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INTRODUCTION  

The course, Discrete Structures, is a 3- credit unit course for students studying towards acquiring 

the Bachelor of Science in Computer Science. In this course we will study about discrete objects 

and the relationship between them and introduce the applications of discrete mathematics in the 

field of Computer Science. This course also covers sets, logic, proving techniques, combinatorics, 

functions, relations, graph theory and Boolean algebra.  

The overall aims of this course are to introduce you to basic concepts of sets, logic, functions, 

matrices and graph theory. 

In structuring this course, we commence with the introduction to discrete structures and move to 

the Boolean algebra and lattices. 

 

What You Will Learn in This Course  

The overall aims and objectives of this course is to provide guidance on what you should be 

achieving in the course of your studies. Each unit also has its own unit objectives which state 

specifically what you should be achieving in the corresponding unit. To evaluate you progress 

continuously, you are expected to refer to the overall course aims and objectives as well as the 

corresponding unit objectives upon completion of each. 

 

Course Aims 

The overall aims and objectives of this course will help you to: 

1. Develop your knowledge and understanding of the basic concepts of sets 

2. Build your capacity to evaluate logic and induction techniques 

3. Develop your competence in sets operations 

4. Build up your knowledge on graph to design complex network connections 
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Course Objectives 

Upon completion of the course, you should be able to: 

1. Prove basic set equalities;  

2. Write an argument using logical notation and determine if the argument is valid or not;  

3. Demonstrate the ability to write and evaluate a proof using mathematical induction;  

4. Demonstrate an understanding of relations and functions and be able to determine their 

properties;  

5. Recognize the use of Karnaugh map to construct and minimize the canonical sum of 

products of Boolean expressions and transform it into an equivalent Boolean expression;  

6. Demonstrate different traversal methods for trees and graphs;  

7. Discriminate between a Eulerian graph from a Hamiltonian graph for use in solving 

mathematical problems;  

8. Model problems in Computer Science using graphs and trees;  

9. Apply counting principles to determine probabilities. 

 

Working through This Course  

In order to have a thorough understanding of the course units, you will need to read and understand 

the contents, practice the steps and techniques involved. This course is designed to cover 

approximately thirteen weeks, and requires your devoted attention, answering the exercises in the 

tutor-marked assignments and gets them submitted to your tutors. 
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Course Materials  

 

These include:  

 

1. Course Guide 

2. Study Units 

3. Recommended Texts 

4. A file for your assignments and for records to monitor your progress.  

 

 

Study Units  

 

There are three (3) Modules and eight (8) Units in this course: 

 

Module 1:  Introduction to Discrete Structures 

 

Unit 1: Set Theory 

Unit 2: Proofs and Induction 

Unit 3: Logic 

 

Module 2:  Boolean Algebra and Graph Theory  

 

Unit 1: Boolean Algebra and Lattices 

Unit 2: Graph Theory 

 

Module 3:  Matrices, Applications to Counting and Discrete Probability  

 

Unit 1: Matrices  

Unit 2: Applications to Counting 

Unit 3: Discrete Probability Generating Function 

 

From the preceding, the content of the course can be divided into three major blocks: 

 

1. Introduction to Discrete Structures 

2. Boolean Algebra and Graph Theory  

3. Matrices, Applications to Counting and Discrete Probability 

 

Module one describes the Set Theory, a mathematical theory that underlies all of modern 

mathematics 

Module two explain in details the Boolean algebra and graph theory 

Module three discusses matrices, application to counting and discrete probability 
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Presentation Schedule  

The Presentation Schedule included in your course materials gives you the important dates for the 

completion of Tutor-Marked  assignments and attending tutorials. Remember, you are required to 

submit all your assignments by the due date. You should guard against lagging behind in your 

work. 

 

Assessment 

There are two types of assessment for this course. The first one is the tutor-marked assignment and 

the second is a written examination. In tackling the assignments, you are expected to apply 
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information and knowledge acquired during this course. The tutor-marked assignments must be 

submitted to your tutor, for formal assessment in accordance with the deadlines stated in the 

assignment file.  

The work you submit to your tutor for assessment will count for 30% of your total course mark. 

At the end of the course, you will need to sit for a final three-hour examination. This also accounts 

for 70% of your total course mark. 

 

Course Marking Scheme  

This table shows how the actual course marking is broken down:  

Assessment Marks 

Assignment 1-4 Four assignments, best three marks of the four count at 30% of course 

marks 

Final Examination 70% of overall course marks 

Total 100% of course marks 

 

 

How to get the Most from the Course  

In distance learning, the study units replace the university lecturer. This is one of the great 

advantages of distance learning; you can read and work through specially designed study materials, 

at your own pace, and at a time and place that suit you best. Think of it as reading the lecture 

instead of listening to a lecturer. In the same way that a lecturer might set you some reading to do, 

the study units tell you when to read your set books or other material. Just as a lecturer might give 

you an in-class exercise, your study units provides exercises for you to do at appropriate points.  

Each of the study units follows a common format. The first item is an introduction to the subject 

matter of the unit, and how a particular unit is integrated with the other units and the course as a 

whole. Next is a set of learning objectives. These objectives enable you know what you should be 

able to do by the time you have completed the unit. You should use these objectives to guide your 

study. When you have finished the units, you must go back and check whether you have achieved 

the objectives, in order to significantly improve your chances of passing the course.  

Remember that your tutor’s job is to assist you. When you need help, don’t hesitate to call and ask 

your tutor to provide it.  
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1.  Read this course guide thoroughly.  

2.  Organise a study schedule. Refer to the “course overview‟ for more details. Note the time 

you are expected to spend on each unit and how the assignments relate to the units. 

Whatever method you choose to use, you should decide on it and write in your own date, 

for working on each unit.  

3.  Once you have created your own study schedule, do everything you can, to stick to it. The 

major reason that students fail is that, they lag behind in their course work.  

4.  Turn to unit 1 and read the introduction and objectives for the unit.  

5.  Assemble the study materials. Information about what you need for a unit is given in the 

“overview‟ at the beginning of each unit. You will almost always need both the study unit 

you are working on and one of your set of books on your desk at the same time.  

6.  Work through the unit. The content of the unit itself has been arranged, to provide a 

sequence for you to follow. As you work through the unit, you will be instructed to read 

sections from your set of books or other articles. Use the unit to guide your reading.  

7.  Review the objectives for each study unit to confirm that you have achieved them. If you 

are not sure about any of the objectives, review the study material or consult your tutor.  

8.  When you are confident that you have achieved a unit’s objectives, you can then start on 

the next unit. Proceed unit by unit through the course and try to pace your study, so that 

you can keep yourself on schedule.  

9.  When you have submitted an assignment to your tutor for marking, do not wait for its return 

before starting on the next unit. Keep to schedule. When the assignment is returned, pay 

particular attention to your tutor’s comments, both on the tutor-marked assignment form 

and also on the assignment. Consult your tutor as soon as possible, if you have any question 

or problem.  

10.  After completing the last unit, review the course and prepare yourself for the final 

examination. Check that you have achieved the unit objectives (listed at the beginning of 

each unit) and the course objectives (listed in this course guide).  

Facilitation  

There are 12 hours of tutorials provided in support of this course. You will be notified of dates, 

times and locations of these tutorials, together with the name and phone number of your tutor, as 

soon as you are allocated a tutorial group.  
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Your tutor will mark and comment on your assignments, keep a close watch on your progress and 

on any difficulty you might encounter, and provide assistance to you during the course. You must 

mail or submit your tutor-marked assignments to your tutor well before the due date (at least two 

working days are required). They will be marked by your tutor and returned to you as soon as 

possible.  

Do not hesitate to contact your tutor by telephone, or e-mail if you need help. The following might 

be circumstances in which you would find help necessary. Contact your tutor if:  

• you do not understand any part of the study units or assigned reading  

• you have difficulty with the self-test or exercises  

• you have a question or problem with an assignment, with your tutor’s comments on an 

assignment or with the grading of an assignment.  

 

You should try your best to attend the tutorials. This is the only chance to have face to face contact 

with your tutor and ask questions, which are answered instantly. You can raise any problem 

encountered in the course of your study. To gain the maximum benefit from course tutorials, 

prepare a question list before attending them. You will learn a lot from participating in discussions 

actively. 

 

Summary 

The course, Discrete Structures is intended to get student acquainted with the basic principles of 

sets and operations in sets and to enable them prove basic set equalities. This course also provides 

you with knowledge on how to write an argument using logical notation and determine if the 

argument is valid or not. 

We hope that you will find the course enlightening and that you will find it both interesting and 

useful. In the longer term, we hope you will get acquainted with the National Open University of 

Nigeria and we wish you every success in your future 

 

 

 

  



xi 
 

CONTENTS           PAGE 

 

Module 1:  Introduction to Discrete Structures     

 

Unit 1: Sets……….………………………………………………....….   1 

Unit 2: Proofs and Induction ….………………………………….........  12 

Unit 3: Logic …….……………………………………………….........  18 

 

Module 2: Boolean Algebra and Graph Theory     

 

Unit 1: Boolean Algebra and Lattices ………………………………….  26 

Unit 2: Graph Theory ………………………………………………......  39 

 

Module 3: Matrices, Applications to Counting and Discrete Probability  

 

Unit 1: Matrices and Determinants……………………………………… 51 

Unit 2: Applications to Counting ……………………………………….  69 

Unit 3: Discrete Probability Generating Function ……………………...  81 

 

 

 

 

 

 

 

 

 



 

 

MODULE  1  INTRODUCTION TO DISCRETE STRUCTURES 
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1.0 Introduction 

This unit describes Set Theory, a mathematical theory that underlies all of modern 

mathematics. The best way to understand mathematics is to talk and write about 

mathematics. Mathematics is not all about finding solutions to given tasks. Therefore, as 

we tackle a more advanced and abstract mathematics in this unit, your basic 

understanding of it will be helped by how well you can read, write and talk about 

mathematical statements. 

 

2.0 Objectives 

 By the end of this Unit, you will be able to: 
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• explain basic properties of sets and operations of sets 

• work with sets precisely define the number of elements of a finite set 

• discuss the essentials of mathematics  

• describe what a declarative statement is. 

 

3.0 Main Content 

 3.1 Introduction to Mathematical Statements  

We will take a few examples of mathematical statements to illustrate what a proper 

communication in mathematics is all about. 

3.1.1  Statement Definitions 

A declarative sentence which is either true or false is called a statement. A statement is 

said to be an Atomic Statement if it cannot be divided into smaller statements, otherwise 

it is called a Molecular Statement. 

Example 3.1.1.1 

These statements are examples of atomic statements: 

• Mobile numbers in Nigeria have 11 digits. 

• 5 is larger than 7. 

• 12 is a perfect square. 

• Every even number greater than 2 can be expressed as the sum of two primes. 

However, these are not statements: 

• Would you like some ice cream? 

• The product of two numbers. 

• 1 + 3 + 5 + 7 + · · · + 2n + 1. 

• Go to the lecture room! 

• 4 + x = 12 

The sentence “4 + x = 12” is not a statement because it contains an unknown variable, x. 

Depending on the value of x, the sentence is either true or false, however, right now it is 

neither true nor false. We can also build a complicated (molecular) sentence by 

combining more than one or more simple atomic or molecular sentences by using Logical 

Connectives. An example of a molecular stamen is: 

Mobile numbers in Nigeria have 11 digits and 5 is larger than 7. 
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This example of a molecular statement can also be broken down into smaller statements 

which were only connected by an “and”. Obviously, molecular statements are still 

statements, therefore, they must be either true or false. The five connectives we can 

consider are “and”, “or”, “if… then”, “if and only if”, and “not. 

  “and”   -  I am a boy and my sister is a girl. 

“or”   -  Delight is a boy or a girl. 

“if… then” - If you register then you can write the exam. 

“if and only if”- You can register if and only if you were admitted. 

“not  - You are not admitted. 

The connectives, “and”, “or”, “if… then”, “if and only if”, connects two statements and are 

called binary connectives while the connective “not” applies to only a single sentence and 

is called a unary connective. 

In order to determine the truth values of molecular statements, the key observation to make 

is to completely determined the truth values of the parts and the type of connective(s). We 

do not necessarily need to know what the individual parts actually say, we however, only 

need to know whether those parts are true or false. Therefore, in order to analyse logical 

connectives, we use propositional variables (also called sentential variables) which are 

the letters found in the middle of the English alphabet represented in capital: P, Q, R, S, … 

to represent each atomic statements in the molecular statement. These variables can only 

have two values, true or false. The logical connectives: “and”, “or”, “if… then”, “if and 

only if”, and “not” can be represented by these symbols , , →, ↔, and ¬ respectively. 

 

3.1.2 Logical Connectives 

• P ∧ Q is read as “P and Q,” and it is called a conjunction. 

• P ∨ Q is read as “P or Q,” and it is called a disjunction. 

• P → Q is read as “if P then Q,” and it is called an implication or conditional. 

• P ↔ Q is read as “P if and only if Q,” and it is called a bi-conditional. 

• ¬P is read as “not P,” and it is called a negation. 

The truth value of a statement is determined by the truth value(s) of its part(s), depending 

on the connectives: 

Truth Conditions for Connectives. 
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• P ∧ Q is true when both P and Q are true 

• P ∨ Q is true when P or Q or both are true. 

• P → Q is true when P is false or Q is true or both. 

• P ↔ Q is true when P and Q are both true, or both false. 

• ¬P is true when P is false and vice versa. 

 

3.2 Sets 

            Sets are the most fundamental objects in all of mathematics.  

3.2.1 Definition of Set: An informal definition of set is that a set is an unordered 

collections of objects. The objects that comprises of the set are called elements. The 

number of objects in a set can be finite or infinite. 

3.2.2 Notations 

A single set, A can be expressed with the following notations: 

A = {1, 2}; A = {2, 1}; A = {1, 2, 1, 2}; A = {x | x is an integer, 1 ≤ x ≤ 2} 

The notation, A = {1, 2} is read as, “A is the set containing the elements 1 and 2.”  

The curly braces “{ }” is used to enclose the elements of a set and the comma “,” is used 

to separate the elements inside the braces. 

The symbol “|”  (or “:” or “”), implies “such that”. Therefore, the notation, {x | x is an 

integer, 1 ≤ x ≤ 2} is read as “the set of all x such that x is an integer between 1 and 2 (1 

and 2 inclusive)”. 

Considering the notation: 

5 ∈ {1, 2, 5} 

The symbol “∈” implies “is in” or “is an element of.” Therefore, the notation is read as 5 

is an element of a set containing 1,2, and 5. This is a true statement. We can also write 

another true statement if we say that 3 “is not” an element of the set containing 1,2, and 5. 

This can be written as: 

3 ∉ {1, 2, 5} 

Some other notations 

⊆:  A ⊆ B asserts that A is a subset of B | every element of A is also an element of B. 

If A is {2, 3, 4}, B is {2, 3, 4, 5}. Then A ⊆ B. 

If A is {2, 3, 4}, B is {2, 3, 4}. Then A ⊆ B and B ⊆ A. 
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If A is {2, 3, 4, 5}, B is {2, 3, 4, 6, 7}. Then B ⊈ A. 

⊂:   A ⊂ B asserts that A is a proper subset of B | every element of A is also an element 

of B, but every element of B is not an element of A. 

Let A = {2, 3, 4} and B = {1, 2, 3, 4, 5}. Then, A ⊂ B. 

If A is {2, 3, 4}, B is {2, 3, 4}. Then A ⊄ B (read as A is a NOT a proper subset of B). 

U: A fixed set which contains all other sets under investigation is called universal set. 

In other words, all other sets under investigation are subsets of the universal set and it is 

denoted by U. 

Example: Considering human population, the universal set consist of all people in the 

world. 

 

3.2.3 Operations on Sets 

∪:  A ∪ B is the union of A and B: is the set containing all elements which are elements 

of A or B or both. 

If A is {1, 2, 4, 5}, B is {2, 3, 4}. Then A ∪ B = {1, 2, 3, 4, 5} 

 

∩:  A ∩ B is the intersection of A and B: the set containing all elements which are 

elements of both A and B. 

If A is {1, 2, 4, 5}, B is {2, 3, 4}. Then A ∩ B = {2, 4} 

 

\:  A \ B is A minus B: the set containing all elements of A which are not elements of 

B. 

  Let A = {1, 2, 4, 5, 6}, B = {2, 3, 4}. Then A \ B = {1, 5, 6}. 

 

Ac or A̅:  The complement of A is the set of everything which is not an element of A. 

Let the universal set, U be {1, 2, . . . , 9, 10}, A = {2, 3, 4}. Then Ac = {1, 5, 6, …, 

9, 10}. 

 

|A|:  The cardinality (or size) of A is the number of elements in A. 

|{1, 2, 3}| = |{a, b, c}| = |{1,{1, 2}, 5}| = |{1, 2, ∅}| = 3. 
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×:  A × B is the Cartesian product of two non-empty sets A and B: the set of all 

ordered pairs (a, b) with a ∈ A and b ∈ B. 

Let A be a set. A × A is the set of ordered pairs (x, y) where x, y ∈ A.  

The expression A × A × · · · × A (n times) can also be denoted as An which is the set of all 

ordered subsets (with repetitions) of A of size n. 

Examples 

i. {0, 1}n the set of all “strings” of 0 and 1 of length n. 

ii. Let A = {1, 2}, B = {3, 4, 5}. Then A × B = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}. 

  

Example 3.2.3.1 

Prove that A × B = B × A, only if A = B. 

Solution 3.2.3.1 

Proof: Let A × B = B × A. then, A ⊆ B and B ⊆ A. Therefore, A = B. 

 

3.2.4 Rules of Set Theory 

Let P, Q and R be sets.  

i. Commutative Law: (P ∪ Q) = (Q ∪ P) and (P ∩ Q) = (Q ∩ P). 

ii. Associative Law: (P ∪ (Q ∪ R)) = ((P ∪ Q) ∪ R) and (P ∩ (Q ∩ R)) = ((P ∩ Q) ∩ R). 

iii. Distributive Law: (P ∪ (Q ∩ R)) = (P ∪ Q) ∩ (P ∪ R) and (P ∩ (Q ∪ R)) = (P ∩ Q) ∪ 

(P ∩ R). 

iv. De Morgan’s Law: (P ∪ Q)C = (Pc ∩ Qc ) and (P ∩ Q)C = (Pc ∪ Qc) 

   

Some special sets we will consider in this unit:  

• ∅   The empty set that contains no element (also denoted as { }). 

• U  The universe set is the set of all elements 

• ℕ  {0, 1, 2, 3, . . . }, the non-negative integers  

• ℕ +  {1, 2, 3, . . . }, the positive integers 

• ℤ  {. . .  −2, −1, 0, 1, 2 . . . }, the integers 

• ℚ  {q | q = a/b, a, b ∈ ℤ, b 6= 0}, the rational numbers 

• ℚ+  {q | q ∈ Q, q > 0}, the positive rational 

• ℝ  The real numbers 
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• ℝ+  The positive reals 

• P(A)  The power set of any set A is the set of all subsets of A. 

3.2.5 Disjoint Set 

Sets X and Y are said to be disjoint sets, if they have no element in common, that is, no 

element of X is in Y and no element of Y is in X. 

