameterized
type.

To instantiate this class, use the new keyword, as usual, but place

<Integer> between the class name and the parenthesis:

integerBox = new Box<Integer>();

Or, you can put the entire statement on one line, such as:

Box<Integer> integerBox = new Box<Integer>();

Once integerBox is initialised, you're free to invoke its get method

without providing a cast, as in BoxDemo3:

public class BoxDemo3 {

public static void main(String[] args) {

Box<Integer> integerBox = new Box<Integer>();

integerBox.add(new Integer(10));

Integer someInteger = integerBox.get(); // no

cast!

System.out.println(someInteger);

}

}

Furthermore, if you try adding an incompatible type to the box, such as

String, compilation will fail, alerting you to what previously would

have been a runtime bug:

BoxDemo3.java:5: add(java.lang.Integer) in

Box<java.lang.Integer>

cannot be applied to (java.lang.String)

integerBox.add("10");

^

1 error

It's important to understand that type variables are not actually types

themselves. In the above examples, you won't find T.java or

T.class anywhere on the filesystem. Furthermore, T is not a part of

the Box class name. In fact, during compilation, all generic information

http://java.sun.com/docs/books/tutorial/java/generics/examples/BoxDemo3.java

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

164 164

will be removed entirely, leaving only Box.class on the filesystem.

We'll discuss this later in the section on Type Erasure.

Also note that a generic type may have multiple type parameters, but

each parameter must be unique within its declaring class or interface. A

declaration of Box<T,T>, for example, would generate an error on the

second occurrence of T, but Box<T,U>, however, would be allowed.

3.4 Type Parameter Naming Conventions

By convention, type parameter names are single, uppercase letters. This

stands in sharp contrast to the variable naming conventions that you

already know about, and with good reason: Without this convention, it

would be difficult to tell the difference between a type variable and an

ordinary class or interface name.

The most commonly used type parameter names are:

E - Element (used extensively by the Java Collections Framework)
K - Key
N - Number
T - Type
V - Value
S,U,V etc. - 2nd, 3rd, 4th types.

You will see these names used throughout the Java SE API and the rest

of this tutorial.

3.5 Generic Methods and Constructors

Type parameters can also be declared within method and constructor

signatures to create generic methods and generic constructors. This is

similar to declaring a generic type, but the type parameter's scope is

limited to the method or constructor in which it's declared.

/**

* This version introduces a generic method.

*/

public class Box<T> {

private T t;

public void add(T t) {

this.t = t;

}

public T get() {

return t;

http://java.sun.com/docs/books/tutorial/java/generics/erasure.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/variables.html#naming

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

165 165

}

public <U> void inspect(U u){

System.out.println("T: " +

t.getClass().getName());

System.out.println("U: " +

u.getClass().getName());

}

public static void main(String[] args) {

Box<Integer> integerBox = new Box<Integer>();

integerBox.add(new Integer(10));

integerBox.inspect("some text");

}

}

Here, we have added one generic method, named inspect, that

defines one type parameter, named U. This method accepts an object and

prints its type to standard output. For comparison, it also prints out the

type of T. For convenience, this class now also has a main method so

that it can be run as an application.

The output from this programme is:

T: java.lang.Integer

U: java.lang.String

By passing in different types, the output will change accordingly.

A more realistic use of generic methods might be something like the

following, which defines a static method that stuffs references to a

single item into multiple boxes:

public static <U> void fillBoxes(U u,

List<Box<U>> boxes) {

for (Box<U> box : boxes) {

box.add(u);

}

}

To use this method, your code would look something like the following:

Crayon red = ...;

List<Box<Crayon>> crayonBoxes = ...;

The complete syntax for invoking this method is:

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

166 166

Box.<Crayon>fillBoxes(red, crayonBoxes);

Here, we have explicitly provided the type to be used as U, but more

often than not, this can be left out and the compiler will infer the type

that's needed:

Box.fillBoxes(red, crayonBoxes); // compiler

infers that U is Crayon

This feature, known as type inference, allows you to invoke a generic

method as you would an ordinary method, without specifying a type

between angle brackets.

SELF ASSESSMENT EXERCISE

List at least three commonly used type parameter names.

4.0 CONCLUSION

Specifically, you learned that generic type declarations can include one

or more type parameters; you supply one type argument for each type

parameter when you use the generic type. You also learned that type

parameters can be used to define generic methods and constructors.

Bounded type parameters limit the kinds of types that can be passed into

a type parameter; they can specify an upper bound only. Wildcards

represent unknown types, and they can specify an upper or lower bound.

5.0 SUMMARY

What you have learned in this unit is focused on generics, their methods
and constructors.

