Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021 1 Examinations ...

Course Code: MTH402

Course Title: General Topology II

Credit Unit: 3

Time Allowed: 3 Hours **Total:** 70 Marks

Instruction: Answer Question One (1) and Any Other Four (4) Questions

1. (a) Explain discrete and indiscrete topologies.

(6 marks)

(b) Let X be a set. Let a topology on X be a collection τ of subsets of X. Show that finite intersections $\bigcap_{k=1}^{n} U_k$ of elements of τ are in τ .

(8 marks)

(c) Let X be a set, and let B be a basis for a topology au on X. Then show that au equals the collection of all unions of elements of B.

(8 marks)

2. (a) Let d be a metric on the set X. Show that the collection of all r - balls $B_d(x, r)$, for $x \in X$ and r > 0 is a basis for a topology on X, called the metric topology induced by d.

(7

marks)

(b) Prove that $x \in \bar{A}$ if and only if every neighbourhood of x intersects A. i.e., $x \in \bar{A}$ if and only if for all $V \in N(x)$, $V \cap A \neq \emptyset$, where A is a subset of a topological space X.

- 3. (a) Let **B** and **B**⁰ be basis for the topologies τ and τ ⁰ respectively on X. Show that the following are equivalent:
 - i. τ^0 is finer than τ .
 - ii. For each $x \in X$ and each element $B \in \mathbf{B}$ containing x, there exists a basis element $B^0 \in \mathbf{B}^0$ such that $x \in B^0 \subset \mathbf{B}$. (6 marks)
 - (b) State whether each of the following functions is a homeomorphism or not:
 - (i) f: R \rightarrow R given by f(x) = 4x + 1. (2 marks)
 - (ii) F: (-1, 1) \to R given by $F(x) = \frac{x}{1 x^2}$. (2 marks)
 - (iii) The identity map g: $\mathbb{R}_1 \to \mathbb{R}$ is bijective and continuous. (2 marks)

Click to download more NOUN PQ from NounGeeks.com

- 4. (a) What is the relationship between T_1 space, T_3 space and regularity defined on a topological space X? (3 marks)
 - (b) Show that every Hausdorff space is T_1 and the converse is not true. (4 marks)
 - (c) Show that Q, the set of rational numbers is a dense subset of R because $\bar{Q} = R$. (5 marks)
- 5. (a) State whether each of the following is countable or not countable:
 - (i) Z (1 mark)
 - (ii) The image of a countable set under any map. (1 mark)
 - (iii) R. (1 mark)
 - (iv) The set $N^2 = \{(k, n) : k, n \in N\}.$ (1 mark)
 - (v) The union of a countable family of countable sets. (1 mark)
 - (vi) Q. (1 mark)
 - (b)) Show that f is a homeomorphism if X is compact, Y is Hausdorff and $f: X \to Y$ is a continuous bijective function. (6 marks)
- 6. (a) Define the following terms:
 - (i) Covering and Open Cover (2 marks)
 - (ii) Compact Set (2 marks)
 - (iii) Subcover (2 marks)
 - (b) Show that h is continuous if h: $R \rightarrow R$ is defined by

$$h(x) = \begin{cases} = \frac{x}{2}, & \text{if } x \ge 0 \\ = x, & \text{if } x \le 0 \end{cases}$$
 (6 marks).