Example 3.2.5.1: 

i. Given 𝑋 = {1,2,3} and 𝑌 = {4,5,6}, then 𝑋 and 𝑌 are disjoint sets. 

ii. If 𝑃 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑄 = {𝑑, 𝑒, 𝑓, 𝑔}, then 𝑃 and 𝑄 are not disjoint sets, since 𝑑 is 

in both sets. 

3.2.6 Power Set 

We call the set of all subsets of A, the power set of A, and write it as P(A)   

Example 3.2.6.1 Let A = {1, 2, 3}. Find P(A).  

Solution 3.2.6.1 P(A) is a set of sets, all of which are subsets of A.  

So, P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. 

Note: The power set of a set A is normally, 2n, where n is the cardinality of the set A. 

Therefore, since |A| = 3, the cardinality of the power set of A, |P(A)| = 23 = 8. 

Note: Although 2 ∈ A, it will be wrong to say that 2 ∈ P(A) because none of the elements 

in P(A) are numbers. However, we can say that {2} ∈ P(A) because {2} ⊆ A. 

 

We can relate the symbols of union and intersect to resemble the logic symbols of “or” and 

“and”. Remember that the statement x ∈ A ∪ B is read as x is an element of A or x is an 

element of B. Therefore,  

x ∈ A ∪ B ↔ x ∈ A ∨ x ∈ B. 

Similarly, 

x ∈ A ∩ B ↔ x ∈ A ∧ x ∈ B. 

Also, 

x ∉ A ↔ ¬(x ∈ A) 

 

Example 3.2.6.2 

            Let A = {2, 4, 6}, B = {1, 2, 3, 4, 5, 6}, C = {1, 2, 3}, D = {1, 3, {4, 5}, x}, and  

            E = {7, 8, 9}. 



8 
 

Determine each statement to be either true, false, or meaningless. 

1. A ⊂ B.  2. B ⊂ A.  3. A ∈ C. 4. ∅ ∈ B. 5. ∅ ⊂ A. 

6. A < E. 7. 3 ∈ C. 8. x ⊂ D. 9. {9} ⊂ E. 

 

Solution 3.2.6.2 

1. True. Every element in A is an element in B. 

2. False. For example, 1 ∈ B but 1 ∉ A. 

3. False. The elements in C are 1, 2, and 3. The set A is not equal to 1, 2, or 3. 

4. False. The set B has exactly 6 elements, and none of them is an empty set. 

5. True. Everything in the empty set (nothing) is also an element of A. Notice that the 

empty set is a subset of every set. 

6. Meaningless. A set cannot be less than another set. 

7. True. 3 is one of the elements of the set C. 

8. Meaningless. x is not a set, so it cannot be a subset of another set. 

9. True. 9 is the only element of the set {9}, and is an element of E, so every element in 

{9} is an element of E. 

 

3.2.7 Venn Diagrams  

A Venn Diagram is a great tool used to visualize and represent operations on sets. It is used 

to display sets as intersecting circles. We can highlight a region under consideration when 

we carry out an operation. The cardinality of a set can be represented by putting numbers 

in the corresponding area. 
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3.3 Relations 

3.3.1 Definition 3.3.1: A relation on a single set S is a subset of S × S. A relation on sets 

S and T is a subset of S × T. Now, let’s consider relationships among sets. For example, 

we can say that X is married to Y and they both have a child, Z. In our daily lives, we deal 

a lot with talks about relationships. For example, if we consider two human beings (A, B), 

“taller-than”, “smarter-than” are relations between them. That is (A, B) ∈ “taller-than” if 

person A is taller than person B. “≥” is a relation on R; “≥” = {(x, y) | x, y ∈ R, x ≥ y}.  

3.3.2 Definition:  A relation R on a set S is:  

i. Reflexive if for all x ∈ S, (x, x) ∈ R.  

ii. Symmetric if for all x, y ∈ S, whenever (x, y) ∈ R, (y, x) ∈ R.  

iii. Transitive if for all x, y, z ∈ S, whenever (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R. 

 

Example 3.3.1.1 

i. “≤” is reflexive, but “<” is not. 

ii. “sibling-of” is symmetric, but “≤” and “sister-of” is not. 

iii. “sibling-of”, “≤”, and “<” are all transitive, but “parent-of” is not (however, “ancestor-

of” is transitive). 
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A relation that is reflexive, symmetric and transitive is called an Equivalence relation and 

is denoted by the symbol “≡”. 

Let “≡” be an equivalence relation on the set S. An equivalence class is a maximal subset 

E of the set S such that any two elements in the set E is related.  There can be multiple 

equivalence class corresponding to the relation ≡. 

 

4.0 Conclusion 

The bulk of work in this unit is on how set theory (a branch of mathematical logic gives 

insight into how Discrete Structure are viable in Computer Science. Emphasis were made 

on a set being a collection of objects or groups of objects. The unit further highlighted on 

the rules of set theory and its power set. 

5.0 Summary 

In this unit we learnt that Sets are the most fundamental objects in all of mathematics. That, 

a set is a collection of objects or groups of objects. A statement can be an Atomic Statement 

if it cannot be divided into smaller statements, otherwise it is called a Molecular Statement. 

There are rules governing the set and Venn diagram is a great tool used to visualize and 

represent operations on sets. 

 

6.0 Tutor-Marked  Assignments 

1. Describe each of the following sets both in words and by listing out enough elements to see 

the pattern. 

a. {x : x + 2 ∈ ℕ}. 

b. {x : x + 2 ∈ ℕ+}. 

c. {x ∈ ℕ : x + 2 ∈ ℕ}. 

d. {x : x ∈ ℕ ∨ −x ∈ ℕ}. 

e. {x : x ∈ ℕ ∧ −x ∈ ℕ}. 

2. Let A = {7, 1, 2, 3, 6}, B = {2, 3, 4}, C = {1, 6, 7} and D = {5, 8, 4, 9} be subsets of U = {n 

ℕ : 1 ≤ n ≤10}.  

a. Find the following;  

            i.  A ⋃ C       ii. (A ⋂ Dc) ⋃ (A ⋂ B)c         iii. ∅ ⋃ B         iv. (A ⋃ B)c       

b. Represent the sets in 2a above by the use of a Venn Diagram.  
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3. Using a Venn Diagram, determine if the representation A ∩ B¯ is equivalent to A \ B. 

4. Using the sets W = {2, a, {u, v, w}, ∅}, X = {∅, a}, Y = {1, 2, 4} and Z = {2, 4, 8}. 

Determine if the following statements are true, false or meaningless. State your reasons for 

each.  

i. w  A      ii. B  A     iii.  D > C   iv.  {2, a} A 

5. Find the cardinality of each set below (show cardinality check):  

i. A = {23, 24, . . . , 37, 38} 

ii. B = {1, {2, 3, 4}, 5, ∅} 

iii. P(K  L)  K = {n  ℕ : n ≤ 19} and L = { n  ℕ : n is prime} 

iv. P(C)  C = {a, b, c, d}  

6. Let A = {1, 2, 3}, B = {4, 5, 6, 7}. Find B × A. 

7. If |A| = 5 and |B| = 8 and |A ∪ B| = 11 what is the size of A ∩ B?  

8. If |Ac ∩ B| = 10 and |A ∩ Bc | = 8 and |A ∩ B| = 5 then how many elements are there is A ∪ 

B? 
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1.0 Introduction 

 

Mathematical Induction is an elegant and powerful technique that is used to prove certain types of 

mathematical statements and propositions which assert that for all positive integers something is 

true or that for all positive integers from some point on. There are many forms of mathematical 

proofs. In this unit, we will introduce several basic types of proofs, with special emphasis on a 

technique called induction that is invaluable to the study of discrete mathematics.  

2.0 Objectives 

By the end of this unit, you will be able to: 

• explain the basic types of proofs 

• prove certain mathematical statement 

• mention types of induction techniques. 

3.0 Main Content 

3.1 Basic Proof Techniques  
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Proof techniques can either be direct, indirect or by induction. The choice of a proof 

technique depends on the problem or task at hand. Therefore, it is important to realize that 

there is no single method applicable to solving all tasks. This implies that your level of 

ingenuity, skills and implementation of common sense must be applied to every task. In 

this Unit, we will discuss the direct, proof by induction and indirect proofs (proof by 

contrapositive and proof by contradiction). 

3.2 Direct Proof (Proof by Construction) 

In order to prove a mathematical statement, we have to show that for a given premise, the 

conclusion given can be derived. Considering any given task: such that we are given a 

premise X, how do we show that a conclusion Y holds? One way to achieve this is by 

giving a Direct Proof. In this form of proof, we start with a premise X, and directly deduce 

the conclusion Y through a series of logical steps.  

The two steps to directly prove that X → Y is true. 

a. Demonstrate that Y must follow from X. 

Example 3.2.1. Let n be an integer. If n is even, then n2 is even. If n is odd, then n2 is odd.  

Solution 3.2.1 

Using direct proof: For an integer k; 

If n is even, then n = 2k, and  

n2 = (2k)2 = 4k2 = 2 (2k2), which is even.  

If n is odd, then n = 2k + 1, and  

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2 (2k2+ 2k) + 1, which is odd. 

3.3 Proof by Induction 

The initial step  

Firstly, prove that the proposition is true for n = 1. If the claim is that the proposition is 

true for n ≥ a, first prove it for n = a. 
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Inductive step  

Prove that if the proposition is true for n = k, then it must also be true for n = k + 1. This is 

the difficult step and we will break it down into steps.  

Step 1: Here we perform Inductive Hypothesis by writing down what the proposition 

asserts for the case n = k. 

Step 2: Now, write down what the proposition asserts for the case n = k + 1. Clearly 

remember that this is what you have to prove. 

Step 3: By using the assumption made in Step 1, try and prove the statement in Step 2. 

Have in mind that this stage varies from problem to problem depending on the 

mathematical contents, therefore, there is no single way to solve all problems. The main 

aim here is to apply your skills and determine how you get from Step1 to Step2.  

After the initial and inductive steps have been successfully performed, we then conclude 

immediately that the proposition is true for all n ≥ 1. 

Example 3.3.1. The sum of the first n positive integers is 
1

2
n(n + 1).  

Initial step: If n = 1, the sum is simply 1.  

Now, for n = 1, 
1

2
n (n + 1) = 

1

2
× 1 × 2=1. So, the result is true for n = 1.  

Inductive step:  

Stage 1: Our assumption (the inductive hypothesis) asserts that  

1+2+3+ ··· + k = 
1

2
k(k + 1).  

Stage 2: We want to prove that  

1+2+3+ ··· + (k + 1) = 
1

2
 (k + 1)[(k + 1) + 1] = 

1

2
 (k + 1)(k + 2). 

Stage 3: How can we get to stage 2 from stage 1?  

The answer here is that we get the left-hand side of stage 2 from the left-hand side of stage 

1 by adding (k + 1). So, 1+2+3+ ··· + (k + 1) = 1 + 2 + 3 + ··· + k + (k + 1)  
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= 
1

2
 k(k + 1) + (k + 1) using the inductive hypothesis  

= (k + 1)( 
1

2
k + 1) factorising  

= 
1

2
 (k + 1)(k + 2) which is what we wanted to prove.  

This completes the inductive step. Hence, the result is true for all n ≥ 1. 

Example 3.3.2. If a and b are consecutive integers, then the sum a + b is odd.  

Solution 3.3.2 

Proof. We have to define the propositional form F(x) to be true when the sum of x and its 

successor is odd.  

Step 1: Let’s consider the proposition F(1). The sum 1 + 2 = 3 is odd because we can 

demonstrate there exists an integer k such that 2k + 1 = 3. That is, 2(1) + 1 = 3. Thus, F(x) 

is true when x = 1. 

Step 2: Assume that F(x) is true for some x. Thus, for some x we have that x + (x + 1) is 

odd. We add one to both x and x + 1 which gives the sum (x+1) + (x+2). We can make 

claim to two things: firstly, the sum (x+1) + (x+2) = F(x+1). Secondly, we claim that the 

addition of two (2) to any integer does not change the evenness or oddness of that integer 

(e.g., 1 + 2 = 3, 2 + 2 = 4). With these two observations we claim that F(x) is odd implies 

F(x + 1) is odd.  

Step 3: By the principle of mathematical induction, we thus claim that F(x) is odd for all 

integers x. Thus, the sum of any two consecutive numbers is odd. 

3.4 Indirect Proofs 

3.4.1 Proof by Contrapositive  

This proof starts by assuming that the conclusion Y is false, and through a series of logical 

steps deduce that the premise X must also be false.  

Based on first-order logic we can make a statement such as P → Q is equivalent to ¬Q → 

¬P. Steps to proving a theorem by contrapositive:  
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b. Assume ¬Q is true.  

c. Show that ¬P must be true.  

d. Observe that P → Q by contraposition 

Example 3.4.1.1 Let n be an integer. If n is even, then n2 is even. 

Solution 3.4.1.1 

Proof by contrapositive: Suppose that n is not even. Then by solution 3.2.1, n2 is not even 

as well. Yes, that all!  

3.4.2 Proof by Contradiction. 

This form of proof assumes both that the premise X is true and the conclusion Y is false, 

and reach a logical fallacy.  

Steps to proving a theorem by contradiction:  

a. Assume P is true.  

b. Assume ¬Q is true.  

c. Demonstrate a contradiction. 

Example 3.4.2.1 Let’s apply this form of proof to example 3.4.1.1 

Solution 3.4.2.1 

Proof by contradiction: Suppose that n2 is even, but n is odd. Applying solution 3.2.1, we 

see that n2 must be odd. But n2 cannot be both odd and even at the same time. 

 

4.0  Conclusion  

You have learnt from this unit that proof techniques can either be direct, indirect or by 

induction. That the choice of a proof technique depends on the problem or task at hand. 

You should note that there is no single method applicable to solving all tasks. This means 

that your level of ingenuity, skills and implementation of common sense must be applied 

to every task. 
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5.0  Summary  

In this Unit, we have discussed the direct, indirect proofs, and proof by induction (proof by 

contrapositive and proof by contradiction). We also performed Inductive Hypothesis and 

applied necessary skills.  

6.0  Tutor-Marked Assignment  

1. Prove the following: 

a. √ 2 is irrational. 

b. Let x and y be non-negative reals. Then, 
x + y 

2
 ≥ √ xy. 

2. Use induction to prove for all n ∈ ℕ that ∑ 2𝑘 =  2𝑛+1 − 1𝑛
𝑘=0 .  

3. Prove that 7n − 1 is a multiple of 6 for all n ∈ ℕ.  

4. Prove that 1 + 3 + 5 + · · · + (2n − 1) = n2 for all n ≥ 1.  

5. Prove that F0 + F2 + F4 + · · · + F2n = F2n+1 − 1 where Fn is the nth Fibonacci number. 
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1.0  Introduction  

Logic is a formal study of mathematics; it is the study of mathematic reasoning and proofs itself. 

In this unit we cover some basic forms of logic. The propositional logic, where we will consider 

the logical connectives such as “and”, “or”, and “not”. In the first-order logic, we will additionally 

include tools to reason. It contains predicates, quantifiers and variables.  

2.0 Objectives  

 By the end of this Unit, you will be able to: 

• discuss some mathematical reasoning and proofs 

• explain some basic forms of logic 

• use logical connectives 

• apply some tools to reason. 

 

3.0 Main Content 

 3.1 Propositional Logic 

Logic is the study of consequences. Given a few mathematical statements or facts, we 

would like to be able to draw some conclusions. For example, we can say the statement: 

“Abuja is the capital of Nigeria” is True and that the statement: “The month of December 

is fall in the summer” is False. This kind of statements are called propositions because they 

are either true or false. The truth or falsehood of a proposition is called its truth value.  

As stated earlier, propositional variables (also called sentential variables) which are the 

letters found in the middle of the English alphabet represented in capital: P, Q, R, S, … to 
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represent each atomic statements in the molecular statement. These variables can only have 

two values, true or false. The logical connectives: “and”, “or”, “if… then”, “if and only if 

( or if)”, and “not” represented by these symbols , , →, ↔, and ¬ respectively. The 

atomic statements: “It is raining” and “I need an umbrella” can be represented by the letters 

P and Q respectively. 

P  Q  ¬P  ¬Q  P ∧ Q P ∨ Q P → Q P ↔ Q 

T T F F T T T T 

T F F T F T F F 

F T T F F T T F 

F F T T F F T T 

 

Example 3.1.1. Make a truth table for the statement ¬P ∨ Q.  

Solution 3.1.1. I solving such exercises, you will have to be careful as to knowing the exact 

position of the ¬. Note that this statement is not ¬(P ∨ Q), the negation belongs only to P 

(i.e. ¬P). Here is the truth table: 

P  Q  ¬P  ¬P ∨ Q 

T T F T 

T F F F 

F T T T 

F F T T 

 

Example 3.1.2. Analyze the statement, “if you get more doubles than any other player you 

will lose, or that if you lose you must have bought the most properties,” using truth tables.  

Solution 3.1.2. Let’s start by breaking down the molecular statement into atomic 

statements. Let P be the statement “you get more doubles than any other player,”; Q be the 

statement “you will lose,” and R be the statement “you must have bought the most 

properties.” Now let’s construct a truth table to represent the statement as this symbol         

(P → Q) ∨ (Q → R). 
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The truth table needs to contain 8 rows in order to account for every possible combination 

of truth and falsity among the three statements. Here is the full truth table: 

P  Q  R (P → Q)  (Q → R) (P → Q) ∨ (Q → R) 

T T T T T T 

T T F T F T 

T F T F T T 

T F F F T T 

F T T T T T 

F T F T F T 

F F T T T T 

F F F T T T 

 

This is a true statement about monopoly, such that it is regardless of how many properties 

you own, how many doubles you roll, or whether you win or lose, the outcome is true for 

all 8 possible combinations. 

The statement about monopoly in example 3.1.2 is an example of a tautology. Tautology 

is a statement which is true on the basis of its logical form alone. Tautologies are always 

true but they don’t tell us much about the world. No knowledge about monopoly was 

required to determine that the statement was true. 

3.1.1 Logical Equivalence 

Two molecular statements P and Q are logically equivalent provided P is true precisely 

when Q is true. That is, P and Q have the same truth value under any assignment of truth 

values to their individual atomic parts. Then we symbolize it as P ≡ Q. In order to verify 

that two or more statements are logically equivalent, you may have to make a truth table 

for each and check whether the columns for the statements are identical. 

Example 3.1.3.  Check if the statement ¬P ∨ Q is logically equivalent to P → Q. 

Solution 3.1.3. let us start by making the truth table for these statements. Check example 

3.1.1 and our first truth table. 
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P  Q  ¬P  ¬P ∨ Q P → Q 

T T F T T 

T F F F F 

F T T T T 

F F T T T 

 

Since the statements ¬P ∨ Q and P → Q either both true or both false for whatever values 

of P and Q. We therefore say these statements ¬P ∨ Q and P → Q are logically equivalent. 

 

Exercise 3.1.4. Make a truth table to determine whether the statement ¬(P∨Q) is logically 

equivalent to ¬P ∧ ¬Q.  

 

Solution 3.1.4.  

Try it yourself. 

 

The solution to exercise 3.1.4 will show that both statements are logically equivalent. It 

also shows that we can distribute a negation over a disjunction (“or”). Likewise, the 

distribution of negation over a conjunction (“and”) is also possible. 

