Chiok to download more NOUN PQ from NounGeeks.com

```
Default for MTH251 Exams
The default category for questions shared in context 'MTH251 Exams'.
```


top

```
Default for MTH251
The default category for questions shared in context 'MTH251'.
Fill in the Blank (FBQs)
FBQ1
A vector is a quantity specified by and
*Magnitude and direction*
1.0000000
*Magnitude direction*
1.0000000
*Magnitude, direction*
1.0000000
*Magnitude/direction*
1.0000000
FBQ2
The
``` \(\qquad\)
``` vector coincides with the origin
*Zero vector*
1.0000000
*Zero*
1.0000000
FBQ3
Suppose \(a=(a x, a y, a z)\) and \(b=(b x, b y, b z)\) are two vectors, then the expression \(a x+b x\), ay+by,az+bz=
``` \(\qquad\)
a+b
1.0000000
a + b
1.0000000

FBQ4
The three unit vectors \(\mathrm{i}, \mathrm{j}, \mathrm{kpointing}\) in the directions of the \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) axis form what is known as \(\qquad\)
Orthonomal triad
1.0000000
0.0000000

FBQ5
A vector whose sense is merely conventional, and would be reversed by changing from a right-hand to a left-hand convention is called \(\qquad\)

\footnotetext{
Axial vector
}

\section*{Click to download more NOUN PQ from NounGeeks.com}
1.0000000
0.0000000

FBQ6
The vector product of a vector with itself is the \(\qquad\) vector
Zero
1.0000000
0
1.0000000

FBQ7
A scalar quantity is specified by \(\qquad\)
Direction
1.0000000
0.0000000

FBQ8
For a vector field \(A\) the expression \(\hat{a}^{\wedge} \ddagger . A=i \hat{a}^{\wedge}, A x \hat{a}^{\wedge}, x+j \hat{a}^{\wedge}, A y \hat{a}^{\wedge}, y+k \hat{a}^{\wedge}, A z \hat{a}^{\wedge}, z\) is defined
\(\qquad\) .
div \(\mathrm{A}^{}\)
1.0000000
0.0000000

FBQ9
\(\hat{a}^{\wedge} \ddagger \tilde{A} — A=i \hat{a}^{\wedge}, A x \hat{a}^{\wedge}, y-\hat{a}^{\wedge}, A y \hat{a}^{\wedge}, z+j \hat{a}^{\wedge}, A x \hat{a}^{\wedge}, z-\hat{a}^{\wedge}, A z \hat{a}^{\wedge}, x+k\left(\hat{a}^{\wedge}, A y \hat{a}^{\wedge}, x-\hat{a}^{\wedge}, A x \hat{a}^{\wedge}, y\right)\) is the expression for \(\qquad\)
curl \(\mathrm{A}^{}\)
1.0000000
0.0000000

FBQ10
For two nonparallel vectors \(a\) and \(b\) drawn from 0 define a unique axis through 0 perpendicular to the plane containing a and \(b\), the value absinils is the \(\qquad\)
Vector product
1.0000000
0.0000000

FBQ11
If \(\hat{i}\), is the angle between the vectors \(a\) and \(b\), then the \(\qquad\) of their sum is given by a2+b22abcosî,

\section*{Click to download more NOUN PQ from NounGeeks.com}
Length
1.0000000
0.0000000

FBQ12
Any vector \(r\) can be written as a sum of three vectors along the three axes as \(R=\)
xi \(+y j+x k^{}\)
1.0000000
0.0000000

FBQ13
The basic equations of electromagnetic theory are \(\qquad\) equations
Maxwellâ \(€^{\text {TM }} \mathbf{s}^{}\)
1.0000000
Maxwell
1.0000000

FBQ14
force equation determines the force on a particle of charge q moving with
velocity v .
Lorentz
1.0000000
Lorentzâ \(€^{T M}\) s \(^{}\)
1.0000000