6.0 TUTOR-MARKED ASSIGNMENT

Distinguish between the type parameter and the variable naming
conventions.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

167 167

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented

Design Pattern in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

168 168

MODULE 5 ALGORITHMS

Unit 1 Introduction to Algorithms

Unit 2 Vectors and Matrices
Unit 3 Greedy Algorithm
Unit 4 Divide-and-Conquer Algorithm
Unit 5 Dynamic Programming Algorithm

UNIT 1 INTRODUCTION TO ALGORITHMS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 What is an Algorithm?
3.2 Algorithm’s Performance
3.3 Algorithm Analysis

3.3.1 Worst-Case Complexity
3.3.2 Average-Case Complexity

3.4 Optimality
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit will introduce you to algorithms, their performance and

analysis. You will also be introduced to the concept of an optimal

algorithm.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

define an algorithm
explain an algorithm’s performance
describe algorithm analysis
explain the notion of an optimal algorithm.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

169 169

3.0 MAIN CONTENT

3.1 What is an Algorithm?

An algorithm can be defined as a finite step-by-step procedure to

achieve a required result.

In terms of data structures, an algorithm can be described as a sequence
of operations performed on data that have to be organised in data

structures. An algorithm is also an abstraction of a programme to be
executed on a physical machine (model of Computation).

The most famous algorithm in history dates well before the time of the

ancient Greeks: this is Euclid's algorithm for calculating the greatest

common divisor of two integers.

3.2 Algorithm’s Performance

Two important ways to characterise the effectiveness of an algorithm are

its space complexity and time complexity. Time complexity of an

algorithm concerns determining an expression of the number of steps

needed as a function of the problem size. Since the step count measure is

somewhat coarse, one does not aim at obtaining an exact step count.

Instead, one attempts only to get asymptotic bounds on the step count.

Asymptotic analysis makes use of the O (Big Oh) notation. Two other

notational constructs used by computer scientists in the analysis of

algorithms are Θ (Big Theta) notation and Ω (Big Omega) notation.

The performance evaluation of an algorithm is obtained by totalling the

number of occurrences of each operation when running the algorithm.

The performance of an algorithm is evaluated as a function of the input

size, n, and is to be considered modulo, a multiplicative constant.

The following notations are commonly used notations in performance
analysis and used to characterize the complexity of an algorithm.

Θ-Notation (Same order)

This notation bounds a function to within constant factors. We say f(n) =

Θ(g(n)) if there exist positive constants n0, c1 and c2 such that to the right

of n0 the value of f(n) always lies between c1g(n) and c2g(n) inclusive.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

170 170

c g(n)
2

f(n)

c g(n)
1

n
n

o f(n) = (g(n))

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

171 171

O-Notation (Upper Bound)

This notation gives an upper bound for a function to within a constant

factor. We write f(n) = O(g(n)) if there are positive constants n0 and c

such that to the right of n0, the value of f(n) always lies on or below

cg(n).

cg(n)

f(n)

n n
o f(n) = O(g(n))

Ω-Notation (Lower Bound)

This notation gives a lower bound for a function to within a constant

factor. We write f(n) = Ω(g(n)) if there are positive constants n0 and c

such that to the right of n0, the value of f(n) always lies on or above

cg(n).

f(n)

cg(n)

n
n

f(n) = (g(n))

3.3 Algorithm Analysis

Analysis of algorithms is a field in computer science whose overall goal

is an understanding of the complexity of algorithms. The complexity of

an algorithm is a function g(n) that gives the upper bound of the number

of operation (or running time) performed by an algorithm when the

input size is n.

There are two interpretations of upper bound.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

172 172

3.3.1 Worst-case Complexity

The running time for any given size input will be lower than the upper

bound except possibly for some values of the input where the maximum

is reached.

3.3.2 Average-case Complexity

The running time for any given size input will be the average number of
operations over all problem instances for a given size.

Because, it is quite difficult to estimate the statistical behaviour of the

input, we mostly content ourselves to a worst case behaviour. Most of

the time, the complexity of g(n) is approximated by its family o(f(n))

where f(n) is one of the following functions. n (linear complexity), log n

(logarithmic complexity), na where a≥2 (polynomial complexity), an

(exponential complexity).

3.4 Optimality

Once the complexity of an algorithm has been estimated, the question

arises whether this algorithm is optimal. An algorithm for a given

problem is optimal if its complexity reaches the lower bound over all the

algorithms solving this problem. For example, any algorithm solving

“the intersection of n segments” problem will execute at least n2

operations in the worst case even if it does nothing but print the output.

This is abbreviated by saying that the problem has Ω(n2) complexity. If

one finds an O(n2) algorithm that solves this problem, it will be optimal

and of complexity Θ(n2).

SELF ASSESSMENT EXERCISE 1

What do you understand by algorithm analysis?

SELF ASSESSMENT EXERCISE 2

List three notations used to characterise the complexity of an algorithm.

4.0 CONCLUSION

In this unit you have learned about algorithms, their performance and

analysis. You have also been able to understand the optimality of an

algorithm.

5.0 SUMMARY

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

173 173

What you have learned borders on algorithms, their performance and
analysis.

6.0 TUTOR-MARKED ASSIGNMENT

When is an algorithm said to be optimal?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data

Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://java.sun.com/docs/books/tutorial/java/concepts/index.html

http://cs.wwc.edu/~aabyan/OOP/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/
http://java.sun.com/docs/books/tutorial/java/concepts/index.html
http://cs.wwc.edu/~aabyan/OOP/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

174 174

UNIT 2 VECTORS AND MATRICES

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Vectors
3.2 Addition of Two Vectors
3.3 Multiplication of a Vector by a Scalar

3.4 Dot Product and Norm
3.5 Matrices
3.6 Matrix Addition
3.7 Matrix Multiplication
3.8 Transpose

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will learn about vectors and matrices. Simple arithmetic

operations will also be carried out on the vectors and matrices.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

identify a vector

identify a matrix

add and multiply vectors

add and multiply matrices

determine the transpose of a matrix.