 

De Morgan’s Laws 

1. ¬(P ∧ Q) is logically equivalent to ¬P ∨ ¬Q 

2. ¬(P ∨ Q) is logically equivalent to ¬P ∧ ¬Q 

 

Example 3.1.5. Without using truth tables prove that the statements ¬(P → Q) and P ∧ ¬Q 

are logically equivalent.  

 

Solution 3.1.5. Let’s start with one of the statements, and transform it into the other through 

a sequence of logically equivalent statements.  

Start with ¬(P → Q).  

We can rewrite the implication as a disjunction this is logically equivalent to  

¬(¬P ∨ Q). (Solution 3.1.3 shows that P → Q is logically equivalent to ¬P ∨ Q) 
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By applying DE Morgan’s law we get  

¬¬P ∧ ¬Q. (the double negation ¬¬P is logically equivalent to P) 

Finally, use double negation to arrive at  

P ∧ ¬Q. 

Deduction Rule 

An argument is valid provided the conclusion must be true given that the premises are true. 

This means that for all times the premises are found to be true, the conclusion must be true 

for the argument to be a valid deduction rule, else it is invalid. 

Example 3.1.6. Determine if the argument 

P → Q 
P  
Q

 is a valid deduction rule. 

Solution 3.1.6. Considering solution 3.1.2, we can see that: 

P  Q  P → Q 

T T T 

T F F 

F T T 

F F T 

 

Our premises are P → Q and P. From the truth table we can see that row 1 where both of 

the premises are true, our condition Q is also true. Therefore, if P → Q and P are both true, 

we see that Q must be true as well. This implies that the argument is a valid deduction rule. 

Exercise 3.1.6. Decide whether  

P → Q 
¬P ∨ Q  

Q
  is a valid deduction rule. 

Solution 3.1.6.  

  Try it yourself. 

 

Example 3.1.7. Decide whether  

P → Q 
Q → R

R  
P ∨ Q

  is a valid deduction rule. 

Solution 3.1.7. 

P  Q  R P → Q  Q → R P ∨ Q 

T T T T T T 

T T F T F T 
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T F T F T T 

T F F F T T 

F T T T T T 

F T F T F T 

F F T T T F 

F F F T T F 

 

The premises P → Q, Q → R and R are all true in rows 1, 5, and 7. However, the 

conclusion P ∨ Q is not always true when the premises are all true as seen in row 7. Hence 

this is not a valid deduction rule. 

 

 

 

3.2 First Order Logic  

First order logic is an extension of propositional logic. Propositional logic only deals with 

“facts”, statements that may be true or false e.g. “It is raining”. However, one cannot have 

variables that stand for books or tables. First order logic operates over a set of objects (e.g., 

real numbers, people, etc.). It allows us to express properties of individual objects, to define 

relationships between objects, and, most important of all, to quantify over the entire set of 

objects. 

Let’s give a classic argument in first order logic: 

All men are mortal. 

Adam is a man. 

Therefore, Adam is a mortal. 

In first order logic, the argument might be translated as follows: 

∀x Man(x)  →  Mortal(x)
Man (Adam) 

Mortal (Adam)
 

 

  Let’s give some statements in first order logic: 

i. “When you paint a with blue paint, it becomes blue.” cannot be made in propositional 

logic but can be made in first order logic. In propositional logic, we would need a 
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statement about every single wall, one cannot make the general statement about all 

walls. 

ii. “When you take the vaccine, all the chances of contracting the disease dies.” In first 

order logic, we can talk about all the bacteria without naming them explicitly. 

 

4.0  Conclusion  

With the overview of proposition logic and, given a few mathematical statements, we 

were able to draw some conclusions that logic is the study of consequences. We were 

also able to apply De Morgan’s law and logical equivalence. 

5.0  Summary  

At the end of this unit you have learnt some mathematical reasoning and proofs. Some 

basic forms of logic were highlighted using logical connectives. There was some 

applications of reasoning tools. 

 

6.0  Tutor-Marked Assignment  

1. Consider the statement about a party, “If it’s your birthday or there will be cake, then there will 

be cake.”  

a. Translate the above statement into symbols. Clearly state which statement is P and 

which is Q.  

b. Make a truth table for the statement.  

c. Assuming the statement is true, what (if anything) can you conclude if there will be 

cake?  

d. Assuming the statement is true, what (if anything) can you conclude if there will not 

be cake?  

e. Suppose you found out that the statement was a lie. What can you conclude?  

2. Make a truth table for the statement (P ∨ Q) → (P ∧ Q).  

3. Using a truth table, determine if the following statements are logically equivalent.  

i. (P ∨ Q) → R and (P → R) ∨ (Q → R). 
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ii. (P  Q)   P, (P  Q) and (P  Q)   (P  Q)   (P  Q). 

iii. “I will not eat or drink” and “I will not eat and I will not drink”. Hint: First translate to 

statement into a logical expression. 

4. Simplify the following statements (so that negation only appears right before variables). 

a. ¬(P → ¬Q). 

b. (¬P ∨ ¬Q) → ¬(¬Q ∧ R). 

c. ¬((P → ¬Q) ∨ ¬(R ∧ ¬R)). 

d. It is false that if Sam is not a man then Chris is a woman, and that Chris is not a 

woman. 

5. Show that  

P → Q 
Q → R  

P → R
  is a valid deduction rule. 
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1.0 Introduction 

In this unit, you will acquire the skills to distinguish a partially ordered set, in which a pair 

of elements has both a least upper bound and greatest lower bound. To achieve this, you 

will learn from this unit, the types of relations and Boolean algebra.  

2.0 Objectives  

By the end of this unit, you will be able to:  

• manipulate symbolic logic 

• distinguish a partially ordered set 

• explain operations that have logical significance. 

3.0 Main Content 

3.1 LATTICES  

3.1.1  Partially Ordered Sets 

We begin the study of lattices and Boolean algebras by generalizing the idea of inequality. 

Recall that a relation on a set X is a subset of X×X. A relation P on X is called a partial 

order of X if it satisfies the following axioms: 
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i. The relation is reflexive: (a, a) ∈ P for all a ∈ X. 

ii. The relation is antisymmetric: if (a, b) ∈ P and (b, a) ∈ P, then a = b. 

iii. The relation is transitive: if (a, b) ∈ P and (b, c) ∈ P, then (a, c) ∈ P. 

We usually write a ≼ b to mean (a, b) ∈ P unless some symbol is naturally associated with 

a particular partial order, such as a≼ b with integers a and b, or A ⊂ B with sets A and B. A 

set X together with a partial order ≼ is called a partially ordered set, or poset. 

A partially ordered set (L, ≼) is called a lattice if every pair of elements a and b in L has 

both a Least Upper Bound (LUB) or Supremum and a Greatest Lower Bound (GLB) 

or Infimum. 

Let Y be a subset of a poset X. An element u in X is an upper bound of Y if a ≼ u for 

every element a ∈ Y. If u is an upper bound of Y such that u ≼ v for every other upper 

bound v of Y, then u is called an LUB of Y. An element l in X is said to be a lower 

bound of Y if l ≼ a for all a ∈ Y. If l is a lower bound of Y such that k ≼ l for every other 

lower bound k of Y, then l is called a GLB of Y. 

The least upper bound is also called the join of a and b, denoted by a ∨ b. The greatest 

lower bound is called the meet of a and b, and is denoted by a ∧ b. 

If (L, ≼) is a lattice and a, b, c, d ∈ L, then the meet and join have the following order 

properties: 

i. a ∧ b ≼ {a, b} ≼ a ∨ b, 

ii. a ≼ b if and only if a ∧ b = a, 

iii. a ≼ b if and only if a ∨ b = a, 

iv. if a ≼ b, then a ∧ c ≼ b ∧ c and a ∨ c ≼ b ∨∧ c 

v. if a ≼ b and c ≼ d, then a ∧ c ≼ b ∧ d and a ∨ c ≼ b ∨ d 

Therefore, by the definitions of LUB and GLB, this implies that if the join and meet exist, 

they are unique. 

Example 3.1.1 The set of integers (or rationals or reals) is a poset where a ≤ b has the usual 

meaning for two integers a and b in ℤ. 



28 
 

Example 3.1.2 Let X be any set. We will define the power set of X to be the set of all 

subsets of X. We denote the power set of X by P(X). For example, let X = {a, b, 

c}. Then P(X) is the set of all subsets of the set {a, b, c}: 

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}. 

On any power set of a set X, set inclusion, ⊂, is a partial order. We can represent the order 

on {a, b, c} schematically by a diagram such as the one in Figure 3.1. 

 

Figure 3.1 Partial Order of ({a, b, c}) 

Example 3.3 Let G be a group. The set of subgroups of G is a poset, where the partial order 

is set inclusion. 

Example 3.4 There can be more than one partial order on a particular set. We can form a 

partial order on ℕ by a ≼ b if a | b. The relation is certainly reflexive since a | a for all a ∈ 

N. If m | n and n | m, then m = n; hence, the relation is also antisymmetric. The relation is 

transitive, because if m | n and n | p, then m | p. 

 

Example 3.5 Let X = {1, 2, 3, 4, 6, 8, 12, 24} be the set of divisors of 24 with the partial 

order defined in Example 3.4. Figure 3.2 shows the partial order on X. 

 

Figure 3.2 A partial order on the divisors of 24 

Example 3.6 Let Y = {2, 3, 4, 6} be contained in the set X of Example 3.5. Then Y has 

upper bounds 12 and ,24, with 12 as a least upper bound. The only lower bound 

is 1; hence, it must be a greatest lower bound. 
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Theorem 3.1 Let Y be a nonempty subset of a poset X. If Y has a least upper bound, 

then Y has a unique least upper bound. If Y has a greatest lower bound, then Y has a unique 

greatest lower bound. 

Proof: It is possible to define binary operations on many posets by using the greatest lower 

bound and the least upper bound of two elements. A lattice is a poset L such that every pair 

of elements in L has a least upper bound and a greatest lower bound.  

 

Example 3.7 Let X be a set. Then the power set of X, P(X), is a lattice. For two 

sets A and B in P(X), the least upper bound of A and B is A ∪ B. Certainly A ∪ B is an 

upper bound of A and B, since A ⊂ A ∪ B and B ⊂ A ∪ B. If C is some other set containing 

both A and B, then C must contain A ∪ B; hence, A ∪ B is the least upper bound 

of A and B. Similarly, the greatest lower bound of A and B is A ∩ B. 

 

Axiom 3.1 Principle of Duality: Any statement that is true for all lattices remains true 

when ≼ is replaced by ≽ and ∨ and ∧ are interchanged throughout the statement. 

 

Theorem 3.2 If L is a lattice, then the binary operations ∨ and ∧ satisfy the following 

properties for a, b,  c ∈ L. 

i. Commutative laws: a ∨ b = b ∨ a and a ∧ b = b ∧ a 

ii. Associative laws: a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c. 

iii. Idempotent laws: a ∨ a = a and a ∧ a = a. 

iv. Absorption laws: a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a. 

Proof 

By the Principle of Duality, we need only prove the first statement in each part. 

i. By definition a ∨ b is the least upper bound of {a, b}, and b ∨ a is the least upper bound 

of {b, a}; however, {a, b} = {b, a}. 

ii. We will show that a ∨ (b ∨ c) and (a ∨ b) ∨ c are both least upper bounds of {a, b, c}. Let d 

= a ∨ b. Then c ≼ d ∨ c = (a ∨ b) ∨ c.  

We also know that  

a ≼ a ∨ b = d ≼ d ∨ c = (a ∨ b) ∨ c.  
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A similar argument demonstrates that b ≼ (a ∨ b) ∨ c. Therefore, (a ∨ b) ∨ c is an upper 

bound of {a, b, c}. We now need to show that (a ∨ b) ∨ c is the least upper bound of {a, b, 

c}. Let u be some other upper bound of {a, b, c}. Then a ≼ u and b ≼ u hence, d = a ∨ b ≼ 

u. Since c ≼ u, it follows that (a ∨ b) ∨ c = d ∨ c ≼ u. Therefore, (a ∨ b) ∨ c must be the 

least upper bound of {a, b, c}. The argument that shows a ∨ (b ∨ c) is the least upper bound 

of {a, b, c} is the same. Consequently, a ∨ (b ∨ c) = (a ∨ b) ∨ c. 

iii. The join of a and a is the least upper bound of {a}; hence, a ∨ a = a. 

iv. Let d = a ∧ b. Then a ≼ a ∨ d. On the other hand, d = a ∧ b ≼ a, and so a ∨ d ≼ 

a. Therefore, a ∨ (a ∧ b) = a. 

 

Given any arbitrary set L with operations ∨ and ∧, satisfying the conditions of the previous 

theorem, it is natural to ask whether or not this set comes from some lattice. The following 

theorem says that this is always the case. 

 

Theorem 3.3 Let L be a nonempty set with two binary operations ∨ and ∧ satisfying the 

commutative, associative, idempotent, and absorption laws. We can define a partial order 

on L by a ≼ b if a ∨ b = b. Furthermore, L is a lattice with respect to ≼ if for all a, b ∈ L, we 

define the least upper bound and greatest lower bound of a and b by a ∨ b and a ∧ 

b, respectively. 

Proof 

Firstly, let’s show that L is a poset under ≼. Since a ∨ a = a, a ≼ a and ≼ is reflexive. To 

show that ≼ is antisymmetric, let a ≼ b and b ≼ a. Then a ∨ b = b and b ∨ a = a. By the 

commutative law, b = a ∨ b = b ∨ a = a. Finally, we must show that ≼ is transitive. Let a ≼ 

b and b ≼ c. Then a ∨ b = b and b ∨ c = c. Thus, 

a ∨ c = a ∨ (b ∨ c) = (a ∨ b) ∨ c = b ∨ c = c,  

or a ≼ c. 

Now, to show that L is a lattice, we need to prove that a ∨ b and a ∧ b are, respectively, the 

least upper and greatest lower bounds of a and b. Since a = (a ∨ b) ∧ a = a ∧ (a ∨ b), it 

follows that a ≼ a ∨ b. Similarly, b ≼ a ∨ b. Therefore, a ∨ b is an upper bound for a and b.  

Let u be any other upper bound of both a and b. Then a ≼ u and b ≼ u. But a ∨ b ≼ u since  

(a ∨ b) ∨ u = a ∨ (b ∨ u) = a ∨ u = u. 
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Exercise 3.1: Prove that a ∧ b is the greatest lower bound of a and b. 

 

3.2 Boolean Algebras 

Let us investigate the example of the power set, P(X), of a set X more closely. The power set is a 

lattice that is ordered by inclusion. By the definition of the power set, the largest element 

in P(X) is X itself and the smallest element is ∅, the empty set. For any set A in P(X), we know 

that A ∩ X = A and A ∪ ∅ = A. This suggests the following definition for lattices. An element I in 

a poset X is a largest element if a ≼ I for all a ∈ X. An element O is a smallest element of X if O 

≼ a for all a ∈ X.  

Let A be in P(X). Recall that the complement of A is  

A′ = X∖A = {x: x ∈ X and x ∉ A}. 

We know that A ∪ A′=X and A ∩ A′ = ∅. We can generalize this example for lattices. A 

lattice L with a largest element I and a smallest element O is complemented if for each a ∈ L, there 

exists an a′ such that a ∨ a′ = I and a ∧ a′ = O.  

In a lattice, L, the binary operations ∨ and ∧ satisfy commutative and associative laws; however, 

they need not satisfy the distributive law 

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);  

however, in P(X) the distributive law is satisfied since 

A ∩ (B∪ C) = (A ∩ B) ∪ (A ∩ C)  

for A, B, C ∈ P(X). We will say that a lattice L is distributive if the following distributive law 

holds: 

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)  

for all a, b, c ∈ L. 

 

Theorem 3.4 A lattice L is distributive if and only if 

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)  

for all a, b, c ∈ L. 

Proof 

Let us assume that L is a distributive lattice. 

a ∨ (b ∧ c)  = [a ∨ (a ∧ c)] ∨ (b ∧ c)  

= a ∨ [(a ∧ c) ∨ (b ∧ c)]  
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= a ∨ [(c ∧ a) ∨ (c ∧ b)]  

= a ∨ [c ∧ (a ∨ b)]  

= a ∨ [(a ∨ b) ∧ c]  

= [(a ∨ b) ∧ a] ∨ [(a ∨ b) ∧ c]  

= (a ∨ b) ∧ (a ∨ c). 

The converse follows directly from the Duality Principle. 

 

A Boolean algebra is a lattice B with a greatest element I and a smallest element O such that B is 

both distributive and complemented. The power set of X, P(X), is our prototype for a Boolean 

algebra. As it turns out, it is also one of the most important Boolean algebras. The following 

theorem allows us to characterize Boolean algebras in terms of the binary 

relations ∨ and ∧ without mention of the fact that a Boolean algebra is a poset. 

 

Theorem 3.5 A set B is a Boolean algebra if and only if there exist binary 

operations ∨ and ∧ on B satisfying the following axioms. 

i. a ∨ b = b ∨ a and a ∧ b = b ∧ a for a, b ∈ B. 

ii. a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c for a, b, c ∈ B. 

iii. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for a, b, c ∈ B. 

iv. There exist elements I and O such that a ∨ O = a and a ∧ I = a for all a ∈ B. 

v. For every a ∈ B there exists an a′ ∈ B such that a ∨ a′ = I and a ∧ a′ = O. 

 

Proof 

Let B be a set satisfying (i) – (v) in the theorem. One of the idempotent laws is satisfied since  

a  = a ∨ O  

= a ∨ (a ∧ a′)  

= (a ∨ a) ∧ (a ∨ a′)  

= (a ∨ a) ∧ I  

= a ∨ a. 

Notice that 

I ∨ b = (b ∨ b′) ∨ b = (b′ ∨ b) ∨ b = b′ ∨ (b ∨ b) = b′ ∨ b = I. 

Consequently, the first of the two absorption laws holds, since 
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a ∨ (a ∧ b)  = (a ∧ I) ∨ (a ∧ b)  

= a ∧ (I ∨ b)  

= a ∧ I  

= a. 

The other idempotent and absorption laws are proven similarly. Since B also satisfies (i)–(iii), the 

conditions of Theorem 3.3 are met; therefore, B must be a lattice. Condition (iv) tells us that B is 

a distributive lattice. 

For, a ∈ B, O ∨ a = a; hence, O ≼ a and O is the smallest element in B. To show that I is the largest 

element in B, we will first show that a ∨ b = b is equivalent to a ∧ b = a. Since a ∨ I = a for all a ∈ 

B, using the absorption laws we can determine that  

a ∨ I = (a ∧ I) ∨ I = I ∨ (I ∧ a) = I or a ≼ I  

for all a in B. Finally, since we know that B is complemented by (v), B must be a Boolean algebra. 

Conversely, suppose that B is a Boolean algebra. Let I and O be the greatest and least elements 

in B, respectively. If we define a ∨ b and a ∧ b as least upper and greatest lower bounds of {a, 

b}, then B is a Boolean algebra by Theorem 3.3 and Theorem 3.4. 

  

Some of these identities in Boolean algebras are listed in the following theorem.  