FBQ15
\(A^{\prime}=A-\hat{a}^{\wedge} \ddagger \hat{l}\), is a \(\qquad\) equation
Transformation
1.0000000
0.0000000

FBQ16
When there is no electric charge or current density, there are \(\qquad\) dimensional wave equations, which describe a wave propagating with velocity c
Three
1.0000000
3
1.0000000

FBQ17
For a static case, in which all the fields are time-independent; Maxwellâ \(€^{T M}\) s equations separate into a pair of \(\qquad\) equations
Electrostatic
1.0000000

\title{
Click to download more NOUN PQ from NounGeeks.com
}
0.0000000

FBQ18
The magnetic dipole field has precisely the same form asthe \(\qquad\) dipole field
Electric
1.0000000
0.0000000

FBQ19
The first two members of a family of quantities known as tensors are \(\qquad\) and \(\qquad\)
Scalars and vectors
1.0000000
Scalars, vectors
1.0000000

FBQ20
Scalars are called tensors of rank \(\qquad\)
Zero
1.0000000
0
1.0000000

FBQ21
The family of tensors of rank 2 are often called \(\qquad\)
Dyadic
1.0000000
0.0000000

FBQ22
Most frequently when one vector \(b\) is defined as a linear function of another vector a
\(\qquad\) occurs
Tensor
1.0000000
0.0000000

FBQ23
Tensors are commonly denoted by \(\qquad\) capitals
Sans-serif capital
1.0000000
0.0000000

FBQ24
A tensor Thas \(\qquad\) components

\section*{Click to download more NOUN PQ from NounGeeks.com}
Nine
1.0000000
9
1.0000000

FBQ25
A vector \(a\) is called an/a \(\qquad\) of \(T\) if \(T a=1 \hat{\imath}\) »
Eigenvector
1.0000000
0.0000000

FBQ26
For a vector a if \(T a=1 \stackrel{\square}{ }\) a, \(\hat{l} »\) is called the \(\qquad\)
Eigenvalue
1.0000000
0.0000000

FBQ27
Equivalently, \(\mathrm{Ta=}\) =\(»\) » may be written as \(\mathrm{T}-\hat{\mathrm{I}}\) » \(1 \mathrm{a}=\)

\section*{*0*}
1.0000000
0.0000000

FBQ28
When the density is a constant, the systems is said to be of \(\qquad\)
Uniform
1.0000000
0.0000000

FBQ29
A mass defined per unit volume is called \(\qquad\) density
Volume
1.0000000
0.0000000

FBQ30
We can define a mass per unit length or linear density when the particles occupy a
Line
1.0000000
0.0000000

FBQ31
When \(\qquad\) system of particles occupies a surface, we can define a surface density

\title{
Click to download more NOUN PQ from NounGeeks.com
}
or mass per unit area
Continuous
1.0000000
0.0000000

FBQ32
Forces that change the distances between individual particles when applied to systems of particles are called \(\qquad\) systems
Deformable
1.0000000
0.0000000

FBQ33
A system in which the distance between any two specified particles remains the same regardless of applied forces is called \(\qquad\)
Rigid body
1.0000000
0.0000000

FBQ34
The number of coordinates required to specify the position of a system of one more particles is called the number of \(\qquad\) of the system
Degrees of freedom
1.0000000
0.0000000

FBQ35
The number of degrees of freedom for five particles moving freely in a plane is \(\qquad\)
Ten
1.0000000
10
1.0000000

FBQ36
A system consisting of \(N\) particles moving freely in space requires 3 N \(\qquad\) to specify its position.
Coordinates
1.0000000
0.0000000

FBQ37
A constraint is \(\qquad\) if the particle is constrained to move along a surface which is

\section*{Click to download more NOUN PQ from NounGeeks.com}
in a plane
Holonomic
1.0000000
0.0000000

FBQ38
The total linear impulse is equal to the change in linear \(\qquad\)
Motion
1.0000000
0.0000000

FBQ39
A rigid body which can move freely in space has \(\qquad\) degrees of freedom