3.0 MAIN CONTENT

3.1 Vectors

A vector, u, means a list (or n-tuple) of numbers:

u = (u1, u2, . . . , un)

where ui are called the components of u. If all the ui are zero i.e., ui = 0,

then u is called the zero vector.
Given vectors u and v are equal i.e., u = v, if they have the same number
of components and if corresponding components are equal.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

175 175

3.2 Addition of Two Vectors

If two vectors, u and v, have the number of components, their sum, u +

v, is the vector obtained by adding corresponding components from u

and v.

u + v = (u1, u2, . . . , un) + (v1, v2, . . . , vn)

= (u1 + v1 + u2 + v2, . . . , un + vn)

3.3 Multiplication of a Vector by a Scalar

The product of a scalar, k, and a vector, u, i.e., ku, is the vector obtained

by multiplying each component of u by k:

ku = k(u1, u2, . . . , un)

= ku1, ku2, . . . , kun

Here, we define -u = (-1)u and u-v = u +(-v)

It is not difficult to see k(u + v) = ku + kv where k is a scalar and u and v

are vectors.

3.4 Dot Product and Norm

The dot product or inner product of vectors u = (u1, u2, . . . , un) and v =
(v1, v2, . . . , vn) is denoted by u.v and defined by

u.v = u1v1 + u2v2 + . . . + unvn

The norm or length of a vector, u, is denoted by ||u|| and defined by

3.5 Matrices

Matrix, A, means a rectangular array of numbers.

A =

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

176 176

The m horizontal n-tuples are called the rows of A, and the n vertical

m-tuples, its columns. Note that the element, aij, called the ij-entry,

appear in the ith row and the jth column.

In algorithmic (study of algorithms), we like to write a matrix A, as

A(aij).

3.6 Matrix Addition

Let A and B be two matrices of the same size. The sum of A and B is

written as A + B and obtained by adding corresponding elements from A

and B.

A+B =

=

3.7 Matrix Multiplication

Suppose A and B are two matrices such that the number of columns of

A is equal to number of rows of B. Say matrix A is an m×p matrix and

matrix B is a p×n matrix. Then the product of A and B is the m×n matrix

whose ij-entry is obtained by multiplying the elements of the ith row of

A by the corresponding elements of the jth column of B and then adding

them.

It is important to note that if the number of columns of A is not equal to the

number of rows of B, then the product, AB, is not defined.

3.8 Transpose

The transpose of a matrix A is obtained by writing the row of A, in

order, as columns and denoted by AT. In other words, if A - (Aij), then B
= (bij) is the transpose of A if bij - aji for all i and j.
It is not hard to see that if A is an m×n matrix, then AT is an n×m matrix.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

177 177

For example if A = , then AT =

SELF ASSESSMENT EXERCISE

Find the product of any two matrices of your choice.

4.0 CONCLUSION

In this unit, you have learned about vectors and matrices. You have also

learned how to carry out addition and multiplication on vectors and

matrices.

5.0 SUMMARY

You have considered vectors and matrices in this unit.

6.0 TUTOR-MARKED ASSIGNMENT

784

Find the transpose of the matrix
653

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data

Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

178 178

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.purplemath.com/modules/variable.htm

http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/
http://www.purplemath.com/modules/variable.htm

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

179 179

UNIT 3 GREEDY ALGORITHM

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Greedy Algorithm Overview
3.2 Greedy Algorithm Approach
3.3 Features of Problems Solved by Greedy Algorithm

3.4 Structure Greedy Algorithm
3.5 Definitions of Feasibility

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

What you will learn in this unit borders on greedy algorithms. The

greedy algorithm approach and functions will equally be discussed.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

explain the merits of greedy algorithm

describe greedy algorithm approach

list four functions of greedy algorithm.

3.0 MAIN CONTENT

3.1 Greedy Algorithm – Overview

Greedy algorithms are simple and straightforward algorithms. They are

shortsighted in their approach in the sense that they take decisions on the

basis of information at hand without worrying about the effect these

decisions may have in the future. They are easy to invent, easy to

implement and most of the time, quite efficient. Greedy algorithms are

used to solve optimization problems.

3.2 Greedy Algorithm Approach

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

180 180

Greedy Algorithm works by making the decision that seems most

promising at any moment; it never reconsiders this decision, whatever

situation may arise later.

3.3 Features of Problems solved by Greedy Algorithms

To construct the solution in an optimal way, an algorithm maintains two

sets. One contains chosen items and the other contains rejected items.

The greedy algorithm consists of four (4) functions.

1. A function that checks whether chosen set of items provide a
solution.

2. A function that checks the feasibility of a set.

3. The selection function tells which of the candidates is the most

promising.
4. An objective function, which does not appear explicitly, gives the

value of a solution.