Theorem 3.6 Let B be a Boolean algebra. Then, 

i. a ∨ I = I and a ∧ O = O for all a ∈ B. 

ii. If a ∨ b = a ∨ c and a ∧ b = a ∧ c for a, b, c ∈ B then, b = c. 

iii. If a ∨ b = I and a ∧ b = O, then b = a′. 

iv. (a′)′ = a for all a ∈ B. 

v. I′ = O and O′ = I. 

vi. (a ∨ b)′ = a′ ∧ b′ and (a ∧ b)′ = a′ ∨ b′ (De Morgan's Laws). 

Proof 

We will prove only (ii). The rest of the identities are left as your exercises. 

For a ∨ b = a ∨ c and a ∧ b = a ∧ c, we have 

b  = b ∨ (b ∧ a)  

= b ∨ (a ∧ b)  

= b ∨ (a ∧ c)  
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= (b ∨ a) ∧ (b ∨ c)  

= (a ∨ b) ∧ (b ∨ c)  

= (a ∨ c) ∧ (b ∨ c)  

= (c ∨ a) ∧ (c ∨ b)  

= c ∨ (a ∧ b)  

= c ∨ (a ∧ c)  

= c ∨ (c ∧ a)  

= c. 

  

Finite Boolean Algebras 

A Boolean algebra is a finite Boolean algebra if it contains a finite number of elements as a set. 

Finite Boolean algebras are particularly nice since we can classify them up to isomorphism. 

Let B and C, be Boolean algebras. A bijective map ϕ: B→C is an isomorphism of Boolean 

algebras if 

ϕ (a ∨ b) = ϕ(a) ∨ ϕ(b)  

ϕ (a ∧ b) = ϕ(a) ∧ ϕ(b)  

for all a and b in B.  

We will show that any finite Boolean algebra is isomorphic to the Boolean algebra obtained by 

taking the power set of some finite set X. We will need a few lemmas and definitions before we 

prove this result. Let B be a finite Boolean algebra. An element a ∈ B is an atom of B if a ≠ 

O and a ∧ b = a for all b ∈ B with b ≠ O. Equivalently, a is an atom of B if there is no b ∈ B with b 

≠ O distinct from a such that O ≼ b ≼ a. 

 

Lemma 3.1 Let B be a finite Boolean algebra. If b is an element of B with b ≠ O, then there is an 

atom a in B such that a ≼ b. 

Proof 

If b is an atom, let a = b. Otherwise, choose an element b1, not equal to O or b, such that b1 ≼ 

b. We are guaranteed that this is possible since b is not an atom. If b1 is an atom, then we are done. 

If not, choose, b2, not equal to O or b1, such that b2 ≼ b1. Again, if b2 is an atom, let a = 

b2. Continuing this process, we can obtain a chain 

O ≼ … ≼ b3 ≼ b2 ≼ b1 ≼ b. 
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Since B is a finite Boolean algebra, this chain must be finite. That is, for some k, bk is an atom. 

Let a=bk. 

 

Lemma 3.2 Let a and b be atoms in a finite Boolean algebra B such that a ≠ b. Then a ∧ b = O. 

Proof 

Since a ∧ b is the greatest lower bound of a and b, we know that a ∧ b ≼ a. Hence, either a ∧ b = 

a or a ∧ b = O. However, if a ∧ b = a, then either a ≼ b or a = O. In either case we have a 

contradiction because a and b are both atoms; therefore, a ∧ b = O. 

 

Lemma 3.3 Let B be a Boolean algebra and a, b ∈ B. The following statements are equivalent. 

i. a ≼ b, 

ii. a ∧ b′ = O, 

iii. a′ ∨ b = I. 

Proof  

(i) ⇒ (ii). If a ≼ b, then a ∨ b = b. Therefore,  

a ∧ b′  = a ∧ (a ∨ b)′  

= a ∧ (a′ ∧ b′)  

= (a ∧ a′) ∧ b′   

= O ∧ b′  

= O. 

(ii) ⇒ (iii). If a ∧ b′ = O, then a′ ∨ b = (a ∧ b′)′ = O′ = I. 

(iii) ⇒ (i). If a′ ∨ b = I, then  

a  = a ∧ (a′ ∨ b)  

= (a ∧ a′) ∨ (a ∧ b)  

= O ∨ (a ∧ b) 

= a ∧ b. 

Thus, a ≼ b. 

 

Lemma 3.4 Let B be a Boolean algebra and b and c be elements in B such that b ⋠ c. Then there 

exists an atom a ∈ B such that a ⪯ b and a ⋠ c. 

Proof 
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By Lemma 3.3, b ∧ c′ ≠ O. Hence, there exists an atom a such that a ≼ b ∧ c′. Consequently, a ≼ 

b and a ⋠ c. 

 

Lemma 3.5 Let b ∈ B and a1,…,an be the atoms of B such that ai ⪯ b. Then b = a1 ∨⋯∨ 

an. Furthermore, if a, a1,…,an are atoms of B such that, a ≼ b, ai ≼ b, and b = a ∨ a1 ∨⋯∨ an, then a 

= ai for some i = 1,…,n. 

Proof 

Let b1 = a1 ∨⋯∨ an. Since ai ≼ b for each i, we know that b1 ≼ b. If we can show that b ≼ b1, then 

the lemma is true by antisymmetry. Assume b ≼ b1. Then there exists an atom a such that a ≼ 

b and a ⋠ b1. Since a is an atom and a ≼ b, we can deduce that a = ai for some ai. However, this is 

impossible since a ≼ b1. Therefore, b ≼ b1. 

Now suppose that b = a1∨⋯∨an. If a is an atom less than b,  

a = a ∧ b = a ∧ (a1 ∨⋯∨ an) = (a ∧ a1) ∨⋯∨ (a ∧ an). 

But each term is O or a with a ∧ ai occurring for only one .ai. Hence, by Lemma 3.2, a = ai for 

some i. 

 

Theorem 3.6 Let B be a finite Boolean algebra. Then there exists a set X such that B is isomorphic 

to P(X). 

Proof  

We will show that B is isomorphic to P(X), where X is the set of atoms of B. Let a ∈ B. By Lemma 

3.5, we can write a uniquely as a = a1 ∨⋯∨ an for a1, …, an ∈ X. Consequently, we can define a 

map ϕ: B → P(X) by  

ϕ(a) = ϕ(a1 ∨⋯∨ an) = {a1, …, an}. 

Clearly, ϕ is onto. 

Now let a = a1 ∨⋯∨ an and b = b1 ∨⋯∨ bm be elements in B, where each ai and each bi is an atom. 

If ϕ(a) = ϕ(b), then {a1,⋯, an} = {b1,⋯,bm} and a = b.  

Consequently, ϕ is injective. 

The join of a and b is preserved by ϕ since  

ϕ(a ∨ b) = ϕ(a1 ∨⋯∨ an ∨ b1 ∨⋯∨ bm)  

= { a1,⋯, an, b1,⋯,bm}  

= { a1,⋯, an} ∪ { b1,⋯,bm}  
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= ϕ(a1 ∨⋯∨ an) ∪ ϕ(b1 ∨⋯∨ bm)  

= ϕ(a) ∪ ϕ(b). 

Similarly, ϕ(a ∧ b) = ϕ(a) ∩ ϕ(b). 

 

Exercise 3.2 Prove  

Corollary 3.1. The order of any finite Boolean algebra must be 2n for some positive integer n. 

 

Study Questions 

1. Describe succinctly what a poset is. Do not just list the defining properties, but give a 

description that another student of algebra who has never seen a poset might understand. For 

example, part of your answer might include what type of common algebraic topics a poset 

generalizes, and your answer should be short on symbols. 

2. How does a lattice differ from a poset? Answer this in the spirit of the previous question. 

3. How does a Boolean algebra differ from a lattice? Again, answer this in the spirit of the 

previous two questions. 

4. Give two (perhaps related) reasons why any discussion of finite Boolean algebras might center 

on the example of the power set of a finite set. 

5. Describe a major innovation of the middle twentieth century made possible by Boolean 

algebra. 

 

4.0 Conclusion  

In conclusion, the unit dwelt extensively on partially ordered sets, principle of duality and 

Boolean algebra. A poset is short for partially ordered set which is a set whose elements 

are ordered but not all pairs of elements are required to comparable in the order. A Boolean 

algebra is a finite Boolean algebra if it contains a finite number of elements as a set. Finite 

Boolean algebras are particularly nice since we can classify them up to isomorphism The 

power set is a lattice that is ordered by inclusion.  

5.0 Summary  

In the unit you have learnt that: 

• A relation P on X is called a partial order of X if it satisfies the axioms of 

reflective, antisymmetric and transitive. 
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• lattices and Boolean algebras are generalizing by the idea of inequality 

• A Boolean algebra is a finite Boolean algebra if it contains a finite number of 

elements as a set. 

• power set is a lattice that is ordered by inclusion. 

• Finite Boolean algebras are particularly nice since we can classify them up to 

isomorphism. 

 

6.0 Tutor-Marked Assignment  

  

1. Draw the lattice diagram for the power set of X = {a, b, c, d} with the set inclusion 

relation, ⊂. 

2. Draw the diagram for the set of positive integers that are divisors of 30. Is this poset a 

Boolean algebra? 

3. Let B be the set of positive integers that are divisors of .210. Define an order on B by a ≼ 
b if a | b. Prove that B is a Boolean algebra. Find a set X such that B is isomorphic to P(X). 

4. Prove or disprove: ℤ is a poset under the relation a ≼ b if a | b. 

5. Draw the switching circuit for each of the following Boolean expressions. 

i. (a ∨ b ∨ a′) ∧ a 

ii. (a ∨ b)′ ∧ (a ∨ b) 

iii. a ∨ (a ∧ b) 

iv. (c ∨ a ∨ b) ∧ c′ ∧ (a ∨ b)′ 

6. Draw a circuit that will be closed exactly when only one of three switches a, b, and c are 

closed. 

7. Prove or disprove: The set of all nonzero integers is a lattice, where a ≼ b is defined by a | 

b. 
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1.0 Introduction  

Graphs are simple, however, they are extremely useful mathematical objects. They are universal 

in the practical applications of Computer Science. For example:  

i. In a computer network, we can use graphs to represent how computers are connected to each 

other. We use the nodes to represent the individual computers and the edges to represent the 

network connections. Such a graph can then be used to route messages as quickly as possible. 

ii. In a digitalized map, nodes represent intersections (or cities), and edges represent roads (or 

highways). We may use directed edges to capture one-way traffic on streets, and weighted 

edges to capture distance. Such a graph can be used for generation directions (e.g., in GPS 

units).  

iii. On the internet, nodes represent web pages, and (directed) edges represent links from one web 

page to another. Such a graph can be used to rank each web page in the order of importance 

when displaying search results (e.g., the importance of a web page can be determined by the 
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amount of other web pages that are referencing it or pointing to it, and recursively how 

important those web pages are). 

iv. In a social network, nodes represent people, and edges represent friendships. One hot research 

topic currently is the understanding social networks. For example, how does a network 

achieve “x-degrees of separation”, where everyone is approximately x number of friendships 

away from anyway else?  

 

2.0 Objectives  

By the end of this Unit, you will be able to: 

• design complex network connections 

• analyse traffic routes and determine the shortest path to any location   

• discuss more on rating of web sites through referencing or site visits. 

 

3.0 Main Content 

 3.1 Graphs  

Graphs are made up of a collection of dots that are called vertices and lines connecting 

those dots that are called edges. When two vertices are connected by an edge, we say that 

they are adjacent. 

Definition 3.1.1 A graph is an ordered pair G = (V, E) consisting of a nonempty set V 

(vertices) and a set E (edges) of two-element subsets of V. 

• Definition 3.1.2. A directed graph G is a pair (V, E) where V is a set of vertices (or 

nodes), and E ⊆ V × V is a set of edges. The order of the two connected vertices is 

important. 

• Definition 3.1.3. An undirected graph additionally has the property that (u, v) ∈ E if 

and only if (v, u) ∈ E. 

  

Example 3.1.1.1 In a school social gathering, Abel, Bill, Clair, Dan, and Eve were assigned 

to a group. In that group, all members are allowed to “discuss” with each other. However, 

it turns out that the discussions were between Abel and Clair, Bill and Dan. While Eve 

discussed with everyone. Represent this situation with a graph.  
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A B 

C D

E 

Solution 3.1.1.1 Each person will be represented by a vertex and each discussion will be 

represented by an edge. That is, two vertices will be adjacent (there will be an edge between 

them) if and only if the people represented by those vertices discussed.  

     

  

From definition 3.1.1, a graph could be G = (V, E) = ({a, b, c, d}, {{a, b}, {a, c}, {b, c}, 

{b, d}, {c, d}}). This graph has four vertices (a, b, c, d) and five edges (the pairs {a, b}, 

{a, c}, {b, c}, {b, d}, {c, d}). 

Exercise 3.1.1.2 Draw the graph ({a, b, c, d}, {{a, b}, {a, c}, {b, c}, {b, d}, {c, d}}). 

In directed graphs, edge (u, v) (starting from node u, ending at node v) is not the same as 

edge (v, u). We also allow “self-loops” or “recursive-loops”, i.e., edges of the form (v, v). 

Since the edge (u, v) and (v, u) must both be present or missing, we often treat a non-self-

loop edge as an unordered set of two nodes (e.g., {u, v}). A common extension is a 

weighted graph, where each edge additionally carries a weight (a real number). The weight 

can have a variety of meanings in practice: distance, importance and capacity, to name a 

few. 

Example 3.1.1.3 Before we proceed further, try to determine: 

i. Which (if any) of the graphs below are the same? 

 

ii. Are the graphs below the same or different?  

Graph 1:  

V = {a, b, c, d, e},  

E = {{a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {d, e}}.  

Graph 2:  

V = {v1, v2, v3, v4, v5},  

E = {{v1, v3}, {v1, v5}, {v2, v4}, {v2, v5}, {v3, v5}, {v4, v5}} 

E 
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a
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iii. Are the graphs below equal?  

G1 = ({a, b, c}, {{a, b}, {b, c}}); G2 = ({a, b, c}, {{a, c}, {c, b}}).  

Solution 3.1.1.3 (iii). No. Here the vertex sets of each graph are equal, which is a good 

start. Also, both graphs have two edges. In the first graph, we have edges {a, b} and {b, 

c}, while in the second graph we have edges {a, c} and {c, b}. Now we do have {b, c} = 

{c, b}, so that is not the problem. The issue is that {a, b}, {a, c}. Since the edge sets of the 

two graphs are not equal (as sets), the graphs are not equal (as graphs). 

 

Example 3.1.1.4 Consider the graphs:  

G1 = {V1, E1} where V1 = {a, b, c} and E1 = {{a, b}, {a, c}, {b, c}}; 

G2 = {V2, E2} where V2 = {u, v, w} and E2 = {{u, v}, {u, w}, {v, w}}. 

Are these graphs the same?  

Solution 3.1.1.4 The two graphs are NOT equal. It is enough to notice that V1, V2 since a 

∈ V1 but a ∉ V2. However, both of these graphs consist of three vertices with edges 

connecting every pair of vertices. By drawing the graph as follows:  

 

 

 

 

We can clearly see that these graphs are basically the same, so while they are not equal, 

they will be isomorphic. This means the renaming of the vertices of one of the graphs and 

results in the second graph. 

3.1.4 Isomorphic Graphs 

An isomorphism between two graphs G1 and G2 is a bijection, f: V1 → V2 between the 

vertices of the graphs such that {a, b} is an edge in G1 if and only if {f(a), f(b)} is an edge 

in G2. Two graphs are isomorphic if there is an isomorphism between them. In this case 

we write G1 ≌ G2. 
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Example 3.1.4.1 Decide whether the graphs G1 = {V1, E1} and G2 = {V2, E2} are equal 

or isomorphic. V1 = {a, b, c, d}, E1 = {{a, b}, {a, c}, {a, d}, {c, d}} and V2 = {a, b, c, d}, 

E2 = {{a, b}, {a, c}, {b, c}, {c, d}}. 

Solution 3.1.4.1 The graphs are NOT equal, since {a, d} ∈ E1 but {a, d} ∉ E2. However, 

we can confirm that both graphs contain the exact same number of vertices and edges. By 

this, they might be isomorphic (this is a good start but in most cases, it is not enough).  

Let’s try to build an isomorphism. From the definition, let’s try to build a bijection f: V1 → 

V2, such that f(a) = b, f(b) = c, f(c) = d and f(d) = a. This is a bijection, but to make sure 

that the function is an isomorphism, we must make sure it respects the edge relation.  

In G1, the vertices a and b are connected by an edge. In G2, f(a) = b and f(b) = c are 

connected by an edge. We are on the right track, however, we have to check the other three 

edges.  The edge {a, c} in G1 corresponds to {f(a), f(c)} = {b, d}, now we have a problem 

here. There is no edge between b and d in G2. Thus f is NOT an isomorphism.  

If f is not an isomorphism, it does not mean that there is no isomorphism between G1 and 

G2. Let’s draw the graphs and then try to create some match ups (if possible).  

It is noticeable in G1 that the vertex a is adjacent to every other vertex. In G2, there is also 

a vertex with such property and that is c. Therefore, we can build the bijection g: V1 → V2 

by defining g(a) = c to start with. Next, which vertex should we match with b? In G1, the 

vertex b is only adjacent to vertex a. There is exactly one vertex like this in G2, that is d. 

Therefore, let g(b) = d. By looking at the last two, we can see that we are free to choose the 

matches. Therefore, let go with g(c) = b and g(d) = a (switching these would still work fine).  

Finally, let’s check that there is really is an isomorphism between G1 and G2 using g. We 

have seen that g is definitely a bijection. Now we have to make sure that the edges are 

respected. The four edges in G1 are  

{a, b}, {a, c}, {a, d}, {c, d}.  

Under the proposed isomorphism these become  

{g(a), g(b)}, {g(a), g(c)}, {g(a), g(d)}, {g(c), g(d)}  

The bijection results in the edges: 

{c, d}, {c, b}, {c, a}, {b, a}. 

These edges are precisely the edges in G2. Thus g is an isomorphism, hence G1 ≌ G2. 
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3.1.5 Subgraphs 

3.1.5.1 Definition. We say that G′ = (V′, E′) is a subgraph of G = (V, E), and write G′ ⊆ 

G, provided V′ ⊆ V and E′ ⊆ E.  

3.1.5.2 Definition. We say that G′ = (V′, E′) is an induced subgraph of G = (V, E) provided 

V′ ⊆ V and every edge in E whose vertices are still in V′ is also an edge in E′. 

Example 3.1.5. Considering the graph G1. Which of the graphs G2, G3 and G4 are 

subgraphs or induced subgraphs of G1?  

 

 

Solution 3.1.5. By carefully applying the definitions of a subgraph and an induced 

subgraph, we can see that: 

i. The graphs G2 and G3 are both subgraphs of G1.  

ii. Only the graph G2 is an induced subgraph. This is because every edge in G1 that 

connects vertices in G2 is also an edge in G2. However, in G3, the edge {a, b} is in E1 but 

not E3, even though vertices a and b are in V3.  

iii. The graph G4 is NOT a subgraph of G1. It might seem like it is, however, if you 

look closely, you will realize that vertex e does not exist in G4. Therefore, it is enough to 

say that G4 is NOT a subgraph of G1, since {c, f} ∈ E4 but {c, f} ∉ E1 and that we don’t 

have the required E4 ⊆ E1. 

