NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2021_1 EXAMINATIONS

COURSE CODE:
COURSE TITLE:
CREDIT UNIT:
TIME ALLOWED:
INSTRUCTION:

PHY492
LABORATORY PHYSICS III
3
($\mathbf{2}^{1} / 2$ HRS)
Answer question 1 and any other four questions

QUESTION 1
A student carried out a light experiment and got the following readings:

Distance of object from lens Ucm	Distance of image from lens V cm
14.00	50.00
18.00	32.00
26.00	20.00
40.00	16.00
55	13.00

a. Evaluate:
i. $(u+v) \mathrm{cm} \quad 1 \mathrm{mk}$
ii. (uv) ${ }^{2}$ for each experiment 1 mk
b. Tabulate your readings 1 mk
c. Plot a graph of $(u+v)$ against $(u v)^{2} \quad 3 m k$
d. Determine the slope x 1 mk
e. What is $\frac{1}{x} \quad 2 \mathrm{mks}$
f. Calculate the error from the slope 2 mks
g. What is the radius of curvature r of the lens 1 mk
h.

QUESTION 2

a. Sketch the diagram for demonstration of half wave rectification 3mks
b. Describe how the set up in 7a explains the action of the diode 3 mks
c. Does the connection to CRO affect the A.C. wave form? If so how 4 mks
d. What is the effect of connecting capacitors parallel to R when S is open 2 mks

Click to download more NOUN PQ from NounGeeks.com

QUESTION 3

A student carried out an experiment to determine the real and apparent depth of a liquid and hence the refractive index. He used the travelling microscope method and obtained the following readings

Microscope readings

di $\mathbf{~ m m}$	do $\mathbf{~ m m}$
7.0	2.0
8.0	2.5
9.0	3.0
10.11	3.3
12.0	4.0

If $\mathrm{di}=$ real depth and upward apparent displacement is do;
i. Calculate the apparent depth $=\mathrm{d}_{2}=\mathrm{d}_{1}-\mathrm{d}_{0} 2 \mathrm{mks}$
ii. $\mathrm{X}=\frac{\text { Real depth }}{\text { Apparent depth }} \quad 2 \mathrm{mks}$

QUESTION 4

A student made 6 observations, he used signal generator, capacitor, inductor, voltmeter, ammeter and oscilloscope to perform an experiment. The output voltage was constant at 12 V . The readings were:

Resistance R(几)	Current I (A)
20	8.00
40	7.20
60	6.50
80	5.00
100	4.50
120	3.80

a. Tabulate your readings 1 mk
b. Evaluate $\mathrm{V} / 1=\mathrm{Z} \quad 1 \mathrm{mk}$
$Z^{2} 1 \mathrm{mk}$
$\mathrm{R}^{2} \quad 1 \mathrm{mk}$
c. Plot a graph Z^{2} on the vertical axis $\& R^{2}$ on the horizontal 4.5 mk
d. Determine the slope 2 mk
e. Find the error in the slope 1.5 mk

Click to download more NOUN PQ from NounGeeks.com

QUESTION 5

In an optics experiment, a student got the following results from measurement:

$\mathbf{d ~ c m ~}$	$\mathbf{L}_{\mathbf{1}} \mathbf{c m}$	$\mathbf{L}_{2} \mathbf{~ c m ~}$
90	75.6	55.6
80	62.6	25.6
70	59.0	23.0
60	46.5	21.4
50	33.0	20.9
40	20.0	25.0

a. Evaluate the following and tabulate your readings

- $\mathrm{L}=\left(\mathrm{L}_{1}-\mathrm{L}_{2}\right) \quad 1 \mathrm{mk}$
- $\mathrm{L}^{2} \quad 1 \mathrm{mk}$
- $\mathrm{d}^{2} \quad 1 \mathrm{mk}$
- $\mathrm{D}=\left(\mathrm{d}^{2}-\mathrm{L}^{2}\right) 1 \mathrm{mk}$
b. Plot a graph of D on the vertical axis and d on the horizontal axis 4 mk
c. Determine the slope 2 mk
d. Calculate the error in the slope 1 mk
e. Evaluate S/2
where
1 mk
S = slope

QUESTION 6

a. $\quad \mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi f c}, \mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fl}$. Explain the symbol (3mk)
b. What is the difference between resistance $\mathrm{R}, \mathrm{X}_{\mathrm{C}}$ and $\mathrm{X}_{\mathrm{L}} 3 \mathrm{mks}$
c. List 3 types of transistor configuration used in electronic circuit designs 1.5 mk
d. If the current gain in the common emitter npn transistor is given as $\beta=\Delta \mathrm{I}_{\mathrm{C}} / \Delta \mathrm{I}_{\mathrm{B}}$. Show that the voltage gain is $\mathrm{Av} .=\beta \mathrm{R}_{\mathrm{C}} / \mathrm{R}_{\mathrm{b}} \quad$ (4.5mk)
e.