3.4 Structure Greedy Algorithm

i. Initially the set of chosen items is empty i.e., solution set.

ii. At each step

item will be added in a solution set by using selection function.

IF the set would no longer be feasible

- reject items under consideration (and is never considered again).

ELSE IF set is still feasible THEN

- add the current item.

3.5 Definitions of Feasibility

A feasible set (of candidates) is promising if it can be extended to

produce not merely a solution, but an optimal solution to the problem. In

particular, the empty set is always promising why? (because an optimal

solution always exists).

Unlike Dynamic Programming, which solves the subproblems

bottom-up, a greedy strategy usually progresses in a top-down fashion,

making one greedy choice after another, reducing each problem to a

smaller one.

SELF ASSESSMENT EXERCISE

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

181 181

List four functions of greedy algorithms.

4.0 CONCLUSION

In this unit, you have learned about greedy algorithms. You have also

been able to identify a promising feasible set.

5.0 SUMMARY

What you have learned in this unit concerns greedy algorithms.

6.0 TUTOR-MARKED ASSIGNMENT

When is a feasible set said to be promising?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

182 182

UNIT 4 DIVIDES AND CONQUER ALGORITHM

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Divide-and-Conquer Algorithm
3.2 Binary Search
3.3 Sequential Search
3.4 Analysis

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces the divide-and-conquer algorithm as a design

technique. It explains the phases involved in this technique of design.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe the divide-and-conquer design technique

explain the phases involved in the divide-and-conquer paradigm

describe the application of divide-and-conquer.

3.0 MAIN CONTENT

3.1 Divide-and-Conquer Algorithm

Divide-and-conquer is a top-down technique for designing algorithms

that consists of dividing the problem into smaller subproblems hoping

that the solutions of the subproblems are easier to find and then

composing the partial solutions into the solution of the original problem.

Little more formally, divide-and-conquer paradigm consists of the
following major phases:

Breaking the problem into several sub-problems that are similar to the

original problem but smaller in size,

Solve the sub-problem recursively (successively and independently),

and then

Combine these solutions to subproblems to create a solution to the

original problem.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

183 183

3.2 Binary Search (simplest application of divide-and-conquer)

Binary Search is an extremely well-known instance of divide-and-

conquer paradigm. Given an ordered array of n elements, the basic idea

of binary search is that for a given element, we "probe" the middle

element of the array. We continue in either the lower or upper segment

of the array, depending on the outcome of the probe until we reach the

required (given) element.

Problem Let A[1 . . . n] be an array of non-decreasing sorted order;

that is A [i] ≤ A [j] whenever 1 ≤ i ≤ j ≤ n. Let 'q' be the query point.

The problem consists of finding 'q' in the array A. If q is not in A, then

find the position where 'q' might be inserted.

Formally, find the index i such that 1 ≤ i ≤ n+1 and A[i-1] < x ≤ A[i].

3.3 Sequential Search

Look sequentially at each element of A until either we reach the end of
an array A or find an item no smaller than 'q'.

Sequential search for 'q' in array A

for i = 1 to n do

if A [i] ≥ q then

return index i

return n + 1

3.4 Analysis

This algorithm clearly takes a θ(r), where r is the index returned. This is
Ω(n) in the worst case and O(1) in the best case.

If the elements of an array A, are distinct and query point q is indeed in

the array, then loop executed (n + 1) / 2 average number of times. On

average (as well as the worst case), sequential search takes θ(n) time.

SELF ASSESSMENT EXERCISE

Describe at least one application of divide-and-conquer.

4.0 CONCLUSION

In this unit, you have learned about divide-and-conquer algorithm. You
have also gained knowledge of binary and sequential search.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

184 184

5.0 SUMMARY

What you have learned in this unit concerns divide-and-conquer
algorithm.

6.0 TUTOR-MARKED ASSIGNMENT

Divide-and-conquer is a top-down design technique. True or False?
Discuss.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

185 185

UNIT 5 ALGORITHMS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Dynamic Programming
3.2 The Principle of Optimality

3.3 Dynamic Programming Algorithm
3.4 Analysis

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces dynamic programming as opposed to the

divide-and-conquer. It explains the bottom-up technique and states the

principle of optimality.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

explain the dynamic programming method

identify four design steps in dynamic programming

distinguish between divide-and-conquer and dynamic programming

explain the concept of bottom-up

state the principle of optimality.

3.0 MAIN CONTENT

3.1 Dynamic Programming

Dynamic programming is a stage-wise search method suitable for

optimisation problems whose solutions may be viewed as the result of a

sequence of decisions. The most attractive property of this strategy is

that during the search for a solution, it avoids full enumeration by

pruning early partial decision solutions that cannot possibly lead to

optimal solution. In many practical situations, this strategy hits the

optimal solution in a polynomial number of decision steps. However, in

the worst case, such a strategy may end up performing full enumeration.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

186 186

Dynamic programming design involves four major steps:

1. Develop a mathematical notation that can express any solution and
subsolution for the problem at hand.

2. Prove that the Principle of Optimality holds.

3. Develop a recurrence relation that relates a solution to its

subsolutions, using the math notation of step 1. Indicate what the
initial values are for that recurrence relation, and which term
signifies the final solution.