3.1.6 Bipartite Graphs 

A graph is bipartite if the vertices can be divided into two sets, A and B, with no two 

vertices in adjacent in A and B. The vertices in A can be adjacent to some or all of the 

vertices in B. If each vertex in A is adjacent to all the vertices in B, then the graph is a 

complete bipartite graph, and gets a special name: Km,n, where |A| = m and |B| = n.  
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Figure 3: Bipartition and complete bipartite graphs. 

3.1.7 Union and Intersection of a Graph: These are two useful operations for combining 

graphs. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs.  

i.The union of G1 and G2, denoted by G1 ⋃ G2, is the graph G3 defined as G3 = (V1 ⋃ V2, 

E1 ⋃ E2).  

ii.The intersection of G 1 and G2, denoted by G1 ∩ G2, is the graph G4 defined as G4 = (V1 

∩ V2, EI ∩ E2).  

 

3.1.8 Complement of a Graph: This operation that is used with a single graph. To define 

this, we need an analogue of a universal set. In this case, we use the complete graph on the 

vertex set of the graph for which we would like to find the complement. Let G = (V, E) be 

a subgraph of K|V|, the complete graph on |V| vertices. The complement of G¯ in K|V|, 

denoted as G = (V1, El), is the subgraph of K|V| with V1 = V and E1 = K|V| (E) - E. 



46 
 

 

3.2 The Handshaking Problem 

Theorem 1. (Handshaking Theorem) Let G be a graph with at least two vertices. At least two 

vertices of G have the same degree.  

Proof. The proof is by induction on the number of vertices n in a graph. Let no = 2 and T = {n 

∈ N: any graph with n vertices has at least two vertices of the same degree}.  

(Base step) For no, the only graphs to consider are the graph consisting of two isolated vertices 

and the graph having a single edge. Clearly, the result holds for each of these graphs. Therefore, 

the base case no = 2 is true and no ∈ T.  

(Inductive step) Let n ≥ no. Show that if n ∈ T, then n + 1 ∈ T.  

Assuming that any graph on n vertices with n ≥ 2 has two vertices of the same degree, we must 

prove that any graph on n + 1 vertices has two vertices of the same degree.  

Let G = (V, E) be a graph with n + 1 vertices where n + 1 ≥ 3. Clearly, 0 ≤ deg(v) ≤ n for any 

v ∈ V.  

If there is an isolated vertex in G, then by the induction hypothesis, the subgraph of G 

consisting of all the vertices but one isolated vertex must have two vertices with the same 

degree. Adding an isolated vertex to the subgraph with at least two vertices having the same 

degree gives the result for G.  

If there is no isolated vertex in G, then all the degrees of vertices v ∈ V satisfy 1 ≤ deg(v) ≤ n. 

In this case, we have at most n different values for the degrees of vertices in G. Since G has n 

+ 1 vertices, then by the Pigeon-Hole Principle (see reference material for more explanation), 

at least two vertices of G have the same degree.  

Therefore, n + 1 ∈ T. By the Principle of Mathematical Induction, T = {n ∈ N: n ≥ 2}. 
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The handshake theorem is sometimes called the degree sum formula, and can be written 

symbolically as  

∑ d(v)v∈V  = 2e.  

Here we are using the notation d(v) for the degree of the vertex v. One use for the theorem is 

to actually find the number of edges in a graph. To do this, you must be given the degree 

sequence for the graph (or be able to find it from other information). This is a list of every 

degree of every vertex in the graph, generally written in non-increasing order. 

Example 3.2.1. How many vertices and edges must a graph have if its degree sequence is (4, 

4, 3, 3, 3, 2, 1)?  

Solution 3.2.1. The number of vertices is easy to find: it is the number of degrees in the 

sequence: 7. To find the number of edges, we compute the sum of the degrees:  

4 + 4 + 3 + 3 + 3 + 2 + 1 = 20. 

Therefore, the number of edges is half of 20 (20/2) = 10. 

Example 3.2.2. At a recent mathematics competition, 9 mathematicians greeted each other by 

shaking hands. Is it possible that each mathematician shook hands with exactly 7 people at the 

competition?  

Solution 3.2.2. It looks like this should be possible. Each mathematician chooses one person 

to not shake hands with. But this cannot happen. We are asking whether a graph with 9 vertices 

can have degree 7 for each vertex. If such a graph existed, the sum of the degrees of the vertices 

would be 9 x 7 = 63. This would be twice the number of edges (handshakes) resulting in a 

graph with 31.5 edges. That is impossible. Thus at least one (in fact an odd number) of the 

mathematicians must have shaken hands with an even number of people at the competition. 

 

 

3.3 Euler Paths and Circuits 

An Euler path, in a graph or multigraph can be defined as a walk through the graph which uses 

every edge exactly once. While an Euler circuit is an Euler path which starts and stops at the 

same vertex. The main goal here is to find a quick way to determine if a graph has an Euler 

path or an Euler circuit. 
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In summary, we can conclude the followings: 

i. A graph has an Euler circuit if and only if the degree of every vertex is even. 

ii. A graph has an Euler path if and only if there are at most two vertices with odd degree. 

    3.4 Adjacency Matrices 

    A graph can be represented in several different ways in a computer. It can be shown   

diagrammatically when the number of vertices and edges are reasonably small. Though, graphs 

can also be represented in the form of matrices. Thus, adjacency matrix is a square matrix used to 

represent a finite graph in graph theory and computer science. The element of the matrix shows 

whether pairs of vertices are adjacent or not in the graph. Also, directed and undirected graphs can 

be represented using adjacency matrices. Let 𝐺 = (𝑉, 𝐸) be a graph with "𝑛" vertices, then the 

𝑛 × 𝑛 matrix 𝐴, in which 𝑉 = {𝑣1, 𝑣2, .  .  . , 𝑣𝑛} is the vertex set, 𝐸 is the edge set, 𝑎𝑖𝑗 = 1 is the 

number of edges between the vertices 𝑣𝑖 and 𝑣𝑗  (if there exists a path from 𝑣𝑖 to 𝑣𝑗) and 𝑎𝑖𝑗 = 0 

otherwise is called adjacency matrix. 

Example 3.4.1: The adjacency matrix 𝐴𝐺1
 of the directed graph 𝐺1 is given in Figure 1. 

    

 

4.0  Conclusion  

Graphs are very simple and are extremely useful mathematical objects. They are universal 

in the practical applications. They are made up of a collection of dots that are called vertices 

and lines connecting those dots that are called edges. There are directed or undirected 

graph. 

5.0  Summary  

 In this unit, you have learnt that: 

• Graphs useful mathematical objects 

• You can use your knowledge on graph to design complex network connections 
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• Analyse traffic routes and determine the shortest path to any location   

• Graphs are used on rating of web sites through referencing or site visits 

• Two graphs are isomorphic if there is an isomorphism between them 

• A graph is bipartite if the vertices can be divided into two sets 

 

6.0  Tutor-Marked  Assignment  

1. Are the graphs below equal? Are they isomorphic? If they are isomorphic, give the 

isomorphism else state why they are not.  

G1 = V1 = {a, b, c, d, e}, E1 = {{a, c}, {a, d}, {a, e}, {b, d}, {b, e}, {c, e}, {d, e}} 

 

G2 =  

 

 

 

 

2. Consider the following two graphs:  

G1  V1 = {a, b, c, d, e, f, g} E1 = {{a, b}, {a, d}, {b, c}, {b, d}, {b, e}, {b, f}, {c, g}, 

{d, e}, {e, f}, {f, g}}.  

G2  V2 = {v1, v2, v3, v4, v5, v6, v7}, E2 = {{v1, v4}, {v1, v5}, {v1, v7}, {v2, v3}, 

{v2, v6}, {v3, v5}, {v3, v7}, {v4, v5}, {v5, v6}, {v5, v7}}  

i. Let f: G1 → G2 be a function that takes the vertices of Graph 1 to vertices of Graph 

2. The function is given by the following table:  

x  a  b  c  d  e  f  g 

f(x)  v4 v5 v1 v6 v2 v3 v7 

Does f define an isomorphism between Graph 1 and Graph 2?  

ii. Define a new function g (with g, f) that defines an isomorphism between Graph 1 and 

Graph 2. 

3. If 10 people each shake hands with each other, how many handshakes took place? What 

does this question have to do with graph theory? 

4. Decide whether the statements below about subgraphs are true or false. If true in 1 or 2 

sentences, explain why, else, give a counterexample if false. 
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i. Any subgraph of a complete graph is also complete.  

ii. Any induced subgraph of a complete graph is also complete.  

iii. Any subgraph of a bipartite graph is bipartite.  

5.  

i. Which of the graphs below have Euler paths or Euler circuits?  

 

ii. List the degrees of each vertex of the graphs 5 i above. Is there a connection between 

degrees and the existence of Euler paths and circuits?  

iii. Is it possible for a graph with a degree 1 vertex to have an Euler circuit? If so, draw 

one. If not, explain why not. What about an Euler path?  

iv. What if every vertex of the graph has degree 2? Is there an Euler path or an Euler 

circuit? Draw some graphs. 
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1.0 Introduction  

In many analysis, variables are assumed to be related by sets of linear equations. Matrix 

algebra provides a clear and concise notation for the formulation and solution of such 

problems, many of which would be complicated in conventional algebraic notation. The 

concept of determinant is based on that of matrix. 

2.0 Objectives  

By the end of this Unit, you will be able to: 

• compactly write and work with multiple linear equations 

• discuss the concept of matrices  
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• explain how to perform some simple operations addition, subtraction, 

multiplication, determinant and transpose 

• explain how to find the inverse of a matrix 

• explain the business application aspect of matrices. 

3.0 Main Content 

 3.1  MATRIX  

Definition 3.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n 

columns is said to have dimension m × n. 

Definition 3.1.2. A set of mn numbers (real or complex), arranged in a rectangular 

formation (array or table) having m rows and n columns and enclosed by a square bracket 

[ ] is called m × n matrix (read “m by n matrix”) . 

A matrix may be represented as follows 

𝐴 =  [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

…    …    …
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

] 

The letters aij stand for real numbers. Note that aij is the element in the ith row and jth 

column of the matrix. Thus, the matrix A is sometimes denoted by simplified form as (aij) 

or by {aij} i.e., A = (aij). Matrices are usually denoted by capital letters A, B, C etc. and its 

elements by corresponding small letters a, b, c etc. 

Order of a Matrix: The order or dimension of a matrix is the ordered pair having 

as first component the number of rows and as second component the number of 

columns in the matrix. If there are 3 rows and 2 columns in a matrix, then its order 

is written as (3 × 2) or (3, 2) which is read as three by two. In general, if m are rows 

and n are columns of a matrix, then its order is (m × n). 

Example 3.1.1.  

A = [
 3  1 
0  2

], B = [
 1 
3
4

]  and C = [
 4  2  6 
2  1  3

]. 

The order of the matrices, A, B and C are (2 × 2), (3 × 1) and (2 × 3) respectively. 
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Definition 3.1.3. Matrices A and B are equal, A = B, if A and B have the same 

dimensions and each entry of A is equal to the corresponding entry of B. 

 

3.1.1 Types of Matrices 

1. Row Matrix and Column Matrix: A matrix consisting of a single row is 

called a row matrix or a row vector, whereas a matrix having single column is called 

a column matrix or a column vector.  

2. Null or Zero Matrix: A matrix in which each element is „0‟ is called a 

Null or Zero matrix. Zero matrices are generally denoted by the symbol O. This 

distinguishes zero matrix from the real number 0.  

For example O = [
 0  0  0 
 0  0  0 

]is a zero matrix of order 2  3.  

The matrix Omxn has the property that for every matrix Amxn, A + O = O + A = A  

3. Square matrix: A matrix A having same numbers of rows and columns is 

called a square matrix. A matrix A of order m  n can be written as Amn. If m = n, 

then the matrix is said to be a square matrix. A square matrix of order n  n, is 

simply written as An. A = and C =. 

Thus [
𝑎  𝑏
 𝑐  𝑑 

] and [

𝑎  𝑑  𝑔
𝑏  𝑒  ℎ
 𝑐  𝑓  𝑖 

] are square matrix of order 2 and 3. 

 

3.1.2. Main or Principal Diagonal: The principal (leading) diagonal of a square 

matrix is the ordered set of elements aij, where i = j, extending from the upper left-

hand corner to the lower right-hand corner of the matrix. Thus, the principal 

diagonal contains elements a11, a22, a33 etc. For example, the principal diagonal of  

[
𝑎  𝑑  𝑔
𝑏  𝑒  ℎ
 𝑐  𝑓  𝑖 

]  

consists of a, e and i, in that order. 

3.1.3. Particular cases of a square matrix 
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1. Diagonal matrix: A square matrix in which all elements are zero except 

those in the main or principal diagonal is called a diagonal matrix. Some elements 

of the principal diagonal may be zero but not all. 

For example, [
1  0 0
0  1  0
 0  0 1 

] and [
 1 0 
 0 2 

] are diagonal matrices. 

In general, 𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] = (𝑎𝑖𝑗)𝑛𝑥𝑛 

is a diagonal matrix if and only if  

  aij = 0   for i ≠ j, and 

  aij ≠ 0   for at least one i = j 

 

2. Scalar Matrix 

A diagonal matrix in which all the diagonal elements are same, is called a scalar 

matrix i.e.  

Thus, [
1 0
0 2

] and [
𝑘 0 0
0 𝑘 0
0 0 𝑘

] are scalar matrices. 

 

3. Identity Matrix or Unit Matrix 

A scalar matrix in which each diagonal element is 1 (unity) is called a unit matrix. 

An identity matrix of order n is denoted by In. 

Thus, 𝐼2 = [
1 0
0 1

] and 𝐼3 = [
1 0 0
0 1 0
0 0 1

] are identity matrices of the order 2 and 3 

respectively. 

In general, 𝐴 = [

𝑎11  𝑎12 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

] = (𝑎𝑖𝑗)𝑚𝑥𝑛 

Is an identity matrix if and only if  

  aij = 0   for i ≠ j, and 

  aij ≠ 1  for i = j. 

Note: If a matrix A and identity matrix I are conformable for multiplication, then I 

has the property that AI = IA = A i.e., I is the identity matrix for multiplication.  
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4. Equal Matrices 

Two matrices A and B are said to be equal if and only if they have the same order 

and each element of matrix A is equal to the corresponding element of matrix B. 

this implies that for each i, j, aij = bij. 

Thus, 𝐼2 = [
2 1
3 0

] and 𝐼3 =  [

4

2
2 − 1

√9 0
] 

Then A = B because the order of matrices A and B is same and aij = bij for every i, 

j. 

Example 3.1.1. Find the values of x, y, z and a which satisfy the matrix equation  

[ 
𝑥 + 3 2𝑦 + 𝑥
𝑧 − 1 4𝑎 − 6

 ] =  [
 0 −7 
3 2𝑎

] 

Solution 3.1.1. By the definition of equality of matrices, we have: 

x + 3 = 0 ……………………………(1)  

2y + x = -7 ………………………….(2)  

z – 1 = 3 …………………………….(3)  

4a – 6 = 2a ………………………….(4)  

i.From (1) x = -3, 

ii.Put the value of x in (2), we get y = -2, 

iii.From (3) z = 4, 

iv.From (4) a = 3 

 

5. The Negative of a Matrix 

The negative of the matrix Amxn, denoted by -Amxn, is the matrix formed by 

replacing each element in the matrix Amxn with its additive inverse. For example,  

If 𝐴3𝑥2 = [
1  2
 3  4 
5  6 

] 

Then 𝐴3𝑥2 = [
1  2

 3  4 
 5  6 

] 

for every matrix Amxn, the matrix -Amxn has the property that  

A + (-A) = (-A) + A = 0  

i.e., (-A) is the additive inverse of A.  

The sum Bm-n + (-Amxn) is called the difference of Bmxn and Amxn and is denoted by 

Bmxn – Amxn. 
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3.1.4. Operations on Matrices 

1. Multiplication of a Matrix by a Scalar: If A is a matrix and k is a scalar 

(constant), then kA is a matrix whose elements are the elements of A, each 

multiplied by k. 

 For example, if , 𝐴 =  [
1  2  3
2   4  6
3  6  9

] then for a scalar k, 

k𝐴 =  [
𝑘   2𝑘  3𝑘
2𝑘  4𝑘  6𝑘
3𝑘  6𝑘  9𝑘

] 

Example 3.3.1. From A given, determine 3A. 

𝐴 =  [
1  2  3
2   4  6
3  6  9

] 

3𝐴 =  3 [
1  2  3
2   4  6
3  6  9

] =  [
3     6    9
6   12  16
9   18  27

] 

 

2. Addition and subtraction of Matrices: If A and B are two matrices of 

same order m  n then their sum A + B is defined as C, m  n matrix such that each 

element of C is the sum of the corresponding elements of A and B. For example, 

Let 𝐴 =  [
2  9
5 6

] and 𝐵 =  [
1 5
3  2

]. 

Then, C = A + B = [
2 + 1    9 + ( 5)
5 + 3     6 + 2

] = [
3   4
8  4

] 

Similarly, the difference A – B of the two matrices A and B is a matrix each element 

of which is obtained by subtracting the elements of B from the corresponding 

elements of A. 

Then, D = A - B = [
2 − 1    9 − ( 5)
5 − 3      6 − 2

] = [
1   14
3  8

] 

If A, B and C are the matrices of the same order m  n then,  

A + B = B + A and (A + B) + C = A + (B + C)  
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i.e., the addition of matrices is commutative and associative respectively.  

Note: The sum or difference of two matrices of different order is not defined. For 

example, the sum or difference of a matrices with orders (3  2) and (2  2) is not 

defined. 

3. Product of Matrices: Two matrices A and B are said to be conformable for 

the product AB if the number of columns of A is equal to the number of rows of B. 

Then the product matrix AB has the same number of rows as A and the same 

number of columns as B.  

Thus the product of the matrices Amxp and Bpxn is the matrix (AB)mxn. The elements 

of AB are determined as follows: 

The element Cij in the ith row and jth column of (AB)mxn is found by  

cij = ai1b1j + ai2b2j + ai3b3j + ……….+ ainbnj 

For example, let’s consider the matrices: 

𝐴2𝑥2 = [
𝑎11 𝑎12

𝑎21 𝑎22
] and 𝐵2𝑥2 = [

𝑏11 𝑏12

𝑏21 𝑏22
] 

Since the number of columns of A is equal to the number of rows of B, the product AB is 

defined and is given as  

𝐴𝐵 = [
𝑎11 𝑎12

𝑎21 𝑎22
] [

𝑏11 𝑏12

𝑏21 𝑏22
] =  [

𝑎11𝑏11 + 𝑎12𝑏21 𝑎12 𝑏12 +  𝑎12𝑏22

𝑎21𝑏11+ 𝑎22𝑏21 𝑎21𝑏12 +  𝑎22𝑏22
] 

Thus c11 is obtained by multiplying the elements of the first row of A i.e., a11, a12 by the 

corresponding elements of the first column of B i.e., b11, b21 and adding the product. Similarly, 

c12 is obtained by multiplying the elements of the first row of A i.e., a11, a12 by the 

corresponding elements of the second column of B i.e., b12, b22 and adding the product. 