\section*{*6*}
1.0000000
Six
1.0000000

FBQ40
In practice it is fairly simple to go from discrete to continuous systems by merely replacing summations by \(\qquad\)
Integration
1.0000000
0.0000000

FBQ41
If a system of particles is in a uniform gravitational field, the center of mass is sometimes called the \(\qquad\)
Centre of gravity
1.0000000
0.0000000

FBQ42
If \(V v=d r v d t=r E \ddot{E}^{T M} v\) is the velocity of \(m v\), the \(p=\hat{a}^{\wedge} u=1 N m v v w=\hat{a}^{\wedge} u=1 N m v r v E{ }^{T M}\) defines the \(\qquad\) of the system
Total momentum
1.0000000
0.0000000

FBQ43
The velocity v -of the \(\qquad\) is given by v - \(=\mathrm{dr}-\mathrm{dt}\)
Centre of mass
1.0000000

\section*{Click to download more NOUN PQ from NounGeeks.com}
0.0000000

FBQ44
The total momentum of a system of particles can be found by multiplying the \(\qquad\) M of the system by the velocity v -
Total mass
1.0000000
0.0000000

FBQ45
If the resultant external force acting on a system of particles is zero, then the total
\(\qquad\) remains constant

\section*{*Momentum*}
1.0000000
0.0000000

FBQ46
The quantity \(\hat{I} \odot=\hat{a}^{\wedge} ‘ v=1 \mathrm{Nmv}(r v X V v)\) is called the total \(\qquad\) momentum of the system of particles about origin O
angular
1.0000000
0.0000000

FBQ47
The sum \(\hat{a}^{\wedge} \S=\hat{a}^{\wedge} \mathrm{V}=1 \mathrm{Nrv}(\mathrm{rvXFv})\) is called the total external \(\qquad\) about the origin
Torque
1.0000000
0.0000000

FBQ48
The total external torque on a system of particles is equal to the time rate of change of angular momentum of the system, provided that the internal forces between particles are \(\qquad\) forces
Central
1.0000000
0.0000000

FBQ49
When all forces, external and internal, are conservative, we can define a total \(\qquad\) energy V of the system.
potential
1.0000000

\section*{Click to download more NOUN PQ from NounGeeks.com}
0.0000000

FBQ50
If Tand Vare respectively the total kinetic energy and total potential energy of a system of particles, then \(\mathrm{T}+\mathrm{V}=\) constant is called the principle of \(\qquad\) for systems of particles.
Conservation of energy
1.0000000
0.0000000

FBQ17
The first two members of a family of quantities known as tensors are \(\{\# 1\}\) and \(\{\# 2\}\)
4689 4690,4691
FBQ17 \{100:SHORTANSWER:\%100\%Scalars\}
Scalars
1.0000000

FBQ17 \{100:SHORTANSWER:\%100\%vectors\}
vectors
1.0000000

Multiple Choice Questions (MCQs)
MCQ1
Geometrically, a vector is represented by \(\qquad\)
a line
0.0000000
a dot
0.0000000
a curve
0.0000000
an arrow
1.0000000

MCQ2
The scalar product of two vectors \(a\) and \(b\) is given by \(\qquad\)
a.bcosî,
1.0000000
(a+b) cosî,
0.0000000
ab cosî,
0.0000000
a . b \(\sin 1 \hat{l}_{s} \cos \hat{I}_{s}\)

\section*{Click to download more NOUN PQ from NounGeeks.com}
0.0000000

MCQ3
The vector product of a vector with itself is the \(\qquad\) vector
polar
0.0000000
zero
1.0000000
axial
0.0000000
negative
0.0000000

MCQ4
force equation determines the force on a particle of charge q moving with velocity v .