4. Write an algorithm to compute the recurrence relation.

Dynamic programming takes advantage of the duplication and arrange

to solve each subproblem only once, saving the solution (in table or

something) for later use. The underlying idea of dynamic

programming is: avoid calculating the same stuff twice, usually by

keeping a table of known results of subproblems. Unlike divide-and-

conquer, which solves the subproblems top-down, a dynamic

programming is a bottom-up technique.

Bottom-up means

i.Start with the smallest subproblems.
ii.Combining these solutions, obtain the solutions to subproblems of

increasing size.
iii.Until the solution of the original problem is arrived at.

3.2 The Principle of Optimality

The dynamic programming relies on a principle of optimality. This

principle states that in an optimal sequence of decisions or choices, each

subsequence must also be optimal. For example, in matrix chain

multiplication problem, not only the value we are interested in is optimal

but all the other entries in the table are also optimal.

The principle can be related as follows: the optimal solution to a

problem is a combination of optimal solutions to some of its

subproblems.

The difficulty in turning the principle of optimality into an algorithm is

that it is not usually obvious which subproblems are relevant to the

problem under consideration.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

187 187

3.3 Dynamic-Programming Algorithm

The finishing times are in a sorted array f[i] and the starting times are in

array s[i]. The array m[i] will store the value mi, where mi is the size of

the largest of mutually compatible activities among activities {1, 2, . . . ,

i}. Let BINARY-SEARCH(f, s) returns the index of a number i in the

sorted array f such that f(i) ≤ s ≤ f[i + 1].

for i =1 to n

do m[i] = max(m[i-1], 1+ m [BINARY-SEARCH(f, s[i])])
We have P(i] = 1 if activity i is in optimal selection, and P[i] = 0

otherwise

i = n
while i > 0
do if m[i] = m[i-1]
then P[i] = 0
i = i – 1

else
i = BINARY-SEARCH (f, s[i])
P[i] = 1

3.4 Analysis

The running time of this algorithm is O(n lg n) because of the binary

search which takes lg(n) time as opposed to the O(n) running time of the

greedy algorithm. This greedy algorithm assumes that the activities are

already sorted by increasing time.

SELF ASSESSMENT EXERCISE 1

List four design steps in dynamic programming.

SELF ASSESSMENT EXERCISE 2

State the principle of optimality.

4.0 CONCLUSION

In this unit, you have learned about dynamic programming. You have

also gained insight of bottom-up technique and the principle of

optimality.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

188 188

5.0 SUMMARY

What you have learned in this unit concerns dynamic programming and

its analysis.

6.0 TUTOR-MARKED ASSIGNMENT

Explain the dynamic programming method.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd
Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

189 189

MODULE 6 GRAPHS AND SORTING

Unit 1 Graph Algorithm
Unit 2 Sorting
Unit 3 Bubble Sort

Unit 4 Insertion Sort

Unit 5 Selection Sort

Unit 6 Merge Sorting

UNIT 1 GRAPH ALGORITHM

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 The Graph Theory
3.2 Digraph
3.3 Algorithm Transpose
3.4 Algorithm Matrix Transpose

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, the student will gain knowledge of the graph theory and its

applications. The unit describes the digraph and determines the

transpose of an algorithm.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe the graph theory, stating some of its applications

gain knowledge of a digraph

explain the algorithmic transpose.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

190 190

3.0 MAIN CONTENT

3.1 The Graph Theory

Graph Theory is an area of mathematics that deals with the following

types of problems:

Connection problems

Scheduling problems

Transportation problems

Network analysis

Games and Puzzles.

However, the graph theory has important applications in Critical path

analysis, Social psychology, Matrix theory, Set theory, Topology, Group

theory, Molecular Chemistry, and Searching.

3.2 Digraph

A directed graph, or digraph, G, consists of a finite nonempty set of

vertices V, and a finite set of edges E, where an edge is an ordered pair

of vertices in V. Vertices are also commonly referred to as nodes. Edges

are sometimes referred to as arcs.

As an example, we could define a graph G=(V, E) as follows:

V = {1, 2, 3, 4}

E = { (1, 2), (2, 4), (4, 2) (4, 1)}

Here is a pictorial representation of this graph.

The definition of graph implies that a graph can be drawn just knowing

its vertex-set and its edge-set. For example, our first example

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

191 191

has vertex set V and edge set E where: V = {1,2,3,4} and E = {(1,2),

(2,4),(4,3),(3,1),(1,4),(2,1),(4,2),(3,4),(1,3),(4,1). Notice that each edge

seems to be listed twice.

Another example, the following Petersen Graph G=(V,E) has vertex set,

V, and edge set E where: V = {1,2,3,4}and E ={(1,2),(2,4),(4,3),(3,1),

(1,4),(2,1),(4,2),(3,4),(1,3),(4,1)}.

3.3 Algorithm Transpose

If graph G = (V, E) is a directed graph, its transpose, GT = (V, ET) is the

same as graph G with all arrows reversed. We define the transpose of

adjacency matrix A = (aij) to be the adjacency matrix AT = (Taij) given by
Taij = aji. In other words, rows of matrix A become columns of matrix AT

and columns of matrix A become rows of matrix AT. Since in an

undirected graph, (u, v) and (v, u) represented the same edge, the

adjacency matrix A of an undirected graph is its own transpose: A = AT.