Similarly, for c21, c22. Note:  

i.Multiplication of matrices is not commutative i.e., AB  BA in general. 2. 

ii.For matrices A and B if AB = BA then A and B commute to each other. 
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iii.A matrix A can be multiplied by itself if and only if it is a square matrix. The product A  A, 

in such cases is written as A2. Similarly, we may define higher powers of a square matrix i.e., 

A  A2 = A3, A2  A2 = A4. 

iv.In the product AB, A is said to be pre multiple of B and B is said to be post multiple of A.  

Example 3.1.2. If 𝐴 =  [
 1    2
1   3

]and 𝐵 =  [
 2  1 
 1  1 

], find AB and BA. 

Solution 3.1.2.  

𝐴𝐵 =  [
 1    2
1   3

] [
 2  1 
 1  1 

] 

= [
1.2 +  2.1 1.1 + 2.1
1.2 + 3.1 1.1 + 3.1

] 

= [
 4  3 
 1  2 

] 

 

𝐵𝐴 =  [
 2  1 
 1  1 

] [
 1    2
1   3

] 

= [
 2.1 +  1. 1 2.2 + 1.3 
1.1 + 1. 1 1.2 + 1.3 

] 

= [
 2 − 1 4 + 3 
1 − 1 2 + 3 

] 

= [
 1  7 
 0  5 

] 

Exercise 3.1.2 clearly shows that multiplication of matrices in general, is not commutative 

i.e., AB  BA. 

Example 3.1.3. If 𝐴 =  [
 3   1    2
1    0   1

] and 𝐵 =  [
 1  1 
2   1
3   1

], find AB  

Solution 3.1.3. Since A is a (2  3) matrix and B is a (3  2) matrix, they are conformable 

for multiplication. We have 

𝐴𝐵 =  [
 3   1    2
 1   0   1

] [
 1  1 
2   1
3   1

] 

= [
 3.1 +  1.2 + 2.3 3. 1 + 1.1 + 2.1 
 1.1 + 0.2 + 1.3 1. 1 + 0.1 + 1.1 

]  

=  [
 3 + 3 + 6    3 + 1 + 2
1 + 0 + 3    1 + 0 + 1

] 

=  [
 11   0 
  4     0 

] 
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Remarks:  

If A, B and C are the matrices of order (m  p), (p  q) and (q  n) respectively, then, 

i. Associative law: (AB)C = A(BC). 

ii. Distributive law: C (A + B) = CA + CB and (A + B) C = AC + BC.  

 

3.2 Determinant 

The determinant of a matrix is a scalar (number), obtained from the elements of a matrix by 

specified, operations, which is characteristic of the matrix. The determinants are defined 

only for square matrices. Determinant is denoted by det (A) or |A| for a square matrix A.  

Determinant of a 2  2 matrix: Given the matrix 𝐴 = [
𝑎11 𝑎12

𝑎21 𝑎22
], then  

|𝐴| = |
𝑎11 𝑎12

𝑎21 𝑎22
| 

= | 𝑎11𝑎22 −  𝑎21𝑎12| 

 

Example 3.2.1. If 𝐴 =  [
 1    2
1   3

], find |A|. 

Solution 3.2.1.  

|𝐴| = |
1   2
1  3

| = |1.3 − ( 1.2)| = |3 + 2| = 5 

 

Determinant of a 3  3 matrix: Given the matrix 𝐴 =  [

 𝑎11   𝑎12  𝑎13 

𝑎21  𝑎22  𝑎23

𝑎31  𝑎32  𝑎33

], then  

|𝐴| = |

 𝑎11   𝑎12  𝑎13 

𝑎21  𝑎22  𝑎23

𝑎31  𝑎32  𝑎33

| 

= 𝑎11 |
𝑎22 𝑎23

𝑎32 𝑎33
| − 𝑎12 | 

𝑎21 𝑎23

𝑎31 𝑎33
| + 𝑎13 |

𝑎21 𝑎22

𝑎31 𝑎32
| 

=  𝑎11(𝑎22𝑎33−𝑎32𝑎23) −  𝑎12 (𝑎21𝑎33 − 𝑎31𝑎23) + 𝑎13 (𝑎21𝑎32 − 𝑎31𝑎22) 

These determinants are called minors. We take the sign + or − , according to ( − 1)i+j aij 

Where i and j represent row and column. 

 

3.2.1. Minor and Cofactor of Element 



60 
 

The minor Mij of the element aij in a given determinant is the determinant of order (n – 1  

n – 1) obtained by deleting the ith row and jth column of Anxn. For example, in the 

determinant 

|𝐴| = |

 𝑎11   𝑎12  𝑎13 

𝑎21  𝑎22  𝑎23

𝑎31  𝑎32  𝑎33

| 
 

………………………….. (1) 

i.The minor of the element a11 is M11 = |
𝑎22 𝑎23

𝑎32 𝑎33
| 

ii.The minor of the element a12 is M12 = | 
𝑎21 𝑎23

𝑎31 𝑎33
| 

iii.The minor of the element a13 is M13 = |
𝑎21 𝑎22

𝑎31 𝑎32
| and so on. 

The scalars Cij = (-1)i+j Mij are called the cofactor of the element aij of the matrix A.  

The value of the determinant in equation (1) can also be found by its minor elements or 

cofactors, as  

a11M11 – a12M12 + a13M13   

Or    

a11C11 + a12C12 + a13C13.  

Hence, the |A| is the sum of the elements of any row or column multiplied by their 

corresponding cofactors. The value of the determinant can be found by expanding it from 

any row or column. 

Example 3.2.3.  If 𝐴 =  [
 3  2  1 
 0  1  2 
 1  3  4 

]find |A| by expansion about (a) the first row (b) the first 

column. Solution 3.2.3. (a) Using the first row  

|𝐴| = |
 3  2  1 
 0  1  2 
 1  3  4 

| 

= 3 |
1  2
3   4

| − 2 |
 0  2
1   4

| + 1 |
0   1
1   3

|  

= 3(1.4 – (-2).3) -2(0.4 – 1. -2) +1(0.3 – 1.1)  

= 3(4+6) -2(0+2) +1(0-1) 

= 30 – 4 – 1  

= 25 

Solution 3.2.3. (b) Using the first column 
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|𝐴| = |
 3  2  1 
 0  1  2 
 1  3  4 

| 

= 3 |
1  2
3   4

| − 0 |
 2   1
3   4

| + 1 |
2   1
1  2

|  

= 3(1.4 – (-2).3) - 0(2.4 – 3.1) +1(2.-2 – 1.1)  

= 3(4+6) - 0(8 - 2) +1(-4 - 1) 

= 30 – 0 – 5  

= 25 

3.3.  Special Matrices 

1. Transpose of a Matrix 

If A = [aij] is m  n matrix, then the matrix of order n  m obtained by interchanging the 

rows and columns of A is called the transpose of A. It is denoted At or A. For example,  

if 𝐴 = [
 3  2  1 
 0  1  2 
 1  3  4 

] then, 𝐴𝑡 = [
 3  0  1 
 2  1  3 
 1  2  4 

] 

 

2. Symmetric Matrix 

A square matrix A is called symmetric if A = At. For example, 

if 𝐶 = [
 0  4 1 
 4  0  3 
 1  3  0 

] then, 𝐶𝑡 = [
 0  4 1 
 4  0  3 
 1  3  0 

] = 𝐶 

 

3. Skew Symmetric 

A square matrix A is called skew symmetric if A = −At. For example,  

If 𝐶 = [
 0  4 1 
 4  0  3 
 1  3  0 

] then, 

𝐶𝑡 = [
 0  4  1 
 4  0  3 
 1  3  0 

] = ( 1) [
 0  4 1 
 4  0  3 
 1  3  0 

] 

Ct =  −C. Thus matrix C is skew symmetric.  

 

4. Singular and Non-singular Matrices 

A square matrix A is called singular if |A| = 0 and is non-singular if |A|  0, for 

example if t 
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𝐴 =  [
 1   3
 1   3

] then,  

|𝐴| = |
 1   3
 1   3

| = |1.3 − (1.3)| = |3 − 3| = 0 

Then, |A| = 0, Hence A is singular. 

 

5. Adjoint of a Matrix 

Let A = (aij) be a square matrix of order n  n and (cij) is a matrix obtained by replacing 

each element aij by its corresponding cofactor cij then (cij)
t is called the adjoint of A. It is 

written as Adj (A).  

      Example 3.1.4. If 𝐴 =  [
 1     0  − 1
 1     3      1
0     1      2

], find the cofactor matrix of A 

      Solution 3.1.4. The cofactors of A are: 

     C11 = (−1)1+1 |
3   1
1   2

| = 5;     C12 = (−1)1+2 |
1    1
0    2

| = -2;       C13 = (−1)1+3 |
 1   3
 0   1

| = 1 

     C21 = (−1)2+1 |
0 − 1
1    2

| = -1; C22 = (−1)2+2 |
 1  − 1
 0     2

| = 2;    C23 = (−1)2+3 |
1   0
0   1

| = -1 

     C31 = (−1)3+1 |
0  − 1
3    1

| = 3;    C32 = (−1)3+2 |
1  − 1
1    1

| = -2;    C33= (−1)3+3 |
 1   0
 1   3

| = 3 

 

The matrix of cofactors of A will be, C: 

𝐶 =  [
 5  − 2   1

−1    2  − 1 
3   − 2      3

] 

𝐶𝑡 =  [
 5  − 1   3

−2    2  − 2 
1   − 1      3

] 

Therefore, Adj (A) = Ct 

 

Adjoint of a 22 Matrix 

The adjoint of matrix 𝐴 =  [
𝑎   𝑏
𝑐   𝑑

] is denoted by Adj (A) and is defined as: 

𝐴𝑑𝑗 (𝐴) =  [
𝑑 − 𝑎
−𝑐   𝑏

]  
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6. Inverse of a Matrix 

If A is a non-singular square matrix then, 𝐴−1  =  
𝑎𝑑𝑗 (𝐴)

|𝐴|
  

22 Matrix 

Example 3.1.5. If 𝐴 =  [
 1   2
 1   3

], find A-1.  

Solution 3.1.5. 

|𝐴| = |
 1   2
 1   3

| = |1.3 − (1.2)| = |3 − 2| = 1 

Adj (A) = [
 3  − 2
−1   1

] 

𝐴−1  =  
𝑎𝑑𝑗 (𝐴)

|𝐴|
=  

1

1
[
 3  − 2
−1   1

] =  [
 3  − 2
−1   1

] 

Alternately: For a non-singular matrix A of order (n  n) if there exist another 

matrix B of order (n  n) such that their product is the identity matrix I of order 

(n  n) i.e., AB = BA = I.  

Then B is said to be the inverse (or reciprocal) of A and is written as B = A-1. 

Example 3.1.6. If 𝐴 =  [
 1    3

2   7
]and 𝐵 =  [

 7  3 
 2  1 

]. Show that AB = BA = I then, B = 

𝐴−1. 

Solution 3.1.6. 

𝐴𝐵 =  [
 1    3

2   7
] [

 7  3 
 2  1 

] = [
 1   0 
 0   1 

] 

 

𝐵𝐴 =  [
 7  3 
 2  1 

] [
 1    3

2   7
] = [

 1   0 
 0   1 

] 

 

                    Example 3.1.7. If 𝐴 =  [
 0   2   3
1    3   3
1  2   2

] 

                    Solution 3.1.7.  

        |A| = 0 +2 (–2 +3) – 3(–2 + 3) = 2 – 3  

        |A| = –1, Hence solution exists.  

        Cofactor of A are: 

        C11 = 0; C12 = −1; C13 = 1 

        C21 = 2 ; C22 = -3; C23 = 2 
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          C31 = 3; C32 = -3; C33 = 2 

          The matrix of cofactors of A is: 

𝐶 =  [
 0   1   1
2   3   2
3   3   2

] 

          The transpose of C is: 

𝐶𝑡 =  [
0    2    1

−1   3   3
 1    2    2

] = 𝐴𝑑𝑗 (𝐴) 

So, 

𝐴−1  =  
1

|𝐴|
𝑎𝑑𝑗 (𝐴) =  

1

−1
[

0    2    1
1   3   3
 1    2    2

] 

=  [
0    2    1
1     3     3

 1    2    2
]   

 

7. Solution of Linear Equations by Matrices 

For a linear system:  

a11x1 + a12x2 + ------ + a1nxn = b1  

a21x1 + a22x2 + ------ + a2nxn = b2………………………….. (1) 

    

an1x1 + an2x2 + ------ + annxn = bn 

It can be written as the matrix equation: 

 

[

𝑎11  𝑎12 ⋯ 𝑎1𝑛

𝑎21  𝑎22 ⋯ 𝑎2𝑛

⋮        ⋱        ⋮
𝑎𝑛1  𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

] =  [

𝑏1

𝑏2

⋮
𝑏𝑛

] 

 

Let 𝐴 = [

𝑎11  𝑎12 ⋯ 𝑎1𝑛

𝑎21  𝑎22 ⋯ 𝑎2𝑛

⋮        ⋱        ⋮
𝑎𝑛1  𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] , 𝑋 = [

𝑥1

𝑥2

⋮
𝑥𝑛

] and 𝐵 =  [

𝑏1

𝑏2

⋮
𝑏𝑛

]. 

 

The equation can be written as, AX = B.  
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If B  0, then (1) is called non-homogenous system of linear equations and if B = 0, it is 

called a system of homogenous linear equations.  

If now B  0 and A is non-singular then A-1 exists.  

Multiply both sides of AX = B on the left by A-1, we get  

A-1(AX) = A-1B  

(A-1A) X = A-1B  

1X = A-1B  

Or  X = A-1B  

Where A-1B is an n  1 column matrix. Since X and A-1B are equal, each element in X is 

equal to the corresponding element in A-1B. These elements of X constitute the solution of 

the given linear equations. 

If A is a singular matrix, then of course it has no inverse, and either the system has no 

solution or the solution is not unique.  

Example 3.1.8. Use matrices to find the solution set of  

    x + y – 2z = 3  

    3x – y + z = 5  

3x + 3y – 6z = 9 

Solution 3.1.8.  

𝐴 =  [
 1    1   2
3    1   1
3    3   6

] 

|A| = 3 + 21 – 24 = 0 

Since |A| = 0, the solution of the given linear equations does not exist. 

Example 3.1.9. Use matrices to find the solution set of  

4x + 8y + z = –6  

2x – 3y + 2z = 0  

x + 7y – 3z = –8 

 

Solution 3.1.9.  

𝐴 =  [
 4    8    1
2    3   2
1    7   3

] 

|A| = –32 + 48 + 17 = 61 

Since |A|  0 then, A-1 exists. 
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𝐴−1  =  
1

|𝐴|
𝑎𝑑𝑗 (𝐴) =  

1

61
[

5    31   19
8   13   16

 17   20  28
] 

Now since, 

X = A-1B, we have 

[
𝑥
𝑦
𝑧

] =  
1

61
[

5    31   19
8   13   16

 17   20  28
] [

6
0
8

] 

=  
1

61
[

30 + 152
48 + 48

 102 + 224
] [

2
0
2

] 

Hence solution set: {(x, y, z)} = {( 2, 0, 2)}. 

 

4.0 Conclusion  

A matrix is a rectangular array of numbers with m rows and n columns. Matrix algebra 

provides a clear and concise notation for the formulation and solution of some problems. 

There are different types of matrices:  row, column, null, square, diagonal, upper triangular, 

lower triangular, symmetric and antisymmetric matrix. Different operations are carried out 

on matrices which include: addition, subtraction, multiplication, determinant and inverse.  

 

5.0 Summary  

In this unit, you are have learnt how to write and work with multiple linear equations.  

• Understand the concept of matrices  

• Know how to perform some simple operations addition, subtraction, multiplication, 

determinant and transpose 

• Know how to find the inverse of a matrix 

 

6.0 Tutor-Marked Assignment  

1. Write the following matrices in tabular form:  

a. A = [aij], where i = 1, 2, 3 and j = 1, 2, 3, 4  

b. B = [bij], where i = 1 and j = 1, 2, 3, 4  

c. C = [cjk], where j = 1, 2, 3 and k = 1 

2. Show that if 𝐴 =  [
 1    2
 0   1

]and 𝐵 =  [
 1   0 
 1  2 

] then, 
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a. (A + B)(A + B)  A2 + 2AB + B2  

b. (A + B)(A – B)  A2 – B2 

3. Write each product as a single matrix 

a. [
 3   1   1
 0   1   2

] [
 2  1 
0   2
1   1

] 

b. [3  1 2] [
 2 
2
1

] 

c. [
 3   1   1
 0   1   2
1    2   1

] [
  2  1   1 
 0   2   1

1   1   1
] 

4. If 𝐴 =  [
 1    2
 1   1

], 𝐵 =  [

 
3   0 
 1  2 

] and =  [
 3   1 
 1  1 

], find  

a. CB + A2  

b. B2 + AC 

c. kABC, where k = 2. 

5. Find K such that the following matrices are singular  

a. [
K   6
4   3

]  

b. [
1    2 − 1 
−3   4    K 
−4    2    6

] 

c. [
1    1 − 2 
3 − 1    1 
K     3 − 6

] 

6. Find the solution set of the following system by means of matrices:  

a. 2x – 3y = –1  

    x + 4y = 5 

b.       x + y = 2  

    2x – z = 1  

2y – 3z = –1 

c. x – 2y + z = –1 

3x + y – 2z = 4   

         y – z = 1  

d. –4x + 2y – 9z = 2 

    3x + 4y + z = 5  

    x – 3y + 2z = 8 
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e.     x + y – 2z = 3  

    3x – y + z = 0  

3x + 3y – 6z = 8 
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1.0 Introduction  

Counting is a basic mathematical tool that has uses in many diverse circumstances. How 

much RAM can a 32-bit register address? How many poker hands form full houses 

compared to flushes? How many ways can ten-coin tosses end up with four heads? To 

count, we can always take the time to enumerate all the possibilities; but even just 

enumerating all poker hands is already daunting, let alone all 32-bit addresses. This unit 

discusses some techniques that serve as useful shortcuts for counting. 

2.0 Objectives  

By the end of this unit, you will be able to:  

• apply product and sum rules  

• discuss permutation and combination 

• use Pascal’s triangle to expand a binomial expression 

• identify and apply inclusion-exclusion and pigeonhole principle. 

 

3.0 Main Content 

3.1 The Product and Sum Rules  
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The product and sum rules represent the most intuitive notions of counting. Suppose there 

are n(A) ways to perform task A, and regardless of how task A is performed, there are n(B) 

ways to perform task B.  

Then, there are n(A)  n(B) ways to perform both task A and task B; this is the product 

rule. This can generalize to multiple tasks, e.g., n(A)  n(B)  n(C) ways to perform task 

A, B, and C, as long as the independence condition holds, e.g., the number of ways to 

perform task C does not depend on how task A and B are done.  

Example 3.1.1. On an 8 × 8 chess board, how many ways can I place a pawn and a rook?  

Example 3.1.1. 1. First I can place the pawn anywhere on the board; there are 64 ways. 