Gauss
0.0000000

Lorenzo
0.0000000

Maxwellâ \(€^{T M}\) s
0.0000000

Lorentz
1.0000000

MCQ5
The transformation \(\mathrm{A}^{\prime}=\hat{a^{\wedge}} \ddagger \hat{1}\), is called a \(\qquad\) transformation.
guage
1.0000000
guag
0.0000000

Gauss
0.0000000
grad
0.0000000

MCQ6

\section*{Click to download more NOUN PQ from NounGeeks.com}

How many coordinates are required to specify the position of a rigid body which moves freely in space?

3
0.0000000

4
0.0000000

6
1.0000000

2
0.0000000

MCQ7
What is the scalar vector of the two vectors \(\mathrm{a}=(\mathrm{ax}, \mathrm{ay}, \mathrm{az}) \mathrm{andb}=(\mathrm{bx}, \mathrm{by}, \mathrm{bz})\) ?
axbx+ayby+azbz
1.0000000
axbz+aybx
0.0000000
axby+aybz
0.0000000
axbx-ayby-azbz
0.0000000

MCQ8
The magnetic dipole field has precisely the same form as the \(\qquad\) dipole field.
electromagnetic
0.0000000
electric
1.0000000
density
0.0000000
electrostatic
0.0000000

MCQ9
The first two members of a family of quantities known as tensors are \(\qquad\) and \(\qquad\) .
scalars and tensor

\section*{Click to download more NOUN PQ from NounGeeks.com}
```

0 . 0 0 0 0 0 0 0
vectors and magnitude
0.0000000
scalars and vectors
1.0000000
vectors and tensor
0.0000000
MCQ10
Tensors are commonly denoted by

```
\(\qquad\)
``` capitals
small
0.0000000
sans
0.0000000
serif
0 . 0 0 0 0 0 0 0
sans-serif
1.0000000
MCQ11
A tensor Thas
```

\qquad

``` components.
6
0.0000000
3
0.0000000
9
1.0000000
1
0.0000000
MCQ12
A vector ais called an/a
``` \(\qquad\)
``` of \(T\) if \(T a=1\) »»a
eigenvector
1.0000000
eigenvalue
```


Click to download more NOUN PQ from NounGeeks.com

0.0000000
unit vector
0.0000000
null vector
0.0000000

MCQ13
Given that $\mathrm{Ta}=\hat{\mathrm{l}} » \mathrm{a}$, where T is a tensor, the number $\hat{\mathrm{l}} »$ is called \qquad
eigenvector
0.0000000
eigenvalue
1.0000000
unit vector
0.0000000
null vector
0.0000000

MCQ14
Ta=1̂»acan also be written as \qquad
T-Î» $1=0$
0.0000000

T-1̂»1a=0
1.0000000
$\mathrm{T}+\hat{\mathrm{l}}>1=0$
0.0000000
$T+\hat{\mid}$ »a=0
0.0000000

MCQ15
The total momentum of a system of particles can be found by multiplying the total mass M of the system by the velocity v-of the \qquad
center of mass
1.0000000
center of gravity
0.0000000
gravitational field

Click to download more NOUN PQ from NounGeeks.com

0.0000000
force of attraction
0.0000000

MCQ16
A systems is said to be of uniform density when the density is \qquad
uniform
0.0000000
dense
0.0000000
constant
1.0000000
normal
0.0000000

MCQ17
Forces applied to systems of particles will change the distances between individual particles. Such systems are often called \qquad bodies
deformable
1.0000000
non-deformable
0.0000000
uniform
0.0000000
collapsible
0.0000000

MCQ18
Mass per unit volume is known as \qquad
continuous system
0.0000000
pressure
0.0000000
surface area
0.0000000
density

Click to download more NOUN PQ from NounGeeks.com

1.0000000

MCQ19
Vectors are tensors of rank \qquad

0
0.0000000

3
0.0000000

4
0.0000000

1
1.0000000

MCQ20
Dyadic are members of the tensor family of rank \qquad
0
0.0000000

3
0.0000000

2
1.0000000

1
0.0000000

MCQ21
Forces that can change the distances between individual particles of agiven systems are called \qquad
deformable forces
1.0000000
contact forces
0.0000000
continuous forces
0.0000000
discrete force
0.0000000