Formally, the transpose of a directed graph G = (V, E) is the graph GT

(V, ET), where ET = {(u, v) V×V: (u, v) E. Thus, GT is G with all its

edges reversed.

We can compute GT from G in the adjacency matrix representations and
adjacency list representations of graph G.

Algorithm for computing GT from G in representation of graph G is:

3.4 Algorithm Matrix Transpose (G, GT)

For i = 0 to i < V[G]

For j = 0 to j V[G]

GT (j, i) = G(i, j)
j = j + 1;
i = i + 1

SELF ASSESSMENT EXERCISE

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

192 192

Edges are also referred to as arcs. True or False?

4.0 CONCLUSION

The graph theory and digraph were considered in this unit. You have

also learned about algorithmic transpose.

5.0 SUMMARY

What you have learned in this unit concerns graph theory and

algorithms.

6.0 TUTOR-MARKED ASSIGNMENT

List two applications of the graph theory.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

193 193

UNIT 2 SORTING

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Sorting
3.2 Internal Sort
3.3 External Sort
3.4 Memory Requirement
3.5 Stability
3.6 Classes of Sorting Algorithms

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignments
7.0 References/Further Readings

1.0 INTRODUCTION

This unit considers sorting algorithm. It delves into the two kinds of
sorting as well as the classes of sorting.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

explain the aim of sorting algorithm

describe the types of sorting

explain the classes of sorting algorithm.

3.0 MAIN CONTENT

3.1 Sorting

The objective of the sorting algorithm is to rearrange the records so that

their keys are ordered according to some well-defined ordering rule.

Problem: Given an array of n real number A[1.. n].

Objective: Sort the elements of A in ascending order of their values.

3.2 Internal Sort

If the file to be sorted will fit into memory or equivalently, if it will fit

into an array, then the sorting method is called internal. In this method,

any record can be accessed easily.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

194 194

S
ec

o
n

d
s

3.3 External Sort

Sorting files from tape or disk.

In this method, an external sort algorithm must access records

sequentially, or at least in the block.

3.4 Memory Requirement

1. Sort in place and use no extra memory except perhaps for a small

stack or table.

2. Algorithms that use a linked-list representation and so use N extra

words of memory for list pointers.
3. Algorithms that need enough extra memory space to hold another

copy of the array to be sorted.

3.5 Stability

A sorting algorithm is called stable if it preserves the relative order of

equal keys in the file. Most of the simple algorithms are stable, but most

of the well-known sophisticated algorithms are not.

3.6 Classes of Sorting Algorithms
There are two classes of sorting algorithms namely, O(n2)-algorithms

and O(n log n)-algorithms. O(n2)-class includes bubble sort, insertion

sort, selection sort and shell sort. O(n log n)-class includes heap sort,

merge sort and quick sort.

O(n2) Sorting Algorithms

900

800

700

600

500

400

300

200

100

0

10 100 1000 10000 25000 50000 75000 100000

n

Bubble Insertion Selection Shell

O(n log n) Sorting Algorithms

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

195 195

SELF ASSESSMENT EXERCISE 1

Name two classes of sorting algorithm.

SELF ASSESSMENT EXERCISE 2

Describe the internal sort.

4.0 CONCLUSION

In this unit, you have learned about sorting algorithm. You have also

been able to identify classes of sorting algorithm.

5.0 SUMMARY

What you have learned borders on sorting algorithms and their classes.

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by sorting algorithm?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data

Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented

Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

196 196

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

197 197

UNIT 3 BUBBLE SORT

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Bubble Sort
3.2 Memory Requirement
3.3 Implementation

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit covers bubble sort, its implementation and memory

requirement.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe the bubble sort

explain the memory requirement

state the implementation of a bubble sort.

3.0 MAIN CONTENT

3.1 Bubble Sort

Bubble Sort is an elementary sorting algorithm. It works by repeatedly

exchanging adjacent elements, if necessary. When no exchanges are

required, the file is sorted.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

198 198

Figure 1.0 n2 nature of the bubble sort

Clearly, the graph shows the n2 nature of the bubble sort.

In this algorithm, the number of comparison is irrespective of

data set i.e., input whether best or worst.

3.2 Memory Requirement

Clearly, bubble sort does not require extra memory.

3.3 Implementation

void bubbleSort(int numbers[], int array_size)
{
int i, j, temp;
for (i = (array_size - 1); i >= 0; i--)
{
for (j = 1; j <= i; j++)
{
if (numbers[j-1] > numbers[j])
{
temp = numbers[j-1];
numbers[j-1] = numbers[j];
numbers[j] = temp;
}
}
}

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

199 199

}

SELF ASSESSMENT EXERCISE

Bubble sort requires extra memory. True or False?

4.0 CONCLUSION

In this unit, you have learned about bubble sort. You have also learned
about its memory requirement and implementation.

5.0 SUMMARY

What you have learned in this unit borders on bubble sort.