Then I can place the rook anywhere except where the pawn is; there are 63 ways. In total, 

there are 64 × 63 = 4032 ways. 

Example 3.1.2. On an 8 × 8 chess board, how many ways can I place a pawn and a rook 

so that the rook does not threaten the pawn?  

Solution 3.1.2. Firstly, I can place the rook anywhere on the board; there are 64 ways. At 

the point, the rook takes up on square, and threatens 14 others (7 in its row and 7 in its 

column). Therefore, I can then place the pawn on any of the 64 − 14 − 1 = 49 remaining 

squares. In total, there are 64 × 49 = 3136 ways.  

Example 3.1.3. If a finite set A has n elements, then |P(A)| = 2n.  

Solution 3.1.3. We can proof this by using the product rule. P(A) is the set of all subsets 

of A. To form a subset of A, each of the n elements can either be in the subset or not (2 

ways). Therefore, there are 2n possible ways to form unique subsets, therefore, |P(A)| = 2n.  

Example 3.1.4. How many legal configurations are there in the towers of Hanoi?  

Solution 3.1.4. Each of the n rings can be on one of three poles, giving us 3n configurations. 

Normally we would also need to count the height of a ring relative to other rings on the 

same pole, but in the case of the towers of Hanoi, the rings sharing the same pole must be 

ordered in a unique fashion: from small at the top to large at the bottom. 

The sum rule is probably even more intuitive than the product rule. Suppose there are n(A) 

ways to perform task A, and distinct from these, there are n(B) ways to perform task B. 

Then, there are n(A) + n(B) ways to perform task A or task B. This can generalize to 

multiple tasks, e.g., n(A) + n(B) + n(C) ways to perform task A, B, or C, as long as the 



71 
 

distinct condition holds, e.g., the ways to perform task C are different from the ways to 

perform task A or B.  

Example 3.1.5. To fly from Lagos to Brisbane you must fly through Istanbul or Dubai. 

Solution 3.1.5. There are 5 such flights a day through Istanbul, and 3 such flights a day 

through Dubai. How many different flights are there in a day that can take you from Lagos 

to get to Brisbane? The answer is 5 + 3 = 8. 

Example 3.1.6. How many 4- to 6-digit pin codes are there?  

Solution 3.1.6. By the product rule, the number of distinct n digit pin codes is 10n (each 

digit has 10 possibilities). By the sum rule, we have 104 + 105 + 106 number of 4- to 6-

digit pin codes (to state the obvious, we have implicitly used the fact that every 4-digit pin 

code is different from every 5-digit pin code). 

 

3.2 Permutations and Combinations 

Permutations and combinations are also tools for counting. Given n distinct objects, how 

many ways are there to “choose” r of them? Well, it depends on whether the r chosen 

objects are ordered or not. For example, suppose we deal three cards out of a standard 52-

card deck. If we are dealing one card each to Alice, Bob and Cathy, then the order of the 

cards being dealt matters; this is called a permutation of 3 cards. On the other hand, if we 

are dealing all three cards to Alice, then the order of the cards being dealt does not matter; 

this is called a combination of 3 cards.  

3.2.1. Permutations  

Definition 3.2.1.1. A permutation of a set A is an ordered arrangement of the elements in 

A. An ordered arrangement of just r elements from A is called an r-permutation of A. For 

non-negative integers r ≤ n, P(n, r) denotes the number of r-permutations of a set with n 

elements.  

What is P(n, r)? To form an r-permutation from a set A of n elements, we can start by 

choosing any element of A to be the first in our permutation; there are n possibilities. The 

next element in the permutation can be any element of A except the one that is already 
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taken; there are n−1 possibilities. Continuing the argument, the final element of the 

permutation will have n − (r − 1) possibilities. Applying the product-rule, we have: 

Theorem 3.2.1. P(n, r) =  n(n −  1)(n −  2) · · · (n −  r +  1) =  
n! 

(n − r)!
… … … … … . (1)  

Note that 0! = 1.  

Example 3.2.1.1. How many one-to-one functions are there from a set A with m elements 

to a set B with n elements?  

Solution 3.2.1.1. If m > n we know there are no such one-to-one functions. If m ≤ n, then 

each one-to-one function f from A to B is a m-permutation of the elements of B: we choose 

m elements from B in an ordered manner (e.g., first chosen element is the value of f on the 

first element in A). Therefore there are P(n, m) such functions.  

3.2.2. Combinations 

Considering unordered selections. 

Definition 4.10. An unordered arrangement of r elements from a set A is called an r-

combination of A. For non-negative integers r ≤ n, C(n, r) or (
𝑛
𝑟

) denotes the number of r-

combinations of a set with n elements. C(n, r) is also called the binomial coefficients (we 

will soon see why).  

For example, how many ways are there to put two pawns on a 8 × 8 chess board? We can 

select 64 possible squares for the first pawn, and 63 possible remaining squares for the 

second pawn. But now we are over counting, e.g., choosing squares (b5, c8) is the same as 

choosing (c8, b5) since the two pawns are identical. Therefore, we divide by 2 to get the 

correct count: 64 × 63/2 = 2016. More generally,  

Theorem 3.2.2.  

C(n, r) =  
n! 

(n − r)!r!
  

Proof. Let us express P(n, r) in turns of C(n, r). It must be that P(n, r) = C(n, r)P(r, r), 

because to select an r-permutation from n elements, we can first selected an unordered set 
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of r elements, and then select an ordering of the r elements. Rearranging the expression 

gives:  

C(n, r) =  
P(n,r) 

P(r,r)
=  

n! (n−r)!⁄  

r!
=  

n! 

(n − r)!r!
 

 

Example 3.2.2.1. How many poker hands (i.e., sets of 5 cards) can be dealt from a standard 

deck of 52 cards?  

Solution 3.2.2.1. Exactly C(52, 5) = 52!/(47!5!).  

Example 3.2.2.2. How many full houses (3 of a kind and 2 of another) can be dealt from a 

standard deck of 52 cards?  

Solution 3.2.2.2. We have 13 denominations (ace to king), and 4 suites (spades, hearts, 

diamonds and clubs). To count the number of full houses, we may  

i. First pick a denomination for the “3 of a kind”: there are 13 choices.  

ii. Pick 3 cards from this denomination (out of 4 suites): there are C(4, 3) = 4 choices.  

iii. Next pick a denomination for the “2 of a kind”: there are 12 choices left (different 

from the “3 of a kind”).  

iv. Pick 2 cards from this denomination: there are C(4, 2) = 6 choices.  

So in total there are 13 ∗ 4 ∗ 12 ∗ 6 = 3744 possible full houses. 

3.3 Combinatorial Identities  

There are many identities involving combinations. These identities are fun to learn because 

they often represent different ways of counting the same thing; 66 counting one can also 

prove these identities by churning out the algebra, but that is boring. We start with a few 

simple identities. 

Lemma 3.1. If 0 ≤ k ≤ n, then C(n, k) = C(n, n − k).  

Proof. Each unordered selection of k elements has a unique complement: an unordered 

selection of n − k elements. So instead of counting the number of selections of k elements 

from n, we can count the number of selections of n−k elements from n (e.g., to deal 5 cards 

from a 52 card deck is the same as to throw away 52 − 5 = 47 cards).  

An algebraic proof of the same fact (without much insight) goes as follows:  

C(n, r) =
n! 

(n − k)!k!
=

n! 

(n−(n − k))!(n−k)!
= 𝐶(𝑛, 𝑛 − 𝑘) 
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Lemma 3.2. (Pascal’s Identity). If 0 < k ≤ n, then C(n + 1, k) = C(n, k − 1) + C(n, k).  

Proof. Here is another way to choose k elements from n + 1 total element. Either the n + 1st 

element is chosen or not:  

i. If it is, then it remains to choose k−1 elements from the first n elements.  

ii. If it isn’t, then we need to choose all k elements from the first n elements. 

By the sum rule, we have C(n + 1, k) = C(n, k − 1) + C(n, k). 

Pascal’s identity, along with the initial conditions C(n, 0) = C(n, n) = 1, gives a recursive 

way of computing the binomial coefficients C(n, k). The recursion table is often written as 

a triangle, called Pascal’s Triangle; as shown in Figure 3.1.  

Lemma 3.3. ∑ C(n, k)  =  2nn
k=0 .  

Proof. Let us once again count the number of possible subsets of a set of n elements. We 

have already seen by induction and by the product rule that there are 2n such subsets; this 

is the RHS. 

Another way to count is to use the sum rule:  

No of subsets = ∑ No of subsets of size k =   ∑ C(n, k)n
k=0

n
k=0  This is the LHS. 

 

Figure 3.1. Pascal’s triangle contains the binomial coefficients C(n, k) ordered as shown in 

the figure. Each entry in the figure is the sum of the two entries on top of it (except the 

entries on the side which are always 1). 

 

Theorem 3.3.1. (The Binomial Theorem). For n ∈ ℕ,  
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(x + y)n ∑ C(n, k)xn−kyk

n

k=0

 

Proof. If we manually expand (x + y)n, we would get 2n terms with coefficient 1 (each term 

corresponds to choosing x or y from each of the n factors). If we then collect these terms, 

how many of them have the form xn−k yk? Terms of that form must chooses n−k many x’s, 

and k many y’s. Because just choosing the k many y’s specifies the rest to be x’s, there are 

C(n, k) such terms.  

Exercise 3.3.1. What is the coefficient of x13y7 in the expansion of (x−3y)20?                          

We write (x − 3y)20 as (x + (−3y))20 and apply the binomial theorem, which gives us the 

term: C(20, 7)x13(−3y)7 = −3 7C(20, 7)x13y7. 

If we substitute specific values for x and y, the binomial theorem gives us more 

combinatorial identities as corollaries.  

Corollary 3.1. ∑ C(n, k) =  2nn
k=0 , again.  

Proof. Simply write 2n = (1+1)n and expand using the binomial theorem. 

Corollary 3.2. ∑ (−1)k+1n
k=1 𝐶(𝑛, 𝑘) = 1.  

Proof. Expand 0 = 0n = (1 − 1)n using the binomial theorem:  

0 = ∑ 𝐶(𝑛, 𝑘)1𝑛−𝑘n
k=0 (−1)k 

   = 𝐶(𝑛, 0) +  ∑ (−1)𝑘n
k=1  𝐶(𝑛, 𝑘) 

Rearranging terms gives us: 

𝐶(𝑛, 0) =  − ∑ (−1)𝑘n
k=1  𝐶(𝑛, 𝑘) =  ∑ (−1)𝑘+1𝐶(𝑛, 𝑘)n

k=1   

This proves the corollary since C(n, 0) = 1. 

3.3.1 Using Pascal’s triangle to expand a binomial expression 

Let’s now see how useful the triangle can be when we want to expand a binomial 

expression. Consider the binomial expression a + b, and suppose we wish to find (a + b)2.  

We know that  

(a + b)2 = (a + b)(a + b)  

 = a2 + ab + ba + b2  
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= a2 + 2ab + b2  

That is,  

(a + b) 2 = 1a2 + 2ab + 1b2  

Observe the following in the final result: 

1. As we move through each term from left to right, the power of a decreases from 2 down 

to zero.  

2. The power of b increases from zero up to 2.  

3. The coefficients of each term, (1, 2, 1), are the numbers which appear in the row of 

Pascal’s triangle beginning 1,2.  

4. The term 2ab arises from contributions of 1ab and 1ba, i.e. 1ab + 1ba = 2ab. This is the 

link with the way the 2 in Pascal’s triangle is generated; i.e. by adding 1 and 1 in the 

previous row. 

If we want to expand (a + b)3 we select the coefficients from the row of the triangle 

beginning 1,3: these are 1,3,3,1. We can immediately write down the expansion by 

remembering that for each new term we decrease the power of a, this time starting with 3, 

and increase the power of b. So, 

(a + b) 3 = 1a3 + 3a2b + 3ab2 + 1b3 

 which we would normally write as just  

(a + b) 3 = a3 + 3a2b + 3ab2 + b3 

Thinking of (a + b)3 as  

(a + b) (a2 + 2ab + b2) = a3 + 2a2b + ab2 + ba2 + 2ab2 + b3  

= a3 + 3a2b + 3ab2 + b3 

we note that the term 3ab2, for example, arises from the two terms ab2 and 2ab2 ; again this 

is the link with the way 3 is generated in Pascal’s triangle - by adding the 1 and 2 in the 

previous row. 

Example 3.3.2. Suppose we wish to find (a + b)4.  
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Solution 3.3.2. To find this we use the row beginning 1,4, and can immediately write down 

the expansion. (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4. 

Example 3.3.3. Suppose we want to expand (2x + y)3.  

Solution 3.3.3. We pick the coefficients in the expansion from the relevant row of Pascal’s 

triangle: (1,3,3,1). As we move through the terms in the expansion from left to right we 

remember to decrease the power of 2x and increase the power of y. So,  

(2x + y)3  = 1(2x) 3 + 3(2x)2y + 3(2x)1y2 + 1y3  

= 8x3 + 12x2y + 6xy2 + y3 

Example 3.3.4. Let’s expand (1 +
2

𝑥
)

3

. 

Solution 3.3.4. We pick the coefficients in the expansion from the row of Pascal’s triangle 

(1,3,3,1). Powers of 2 x increase as we move left to right. Any power of 1 is still 1. 

(1 +
2

𝑥
)

3

=  1(1)3 + 3(1)2 (
2

𝑥
) + 3(1)1 (

2

𝑥
)

2

+1 (
2

𝑥
)

3

 

= 1 +  
6

𝑥
+  

12

𝑥2
+  

8

𝑥3
 

 

3.4 Inclusion-Exclusion Principle  

Some counting problems simply do not have a closed form solution. In this section we 

discuss a counting tool that also does not give a closed form solution. The inclusion-

exclusion principle can be seen as a generalization of the sum rule.  

Suppose there are n(A) ways to perform task A and n(B) ways to perform task B, how 

many ways are there to perform task A or B, if the methods to perform these tasks are not 

distinct? We can cast this as a set cardinality problem. Let X be the set of ways to perform 

A, and Y be the set of ways to perform B. Then:  

|X ∪ Y | = |X| + |Y | − |X ∩ Y |  

This can be observed using the Venn Diagram. The counting argument goes as follows: To 

count the number of ways to perform A or B (|X ∪ Y |) we start by adding the number of 

ways to perform A (i.e., |X|) and the number of ways to perform B (i.e., |Y |). But if some 



78 
 

of the ways to perform A and B are the same (|X ∩ Y |), they have been counted twice, so 

we need to subtract those.  

Example 3.4.1. How many positive integers ≤ 100 are multiples of either 2 or 5?  

Solution 3.4.1. Let A be the set of multiples of 2 and B be the set of multiples of 5. Then 

|A| = 50, |B| = 20, and |A ∩ B| = 10 (since this is the number of multiples of 10). By the 

inclusion-exclusion principle, we have 50 + 20 − 10 = 60 multiples of either 2 or 5. 

What if there are more tasks? For three sets, we can still gleam from the Venn diagram that  

|X ∪ Y ∪ Z| = |X| + |Y | + |Z| − |X ∩ Y | − |X ∩ Z| − |Y ∩ Z| + |X ∩ Y ∩ Z| 

More generally,  

Theorem 3.4.1. Let A1, … , An be finite sets. Then, 

|⋃ 𝐴𝑖

𝑛

𝑖=1

| =  ∑(−1)𝑘+1

𝑛

𝑘=1

  ∑ |⋂ 𝐴𝑖

𝑖∈𝐼

|

𝐼,𝐼⊆{1,…,𝑛},|𝐼|=𝑘

= ∑ (−1)𝑘+1

  𝐼⊆{1,…,𝑛}

 |⋂ 𝐴𝑖

𝑖∈𝐼

| 

Proof. Consider some x ∈ ⋃iAi. We need to show that it gets counted exactly one in the 

RHS. Suppose that x is contained in exactly m of the starting sets (A1 to An), 1 ≤ m ≤ n. 

Then for each k ≤ m, x appears in C(m, k) many k-way intersections (that is, if we look at   

|∩i∈I Ai|   for all |I| = k, x appears in C(m, k) many terms). Therefore, the number of times 

x gets counted by the inclusion-exclusion formula is exactly  

∑(−1)𝑘+1 𝐶(𝑚, 𝑘)

𝑚

𝑘=1

 

and this is 1 by Corollary 3.2.  

3.5 Pigeonhole Principle 

In this section, we will discuss the pigeonhole principle: a proof technique that relies on 

counting. The principle says that if we place k + 1 or more pigeons into k pigeon holes, 

then at least one pigeon hole contains 2 or more pigeons. For example, in a group of 367 
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people, at least two people must have the same birthday (since there are a total of 366 

possible birthdays). More generally, we have  

Lemma 3.4. (Pigeonhole Principle). If we place n (or more) pigeons into k pigeon holes, 

then at least one box contains ⌈n/k⌉ or more pigeons.  

Proof. Assume the contrary that every pigeon hole contains ≤ ⌈n/k⌉ −1 < n/k many pigeons. 

Then the total number of pigeons among the pigeon holes would be strictly less than     

k(n/k) = n, a contradiction.  

Example 3.5.1. In a group of 800 people, how many people are likely to share the same 

birthday? 

Solution 3.5.1. There are at least ⌈800/366⌉ = 3 people with the same birthday. 

 

4.0 Conclusion 

Specially, you have learned about counting. You have also learned how to carry out 

counting using some special techniques and principles. 

  

5.0 Summary  

In this unit, you have learnt how to use Pascal’s triangle to expand a binominal expression. 

You have also been taught how to identify and apply inclusion-exclusion and pigeonhole 

principle. 

6.0 Tutor-Marked Assignment  

1. How many positive divisors does 2000 = 2453 have? 

2. Six friends Adam, Brian, Chris, Dan, Elvis and Frank want to go see a movie. If there 

are only six seats available, how many ways can we seat these friends 

3. Expand the following: 

a. (1 + p)4 

b. (3a − 2b)5 

c. (1 +
3

𝑎
)

4

 

d. (𝑥 −
1

𝑥
)

6

 

4. Find the minimum number of students in a class such that three of them are born in the 

same month. 
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5. Show that from any three integers, one can always choose two, so that a3b – ab3 is 

divisible by 10. 
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1.0 Introduction 

Discrete probability generating functions are important and useful tools for dealing with    

sums and limits of random variables. The exact strength of Probability Generating 

Function (PGF), is that, it gives an easy way of characterizing the distribution of 𝐴 + 𝐵 

when 𝐴 and 𝐵 are independent. To find the distribution of a sum using the common 

probability function we know is quite difficult, hence, the use of PGF which transform a 

sum into a product makes it much easier to handle. The PGF gives us details of 

everything we need to know about the distribution.    

 

2.0  Objectives 

 By the end of this unit, you will be able to: 

• obtain the sum of Geometric, Binomial and Exponential series 

• define Probability Generating Functions (PGFs) and use it to calculate the mean, 

variance and probability  

• identify and calculate the PGF for Geometric, Binomial and Exponential 

distributions. 

3.0 Main Content 

 3.1 Common Sums 

 3.1.1 Geometric Series 
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  1 + 𝑧 + 𝑧2 + 𝑧3 + 𝑧4+. . . =  ∑ 𝑧𝑥∞
𝑥=0 =  

1

1−𝑧
 ,      when |𝑧| < 1. 