MCQ22
A system in which the distance between any two particles remains constant regardless

Click to download more NOUN PQ from NounGeeks.com

of the applied forces is called \qquad
rigid body
1.0000000
free body
0.0000000
static body
0.0000000
polar body
0.0000000

MCQ23
The number of degree of freedom of a system is the number of \qquad required to specify the position of a system of one or more particles.
forces
0.0000000
system
0.0000000
particles
0.0000000
coordinates
1.0000000

MCQ24
The vector function $r(t)=x(t) i+y(t) j+z(t) k$ from the origin to the particle is called the
\qquad vector
null
0.0000000
position
1.0000000
commutative
0.0000000
identity
0.0000000

MCQ25
What is the number of degrees of freedom for five particles moving freely in space?

Click to download more NOUN PQ from NounGeeks.com

15
1.0000000

10
0.0000000

2
0.0000000

1
0.0000000

MCQ26
A system of N particles moving freely in space requires \qquad to specify its position.

2N coordinates
0.0000000

6 N coordinates
0.0000000

3Ncoordinates
1.0000000

N coordinates
0.0000000

MCQ27
Surface density is defined as \qquad
mass per unit area
1.0000000
mass per unit volume
0.0000000
volume per unit area
0.0000000
pressure per unit area
0.0000000

MCQ28
A rigid body which can move freely in space has \qquad degrees of freedom.

6
1.0000000

10

Click to download more NOUN PQ from NounGeeks.com

0.0000000

2
0.0000000

1
0.0000000

MCQ29
To go from discrete systems to continuous systems, we simply replace summations by
multiplications
0.0000000
coordinates
0.0000000
differentiations
0.0000000
integrations
1.0000000

MCQ30
The principle of conservation of momentum states that \qquad
the resultant of the external forces acting on a system of particles is zero
1.0000000
the sum of some of the external forces acting on a system of particles is zero
0.0000000
system of particles is under the state of motion under the action of an applied force
0.0000000
the resultant of the external forces acting on a system of particles is negligible
0.0000000

MCQ31
The center of mass for a body with uniform gravitational fieldis called \qquad
mass center
0.0000000
center of gravity
1.0000000
gravitational attraction

Click to download more NOUN PQ from NounGeeks.com

0.0000000
center of attraction
0.0000000

MCQ32
The number of degree of freedom of a particle moving freely in space is \qquad
5
0.0000000

3
1.0000000

2
0.0000000

1
0.0000000

MCQ33
The velocity v-of the center of mass of an object is given by \qquad
v -=drdt
0.0000000
v-=ds-dt
1.0000000
v-=dr-dt
0.0000000
v-=dr-dv
0.0000000

MCQ34
Which of the following is not correct?
Total momentum remains constant if the resultant external forces acting on a system of particles is zero
0.0000000

Total momentum is conserved if the resultant external forces acting on a system of particles is zero
0.0000000

If the resultant external forces acting on a system of particles is zero, the center of mass is either at rest or in motion with constant velocity

Click to download more NOUN PQ from NounGeeks.com

0.0000000

Total momentum is zero if the resultant external forces acting on a system of particles is conserved
1.0000000

MCQ35
The quantity
$\hat{1}(\bigcirc)=\hat{a}^{\wedge} \mathrm{V}=1 \mathrm{Nmvrv}{ }^{\star} \mathrm{V} v$
Is called \qquad of the system of particles about origin O .
the total momentum
0.0000000
the total circular momentum
0.0000000
the total angular momentum
1.0000000
the total angular moment
0.0000000

MCQ36
The total external torque on a system of particles is equal to the time rate of change of angular momentum of the system, provided that the internal forces between particles are \qquad forces.