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by bubble sort?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented

Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

200 200

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

201 201

UNIT 4 INSERTION SORT

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Insertion Sort
3.2 Analysis
3.3 Stability
3.4 Extra Memory
3.5 Implementation

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit considers insertion and its analysis. You will equally learn

about the stability and implementation of insertion sort.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe the insertion sort

analyse an insertion sort

describe the stability of an insertion sort

state how insertion sort is implemented.

3.0 MAIN CONTENT

3.1 Insertion Sort

If the first few objects are already sorted, an unsorted object can be

inserted in the sorted set in proper place. This is called insertion sort. An

algorithm considers the elements one at a time, inserting each in its

suitable place among those already considered (keeping them sorted).

Insertion sort is an example of an incremental algorithm; it builds the
sorted sequence one number at a time.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

202 202

Insertion Sort (A)

1. For j = 2 to length [A] do
2. key = A[j]
3. {Put A[j] into the sorted sequence A[1 . . j-1]
4. i ← j -1
5. while i > 0 and A[i] > key do
6. A[i+1] = A[i]
7. i = i-1
8. A[i+1] = key

3.2 Analysis

On examining the statements above, we discover the following cases

Best-Case

The while-loop in line 5 executed only once for each j. This happens if
given array A is already sorted.
T(n) = an + b = O(n)
It is a linear function of n.

Worst-Case

The worst-case occurs, when line 5 executed j times for each j. This can

happen if array A starts out in reverse order
T(n) = an2 + bc + c = O(n2)
It is a quadratic function of n.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

203 203

The graph shows the n2 complexity of the insertion sort.

3.3 Stability

Since multiple keys with the same value are placed in the sorted array in

the same order that they appear in the input array, Insertion sort is

stable.

3.4 Extra Memory

This algorithm does not require extra memory.

For Insertion sort we say the worst-case running time is θ(n2), and the
best-case running time is θ(n).
Insertion sort uses no extra memory it sorts in place.

The time of Insertion sort depends on the original order of an input. It

takes a time Ω(n2) in the worst-case, despite the fact that a time in order
of n is sufficient to solve large instances in which the items are already
sorted.

3.5 Implementation

void insertionSort(int numbers[], int array_size)

{
int i, j, index;

for (i=1; i < array_size; i++)

{
index = numbers[i];
j = i;
while ((j > 0) && (numbers[j-1] > index))
{
numbers[j] = numbers[j-1];
j = j - 1;
}
numbers[j] = index;
}
}

SELF ASSESSMENT EXERCISE

Discuss memory requirement of insertion sort.

4.0 CONCLUSION

In this unit you have learned about insertion sort. You have also learned

about the analysis stability and implementation of insertion sort.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

204 204

5.0 SUMMARY

What you have learned in this unit borders on insertion sort, its analysis

and implementation.

6.0 TUTOR-MARKED ASSIGNMENT

Why is an insertion sort said to be stable?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented

Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

205 205

UNIT 5 ALGORITHMS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Selection Sorting
3.2 Straight Selection Sorting
3.3 Implementation of the Selection Sort

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, we will consider selection sort, distinguishing it from

insertion sort. The implementation of selection sort is also discussed.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

discuss selection sort

distinguish selection sort from insertion sort

describe the straight selection sort

explain the implementation of selection sort.

3.0 MAIN CONTENT

3.1 Selection Sorting

Selection sorting is a class of sorting algorithm that comprises

algorithms that sort by selection. Such algorithms construct the sorted

sequence one element at a time by adding elements to the sorted

sequence in order. At each step, the next element to be added to the

sorted sequence is selected from the remaining elements.

Because the elements are added to the sorted sequence in order, they are

always added at one end. This is what makes selection sorting different

from insertion sorting. In insertion sorting, elements are added to the

sorted sequence in an arbitrary order. Therefore, the position in the

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

206 206

sorted sequence at which each subsequent element is
inserted is arbitrary.
The sorts are implemented by exchanging array elements.
Nevertheless, selection differs from exchange sorting because at
each step, we select
the next element of the sorted sequence from the remaining
elements and then we move it into its final position in the array by
exchanging it
with whatever happens to be occupying that position.

3.2 Straight Selection Sorting

The simplest of the selection sorts is called straight selection. Figure

1.0 illustrates how straight selection works. In the version shown,

the sorted list is constructed from the right (i.e., from the largest

to the
smallest element values).

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

207 207

Figure 1.0: Straight selection sorting

At each step of the algorithm, a linear search of the unsorted

elements is made in order to determine the position of the

largest remaining

element. That element is then moved into the correct

position of the array by swapping it with the element

which currently occupies that position.

For example, in the first step shown in Figure 1.0, a linear

search of the entire array reveals that 9 is the largest

element. Since 9 is the largest element, it belongs in the

last array position. To move it there, we swap it with the 4

that initially occupied that position. The second step of the

algorithm identifies 6 as the largest remaining element and

moves it next to the 9. Each subsequent step of the

algorithm moves one element into its final position.

Therefore, the algorithm is done after n-1 such steps.