 This formular proves that ∑ 𝑃(𝑋 = 𝑥) = 1∞
𝑥=0  when 𝑋 ~ Geometric(𝑝): 

 𝑃(𝑋 = 𝑥) = 𝑝(1 − 𝑝)𝑥       ⟹     ∑ 𝑃(𝑋 = 𝑥) =   ∑ 𝑝(1 − 𝑝)𝑥∞
𝑥−0

∞
𝑥=0  

                 =  𝒑 ∑ (1 − 𝑝)𝑥∞
𝑥=0  

            =  
𝑝

1−(1−𝑝)
      (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 |1 − 𝑝| < 1) 

            = 1       (𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑒𝑟𝑖𝑒𝑠) 

  

3.1.2 Binomial Theorem 

Binomial theorem states that for any 𝑝, 𝑞 ∈ ℝ and integer 𝑛, then 

(𝑝 + 𝑞)𝑛  =   ∑ (
𝑛
𝑥

) 𝑝𝑥𝑞𝑛−𝑥𝑛
𝑥=0 , where (

𝑛
𝑥

) =  
𝑛!

(𝑛−𝑥)!𝑥!
 . 

The Binomial Theorem proves that ∑ 𝑃(𝑋 = 𝑥) = 1𝑛
𝑥=0  when 𝑋  ~  Binomial(𝑛, 𝑝): 

𝑃(𝑋 = 𝑥) =  (
𝑛
𝑥

) 𝑝𝑥(1 − 𝑝)𝑛−𝑥  𝑓𝑜𝑟  𝑥 = 0, 1, 2, 3, . . . , 𝑛, 

∴         ∑ 𝑃(𝑋 = 𝑥) =   ∑ (
𝑛
𝑥

) 𝑝𝑥(1 − 𝑝)𝑛−𝑥

𝑛

𝑥=0

𝑛

𝑥=0

= [𝑝 + (1 − 𝑝)]𝑛  =   1𝑛  = 1 

 Hence the prove. 

 3.1.3 Exponential Series 

 Exponential series state that for any 𝜆 ∈ ℝ, 𝑡ℎ𝑒𝑛  ∑
𝜆𝑥

𝑥!
∞
𝑥=0  =  𝑒𝜆. 

 The Exponential Series proves that ∑ 𝑃(𝑋 = 𝑥) = 1∞
𝑥=0  when 𝑋  ~  Poisson(𝜆): 

 𝑃(𝑋 = 𝑥) =  
𝜆𝑥

𝑥!
𝑒−𝜆  𝑓𝑜𝑟   𝑥 = 0, 1, 2, 3, ⋯, 

 ∴     ∑ 𝑃(𝑋 = 𝑥) =   ∑
𝜆𝑥

𝑥!
∞
𝑥=0

∞
𝑥=0  𝑒−𝜆 =   𝑒−𝜆 ∑

𝜆𝑥

𝑥!
∞
𝑥=0   =  𝑒−𝜆𝑒𝜆 = 1 

 But we know that 𝑒𝜆 =   lim
𝑛→∞

(1 +
1

𝑛
)

𝑛

   𝑓𝑜𝑟 𝜆 ∈ ℝ.  

 

 3.2 Probability Generating Function (PGF) 

 Let be a random variable defined over the negative integers {0, 1, 2, 3, ⋯ }. The    

 probability generating function of 𝑋 is given by 
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𝐺𝑋(𝑧) =  𝑝0 +  𝑝1𝑧 +  𝑝2𝑧2+ . . . =  ∑ 𝑝𝑗𝑧𝑗∞
𝑗=0 =   𝔼(𝑧𝑋), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ ℝ  for which the 

sum converges. Therefore, to calculate the probability generating function, we that  

𝐺𝑋(𝑧) =  𝔼(𝑧𝑋) =  ∑ 𝑧𝑥∞
𝑥=0 𝑃(𝑋 = 𝑥).  

3.2.1 Properties of the PGF 

(1) 𝐺𝑋(0) = 𝑃(𝑋 = 0): 

  𝐺𝑋(0) =   00 × 𝑃(𝑋 = 0) +  01 × 𝑃(𝑋 = 1) + 02 × 𝑃(𝑋 = 2)+. ..  

   𝐺𝑋(0) = 𝑃(𝑋 = 0). 

(2) 𝐺𝑋(1) = 1:    𝐺𝑋(1) =  ∑ 1𝑥∞
𝑥=0 𝑃(𝑋 = 𝑥) =  ∑ 𝑃(𝑋 = 𝑥) = 1.∞

𝑥=0  

Example 3.2.2: Let 𝑋 have a binomial distribution function with parameters 𝑛 𝑎𝑛𝑑 𝑝 (or 

𝑋  ~ 𝐵(𝑛, 𝑝), so 𝑃(𝑋 = 𝑥) = (
𝑛
𝑥

) 𝑝𝑥𝑞𝑛−𝑥 for 𝑥 = 0, 1, 2 , 3, . . . , 𝑛. The probability 

generating function is given by   

𝐺𝑋(𝑧) =  ∑ 𝑧𝑥

𝑛

𝑥=0

(
𝑛
𝑥

) 𝑝𝑥𝑞𝑛−𝑥  =    ∑ (
𝑛
𝑥

) (𝑝𝑧)𝑥

∞

𝑥=0

𝑞𝑛−𝑥   

                                                                                      =   (𝑝𝑧 + 𝑞)𝑛    by Binomial Theorem.  

Hence,  𝐺𝑋(𝑧) =  (𝑝𝑧 + 𝑞)𝑛   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ ℝ.  

Example 3.2.3: Let 𝑋 have a Geometric distribution function with parameter 𝑝 (or 

              𝑋  ~ 𝑃(𝜆), so 𝑃(𝑋 = 𝑥) =  𝑝(1 − 𝑝)𝑥 = 𝑝𝑞𝑥 for 𝑥 = 0, 1, 2, 3, . . .,  where 𝑞 =
1 − 𝑝. The probability generating function is given by   

𝐺𝑋(𝑧) =  ∑ 𝑧𝑥

∞

𝑥=0

𝑝𝑞𝑥 =   𝑝 ∑(𝑞𝑧)𝑥

∞

𝑥=0

 =   
𝑝

1 − 𝑞𝑧
     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑞𝑧| < 1. 

Hence,  𝐺𝑋(𝑧) =  
𝑝

1−𝑞𝑧
    𝑓𝑜𝑟  |𝑧| <  

1

𝑞
 . 

Example 3.2.4: Let 𝑋 have a Poisson distribution function with parameter 𝜆 (or 

𝑋  ~ 𝑃(𝜆), so 𝑃(𝑋 = 𝑥) =
𝜆𝑥

𝑥!
𝑒−𝜆 for 𝑥 = 0, 1, 2 , 3, . .. . The probability generating 

function is given by   

𝐺𝑋(𝑧) =  ∑ 𝑧𝑥

∞

𝑥=0

𝜆𝑥

𝑥!
 𝑒−𝜆  =    𝑒−𝜆 ∑

(𝜆𝑧)𝑥

𝑥!
 

∞

𝑥=0

  =     𝑒−𝜆𝑒(𝜆𝑧)  =   𝑒𝜆(𝑧−1) 

Hence,   𝐺𝑋(𝑧) =   𝑒𝜆(𝑧−1)  𝑓𝑜𝑟 𝑎𝑙𝑙   𝑧 ∈ ℝ . 

 

3.3 Using the PGF to calculate the mean (expectation) and variance 
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Here, we will use the PGF to calculate the moments of the distribution of 𝑋. The 

moments of a distribution include the mean, variance, etc. 

 

3.3.1 Mean (Expected value) 

Let 𝑋 be a discrete random variable with PGF 𝐺𝑋(𝑧). Then, the expectation value can be 

expressed by  

𝐸[𝑋] =   ∑ 𝑥 𝑃(𝑋 = 𝑥)∞
𝑥=1 =  𝐺′

𝑋(1) , where 𝐺′
𝑋(𝑧) denotes the derivative of 𝐺𝑋(𝑧). 

Hence, 𝐺′
𝑋(𝑧) =  ∑ 𝑥 𝑃(𝑋 = 𝑥)∞

𝑥=0 𝑧𝑥−1 =  ∑ 𝑥 𝑃(𝑋 = 𝑥)𝑧𝑥−1∞
𝑥=1 . 

Also, the second moment is  

𝐸[𝑋2] =  𝐺′′
𝑋(1) +  𝐺′

𝑋(1) 

But we know that,  𝐺′
𝑋(𝑧) =  ∑ 𝑥 𝑃(𝑋 = 𝑥)∞

𝑥=1 𝑧𝑥−1, then 

𝐺′′
𝑋(𝑧) =  ∑ 𝑥(𝑥 − 1) 𝑃(𝑋 = 𝑥)

∞

𝑥=2

𝑧𝑥−2 =    ∑(𝑥2 − 𝑥) 𝑃(𝑋 = 𝑥)

∞

𝑥=0

𝑧𝑥−2 

3.3.2 Variance 

Similarly, let 𝑋 be a random variable with PGF 𝐺𝑋(𝑧). Then, the variance is given by  

𝑉𝑎𝑟[𝑋] =  𝐸[𝑋2] − 𝐸[𝑋]2 =   𝐺′′
𝑋(1)  +   𝐺′

𝑋(1) +  𝐺′
𝑋(1)2. 

Example 3.3.3: Let 𝑋 have a Poisson distribution function with parameter 𝜆. The PGF of    

 𝑋 is   𝐺𝑋(𝑧) =   𝑒𝜆(𝑧−1) . Find (i) Mean, 𝐸[𝑋]      (ii) Variance, 𝑉𝑎𝑟[𝑋]. 

Solution: Given   𝐺𝑋(𝑧) =   𝑒𝜆(𝑧−1) , then  

    (𝑖)     𝐺′
𝑋(𝑧)  =  𝜆𝑒𝜆(𝑧−1),     𝑤ℎ𝑖𝑐ℎ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡  𝐸[𝑋] =  𝐺′

𝑋(1)  =  𝜆  

     (𝑖𝑖) Thus, 𝐺′′
𝑋(1) =  𝜆2𝑒𝜆(𝑧−1)|𝑧=1  =   𝜆2       

and  

     𝐸[𝑋2] =  𝐺′′
𝑋(1) +  𝐺′

𝑋(1) = 𝜆2 + 𝜆 

∴         𝑉𝑎𝑟[𝑋] =   𝐸[𝑋2] − 𝐸[𝑋]2  =    𝜆2 + 𝜆 − 𝜆2   =    𝜆  

Example 3.3.4: Let 𝑋 be a random variable that has Bernoulli distribution with 

parameter 𝑝. The PGF is defined by 𝐺𝑋(𝑧) = (1 − 𝑝) + 𝑝𝑧. Calculate 𝐸[𝑋] and 𝑉𝑎𝑟[𝑋].   

Solution: This implies that 𝐺′
𝑋(𝑧) = 𝑝      𝑎𝑛𝑑   𝐺′′

𝑋(𝑧) = 0 

Hence, 𝐸[𝑋] =  𝐺′
𝑋(1)  =  𝑝 

and  
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𝑉𝑎𝑟[𝑋] =  𝐺′′
𝑋(1)  +   𝐺′

𝑋(1) + 𝐺′
𝑋(1)2 = 0 + 𝑝 −  𝑝2 = 𝑝(1 − 𝑝). 

 

3.4 Using the PGF to calculate the probabilities 

As well as calculating the moments of distribution of 𝑋, we can also calculate the 

probabilities using the PGF. Given the PGF 𝐺𝑋(𝑧) = 𝐸(𝑧𝑋) of any probability function, 

we can recover all the possible probabilities 𝑃(𝑋 = 𝑥)  (𝑜𝑟   𝑠𝑜𝑚𝑒𝑡𝑖𝑚𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠 𝑝𝑥). 

 ∴          𝐺𝑋(𝑧) =  𝐸(𝑧𝑋) =  𝑝0 +  𝑝1𝑧 + 𝑝2𝑧2+ . . . =  ∑ 𝑝𝑗𝑧𝑗

∞

𝑗=0

 

Hence, 𝑝0 = 𝑃(𝑋 = 0) = 𝐺𝑋(0).  

Also, the first derivative of the PGF is 

𝐺′
𝑋(𝑧) =   𝑝1 + 2𝑝2𝑧 +  3𝑝3𝑧2 + 4𝑝4𝑧3+ . ..   

Which implies that 

 𝑝1 = 𝑃(𝑋 = 1) = 𝐺′
𝑋(0). 

The second derivative of the PGF is 

𝐺′′
𝑋(𝑧) =  2𝑝2 +  6𝑝3𝑧 + 12𝑝4𝑐+ . .. 

Which implies that 

𝑝2 = 𝑃(𝑋 = 2) =
1

2!
𝐺′′𝑋(0). 

For the third derivative of the PGF, we have 

𝐺′′′
𝑋(𝑧) =   6𝑝3 + 24𝑝4𝑧+ . ..  

Which implies that 

 𝑝3 = 𝑃(𝑋 = 3) =
1

3!
𝐺′′′

𝑋
(0). 

Therefore, the 𝒏𝒕𝒉 derivative or the general form is given by  

𝑝𝑛 = 𝑃(𝑋 = 𝑛) =  (
1

𝑛!
) 𝐺(𝑛)

𝑋(0) =  (
1

𝑛!
)

𝑑𝑛

𝑑𝑧𝑛  (𝐺𝑋(𝑧))|𝑧=0. 

Example 3.4.1: Let 𝑋 be a discrete random variable with PGF 𝐺𝑋(𝑧) =
𝑧

5
(2 + 3𝑧2). 

Obtain the distribution of 𝑋. 

Solution: Given 𝐺𝑋(𝑧) =
𝑧

5
(2 + 3𝑧2) =   

2

5
 𝑧 + 

3

5
 𝑧3 
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∴          𝐺𝑋(𝑧) =   
2

5
 𝑧 +  

3

5
 𝑧3         ⟹            𝐺𝑋(0) = 𝑃(𝑋 = 0) = 0.        

  𝐺′
𝑋(𝑧) =   

2

5
 +  

9

5
 𝑧2            ⟹           𝐺′

𝑋(0) = 𝑃(𝑋 = 1) =    
2

5
  

  𝐺′′
𝑋(𝑧) =  

18

5
 𝑧                    ⟹            

1

2!
𝐺′′

𝑋(0) = 𝑃(𝑋 = 2) = 0. 

  𝐺′′′
𝑋(𝑧) =   

18

5
                      ⟹             

1

3!
 𝐺′′′

𝑋(0) = 𝑃(𝑋 = 3) =    
3

5
  

   𝐺(𝑘)
𝑋(𝑧) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 4  ⟹         

1

𝑘!
 𝐺(𝑘)

𝑋(0) = 𝑃(𝑋 = 𝑘) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 4 

Therefore, the distribution of 𝑋, 𝑖𝑠 𝑋 = {
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

2

5

3 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
3

5

 

3.5 Geometric Random Variables 

The PGF of a geometrically distributed random variable 𝑋 is  

𝐺(𝑧) =  ∑ 𝑝(1 − 𝑝)𝑗−1𝑧𝑗

∞

𝑗=1

=        𝑝𝑧 ∑(1 − 𝑝)𝑗𝑧𝑗     

∞

𝑗=0

    =    
𝑝𝑧

1 − (1 − 𝑝)𝑧
 

𝐺(𝑧) =  ∑ 𝑝(1 − 𝑝)𝑗−1𝑧𝑗

∞

𝑗=1

=          𝐺′(𝑧) =  
𝑝

(1 − (1 − 𝑝)𝑧)2
 ,               𝐺′′(𝑧)

=  
2𝑝(1 − 𝑝)

(1 − (1 − 𝑝)𝑧)3
 

∴        𝐸[𝑋] =   𝐺′
𝑋(1) =  

1

𝑃
  

and 

𝑉𝑎𝑟[𝑋] =  𝐺′′
𝑋(1)  +   𝐺′

𝑋(1) + 𝐺′
𝑋(1)2     =       

2(1 − 𝑃)

𝑃2
+   

1

𝑝
+

1

𝑝2
   =     

1 − 𝑝

𝑝2
 

3.6 Binomial Distribution 

Let 𝑋 have a binomial distribution function with parameters 𝑛 𝑎𝑛𝑑 𝑝. Then, the PGF is  

𝐺𝑋(𝑧) = ((1 − 𝑝) + 𝑝𝑧)𝑛 =  ∑ (
𝑛
𝑗 ) (1 − 𝑝)𝑛−𝑗𝑝𝑗𝑧𝑗

𝑛

𝑗=0

. 

⟹        𝐺′
𝑋(𝑧) =  𝑛𝑝((1 − 𝑝) + 𝑝𝑧)

𝑛−1
    𝑎𝑛𝑑     𝐸[𝑋] =   𝐺′

𝑋(1) = 𝑛𝑝. 

⟹        𝐺′′
𝑋(𝑧) =  𝑛(𝑛 − 1)𝑝2((1 − 𝑝) + 𝑝𝑧)

𝑛−2
     

∴       𝑉𝑎𝑟[𝑋] =  𝐺′′
𝑋(𝑧) +  𝐺′

𝑋(1) +  𝐺′
𝑋(1)2  =   (𝑛2 − 𝑛)𝑝2 + 𝑛𝑝 − 𝑛2𝑝2 
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−𝑛𝑝2 + 𝑛𝑝 = 𝑛𝑝(1 − 𝑝). 

4.0 Conclusion 

PGFs are very useful tool for dealing with sums of random variables, which are difficult 

to tackle using the standard probability function. 

5.0  Summary  

 In this unit, you have learnt how to  

• Compute the sums Geometric, Binomial and Exponential series. 

• Know the properties of PGF. 

• Use PGF TO calculate the mean, variance and probability. 

• Identify and calculate the PGF for Geometric and Binomial distributions.  

 

6.0  Tutor-Marked Assignment  

 

1. Find the sequence generated by the following generating functions:  

a. 
4x

1 − x
  

b. 
1

1 − 4x
  

c. 
x

1 + x 
  

d. 
3x

(1 + x) 2
  

e. 
1 + x + x2 

(1 − x)  2
 (Hint: multiplication).  

2. Show how you can get the generating function for the triangular numbers in three different 

ways:  

a. Take two derivatives of the generating function for 1, 1, 1, 1, 1, . . .  

b. Multiply two known generating functions.  

3. Find a generating function for the sequence with recurrence relation an = 3an−1 − an−2 with 

initial terms a0 = 1 and a1 = 5.  

4. Starting with the generating function for 1, 2, 3, 4, . . ., find a generating function for each 

of the following sequences. 

a. 1, 0, 2, 0, 3, 0, 4, . . ..  

b. 1, −2, 3, −4, 5, −6, . . ..  

c. 0, 3, 6, 9, 12, 15, 18, . . ..  

d. 0, 3, 9, 18, 30, 45, 63, . . .. (Hint: relate this sequence to the previous one.) 
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5. Let 𝑋 be a discrete random variable with PGF 𝐺𝑋(𝑧) =
𝑤

3
(2 + 5𝑤3). Calculate the 

distribution of 𝑋. 
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