Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021_1 Examinations

Course Code:	MTH401			
Course Title:	General Topology			
Credit Unit:	3			
Time Allowed:	3 Hours			
Total:	70 Marks			
Instruction: Answer Question One (1) and Any Other 4 Questions				

1a) State without prove the Holder's inequality. (4 marks) b) If $f: \mathbb{R}^n \to \mathbb{R}$, when is f said to be continuous at $a = (a_1 \cdots a_n)$. (4 marks) c) Show that if (E, d) is a metric space, $a \in E(a \text{ fixed element})$ and $f: E \to \mathbb{R}$ such that f(x) = d(x, a)for all $x \in E$. Then f is uniformly continuous on E. (6 marks) d) Given that $f: \mathbb{R}^2 \to \mathbb{R}$ such that $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{for } x^2 + y^2 \neq 0 \\ 0, & \text{for } x = y = 0 \end{cases}$ Verify the continuity of f at (0,0). (8 marks)

2a) Define a metric on a nonempty set E .	(3 marks)	
b) Verify that the usual metric on \mathbb{R} is a metric	(5 marks)	
c) State without prove the Cauchy schwartz's inequality.	(4 marks)	
3a) Define the following terms:		
(i) an open set in a metric space	(1 marks)	
(ii) an interior point in a metric space	(1 marks)	
(iii) a closed set in a metric space.	(1 marks)	

b) Let $\mathbf{E} = \mathbb{R}^2$ be endowed with the Euclidean metricd₂(x,y)= $(\sum_{k=1}^n |x_k - y_k|^2)^{\frac{1}{2}}$ for all $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2), \mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2) \in \mathbb{R}^2$. Describe the sets:

(2 marks)
(2 marks)
(2 marks)
(3 marks)
(2 marks)
(2 marks)

Click to download more NOUN PQ from NounGeeks.com

iii) Cluster point		(2 marks)	
b) Let (E, d), be an arbitrary m	etric space and let $\{x_n\}$ be a Cauchy	y sequence in E .	
Then is bounded		(6 marks)	
5a) State without prove the Pastin	ng Lemma on union of closed sets	(4 marks)	
bi) Given that $f: \mathbb{R}^2 \to \mathbb{R}$ such the function of the second secon	nat		
$f(x,y) = \begin{cases} x^2 \sin \frac{1}{y} + y^2 \sin \frac{1}{x}, \\ y = \frac{1}{y} + \frac{1}{y} \sin \frac{1}{x}, \end{cases}$	for $x \neq 0, y \neq 0$		
(o,	for $x = 0, y = 0$		
Verify the continuity of f at (0,0))	(4 marks)	
bii) Given that $f: \mathbb{R} \to \mathbb{R}$ such the	at		
$f(x) = \begin{cases} x^2 + 1, & \text{for } x \le 0 \\ 1 \end{cases}$			
$\left(\frac{1}{2}(x+2), \text{ for } x \ge 0\right)$			
Verify the continuity of f on \mathbb{R} .		(4 marks)	
6ai) what is a connected metric space? (2 marks)			
ii) What is a connected subspa	ce of a metric space	(2 marks)	
bi)Show that $K = (0,2) \cap [3,4]$ is	s a subspace of a metric space (E, d)) is disconnected.	(4 marks)
bii)Show that \mathbb{R}^2 is connected.			(4 marks)