3.3 Implementation of the

Selection Sort

Programme 1.0 defines the

StraightSelectionSorter class. This class is

derived from the AbstractSorter base and it provides

an implementation for the no-arg sort method. The

sort method follows directly from the algorithm

discussed above. In each iteration of the main loop (lines

6-13), exactly one element is selected from the unsorted

elements and moved into the correct position. A linear

search of the unsorted elements is done in order to

determine the position of the largest remaining element

(lines 9-11). That element is then moved into the correct

position (line 12).

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

208 208

Programme 1.0: StraightSelectionSorter

class sort

m
e
t
h
o
d

In all n-1, iterations of the outer loop are needed to sort the

array. Notice that exactly one swap is done in each iteration

of the outer loop. Therefore, n-1 data exchanges are needed

to sort the list.

Furthermore, in the iteration of the outer loop, i-1 iterations of the

inner loop are required and each iteration of the inner loop does one data

comparison. Therefore, data comparisons are needed to sort the

list.

The total running time of the straight selection sort method is .

Because the same number of comparisons and swaps are always done,

this running time bound applies in all cases. That is, the best-case,

average-case and worst-case running times are all .

SELF ASSESSMENT EXERCISE

What do you understand by straight selection sort.

4.0 CONCLUSION

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

209 209

In this unit you have learned about selection sort and its implementation.
You have also learned about straight selection sort.

5.0 SUMMARY

What you have learned in this unit borders on selection sort and its
implementation.

6.0 TUTOR-MARKED ASSIGNMENT

Distinguish between insertion sort and selection sort.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

210 210

UNIT 6 MERGE SORTING

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Merge Sorting
3.2 Implementation
3.3 Merging

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit will focus primarily on merge sorting. It gives an outline of

steps to be adopted in sorting a sequence of elements. We will also

consider how to implement a TwoWayMergeSorter.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

describe merge sorting

outline the steps to be taken in sorting a sequence of n > 1 elements

show how to implement a two-way merge sorting

define the merge method of a TwoWayMergeSorter class.

3.0 MAIN CONTENT

3.1 Merge Sorting

Another class of sorting algorithm which we will consider comprises

algorithms that sort by merging. Merging is the combination of two or more

sorted sequences into a single sorted sequence.

Figure 1.0 illustrates the basic, two-way merge operation. In a two-way

merge, two sorted sequences are merged into one. Clearly, two sorted

sequences each of length n can be merged into a sorted sequence of

length 2n in O(2n)=O(n) steps. However, in order to do this, we need

space in which to store the result. That is, it is not possible to merge the

two sequences in place in O(n) steps.

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

211 211

Figure 1.0: Two-way merging

Sorting by merging is a recursive, divide-and-conquer strategy. In the

base case, we have a sequence with exactly one element in it. Since such

a sequence is already sorted, there is nothing to be done. To sort a

sequence of n>1 elements:

1. Divide the sequence into two sequences of length and ;
2. Recursively sort each of the two subsequences; and then,
3. Merge the sorted subsequences to obtain the final result.

Figure 1.1 illustrates the operation of the two-way merge sort algorithm.

Figure 1.1: Two-way merge sorting

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

212 212

3.2 Implementation

Programme 1.0 declares the TwoWayMergeSorter class. The

TwoWayMergeSorter class extends the AbstractSorter class

defined in Programme 1.0. A single field, tempArray, is declared.

This field is an array of Comparable objects. Since merge operations

cannot be done in place, a second, temporary array is needed. The

tempArray field keeps track of that array.

Programme 1.0: TwoWayMergeSorter fields.

3.3 Merging

The merge method of the TwoWayMergeSorter class is defined in

Programme 1.1. Altogether, this method takes three integer parameters,

left, middle, and right. It is assumed that

Furthermore, it is assumed that the two subsequences of the array,

and

are both sorted. The merge method merges the two sorted

subsequences using the temporary array, tempArray. It then copies

the merged (and sorted) sequence into the array at

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

213 213

Programme 1.1: TwoWayMergeSorter class merge method

In order to determine the running time of the merge method, it is

necessary to recognise that the total number of iterations of the two

loops (lines 11-17, lines 18-19) is , in the worst case.

The total number of iterations of the third loop (lines 20-21) is the same.

Since all the loop bodies do a constant amount of work, the total running

time for the merge method is O(n), where is the

total number of elements in the two subsequences that are merged.

SELF ASSESSMENT EXERCISE 1

Describe the two-way merge operation.

SELF ASSESSMENT EXERCISE 2

What is the basic assumption in a merge method of the

TwoWayMergeSorter class?

CIT 216 FUNDAMENTALS OF DATA
STRUCTURESTRUCTURES

CIT 216

214 214

4.0 CONCLUSION

Specifically, you learned about merge sorting. You would have also

learned about steps to be adopted in sorting a sequence of elements. The

implementation of TwoWayMergeSorter was also considered.

5.0 SUMMARY

What you have learned in this unit is focused on merge sorting and its

implementation.

6.0 TUTOR-MARKED ASSIGNMENT

What steps are to be adopted to sort a sequence of n >1 elements?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to

Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),

199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented

Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.gnu.org/manual/emacs-20.3/emacs.html
http://www.indiana.edu/~ucspubs/b131/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.cs.sunysb.edu/~skiena/214/lectures/

