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FACULTY OF SCIENCES 

DEPARTMENT OF MATHEMATICS 

    2021_1 Examinations 12345 

Course Code:   MTH 411 

Course Title:    Measure Theory and Integration 

Credit Unit:      3 

Time Allowed:  3 Hours 

Instruction:      Attempt Number One (1) and any four (4) Questions 

          
1. (a) Define the measure of a bounded open set.                         (3 marks) 

(b) Define the measure of a non – empty bounded closed set F.                (3 marks) 

(c) State Minkowski inequality.                                                                               (3 marks) 

(d) Let (    ) be a measure space. Let        be a sequence of measurable functions 

converging pointwise to f. Moreover, suppose that there is an integrable function g such 

that |  |    for all n. Show that fn and f are also integrable and       ∫ |    |
 

dfl = 

0.   

                                                                                                                     (7 marks)                                                                                                                         

              (e) Let (X,  ) be a measurable space. Explain when a set function fl whose domain is         

             the q− algebra   is called  

(i) additive and                                                                                     (3 marks) 

(ii) countably additive.                                                                          (3 marks) 

 

2. (a) Define counting measure on (X, M), which is a measurable space.            (4 marks) 

           (b) Distinguish between measurable function and Borel function with four examples.  

                                                                                                                          (8 

marks) 

3. (a) ) Let (X, M, fl) be a measure space, and let f and g be extended real-valued functions 

on X that are equal almost everywhere. If fl is complete and if f is measurable, explain 

that g is measurable.                                                                                               (6 

marks) 

(b) ) Let G1 , G2 be open sets such that G1   G2, prove that m(G1 )    m(G2 ).               (6 marks)  

 

 

 

4.  (a) When is S: X   ℝ a simple function?                                                                  (2 marks) 

 (b)  Let { n } be a sequence of measurable functions. n : X   C a.e. Suppose that 
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5. (a) State Beppo Levi’s theorem.                                                                 (4 marks) 

(b) Let (X, M, fl) be a measure space and let A and B be subsets of X that belong to M 

and satisfy A   . Show that fl (A)   fl (B). If in addition A satisfies fl(A) < + , then  

fl(B – A) = fl(B) – fl(A).                                                                           (8 marks) 

6. (a) Let            be non – negative measurable functions. Show that 

 ∫∑     ∑ ∫   
 
   

 
   .                                                                           (6 marks) 

(b) Suppose that fl is Lebesque measure and that f is defined as follows: 

f(x) = *                                               ;  

2 if -9< x      0 otherwise. Find ∫  ( )fl(dr).                                       (6 marks) 
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