Triangular
0.0000000
circular
0.0000000
angular
0.0000000
central
1.0000000

MCQ37
The total linear impulse of force is equal to the change in linear \qquad
momentum
1.0000000
torque

Click to download more NOUN PQ from NounGeeks.com

0.0000000
energy
0.0000000
force
0.0000000

MCQ38
If T and V are respectively the total kinetic energy and total potential energy of a system of particles, then the formulaT + V= constant is called the \qquad for systems of particles.
the principle of conservation of momentum
0.0000000
the principle of conservation of potential energy
0.0000000
the principle of conservation of energy
1.0000000
uniform energy
0.0000000

MCQ39
Assuming that the total mass of a system of particles is located at the center of massO, then the total kinetic energy equals the kinetic energy of translation plus \qquad about the center of mass.
the kinetic energy motion
1.0000000
the kinetic energy force
0.0000000
the kinetic energy momentum
0.0000000
the kinetic energy moment
0.0000000

MCQ40
Which of the following is true for rigid bodies and for motion on curves and surfaces without friction?
the virtual work of the constraint forces is zero
1.0000000
the virtual work of the constraint forces is negligible

Click to download more NOUN PQ from NounGeeks.com

0.0000000
the virtual work of the constraint forces is infinity
0.0000000
the virtual work of the constraint nonzero
0.0000000

MCQ41
If F is the total external force acting on a system of particles, then which of the following best describes the total linear impulse of the force?
â^«t1t2Ft
0.0000000
â^«t1t2Fdt
1.0000000
â^ «Fdt
0.0000000
â^«t1t2dF
0.0000000

MCQ42
Let \hat{l}, is the angle between two vectors a and b, then the length of their suma+b2 is given by
$a 2+b 2+2 a b \sin 1$,
0.0000000
a2+b2+2ab cosî,
1.0000000
a2-b2+ab cosî,
0.0000000
$a+b+2 a b \operatorname{cosi}{ }_{\text {I }}$
0.0000000

MCQ43
The divergence of the vectort=3xyz2i+2xy3j+x2yzk at the point $(1,-1,1)$ is \qquad

4
1.0000000
-4
0.0000000

Click to download more NOUN PQ from NounGeeks.com

3

0.0000000

5
0.0000000

MCQ44
What is the speed of a body whose position vector isrt=cosâ $\square \mathrm{j} t \mathrm{i}+\sin$ â $\square \mathrm{it} j+\mathrm{t} k$?
sinâ $\square i t j$
0.0000000
$2 a ̂ \square_{i j}+2 k($
0.0000000

2
1.0000000

2 ti+2â \square itj
0.0000000

MCQ45
The displacement vector $\hat{a}-{ }^{3} r=r t+\hat{a}-3 t-r(t)$ is used to represent
change in speed
0.0000000
change in temperature
0.0000000
change in position
1.0000000
change in speed
0.0000000

MCQ46
A system of particles will be in stable equilibrium if the potential Vof the system is
a maximum
0.0000000
a minimum.
1.0000000
negative
0.0000000

Click to download more NOUN PQ from NounGeeks.com

a torque
0.0000000

MCQ47
The three basic notions for analyzing motion are position, velocity, and \qquad
acceleration
1.0000000
momentum
0.0000000
viscosity
0.0000000
motion
0.0000000

MCQ48
The rate of change of velocity with respect to time is called the \qquad
acceleration
1.0000000
momentum
0.0000000
viscosity
0.0000000
motion
0.0000000

MCQ49
The speed v of a particle is defined to be the rate of change of distance along the path with respect to \qquad .
speed
0.0000000
rate
0.0000000 motion
0.0000000
time

Click to download more NOUN PQ from NounGeeks.com

```
MCQ50
Which is the acceleration of a body whose position vector isrt=cosâ\squarejt i+sinâ\square }\mp@subsup{|}{i}{}\textrm{t j+t k
sinâ}\square\mp@code{ijj
0 . 0 0 0 0 0 0 0
-cos ti+sinâ\squareitj(
0.0000000
-cos ti-sinâ\square;itj
1.0000000
cos ti+sinâ\square;tj
0.0000000
```

