Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021 1 Examinations ...

Course Code: MTH301

Course Title: Functional Analysis I

Credit Unit: 3

Time Allowed: 3 Hours Total: 70 Marks

Instruction: Answer Question One (1) and Any Other 4 Questions

(1) (a) Define (i) a complete metric space (2 Marks)

(ii) a first category set (2 Marks)
(iii) a Countable set (2 Marks)
(iv) a Countable (2 Marks)

(iv) a Open ball. (2 Marks)

(b) (i) Let X be a complete metric space and $\{O_n\}$ be a countable collection of dense open subsets of X. Prove that that the union $\bigcup O_n$ is not empty. (5 Marks)

(ii) Prove that in \Re^n , every family of disjoint non-empty open set is countable.

(3 Marks)

- (c) (i) Prove that in \Re^n , the union of arbitrary collection of open sets is open. (3 Marks)
 - (ii) Prove that the finite intersection of a collection of open sets is open. (3 Marks)
- (2) (a) Define the followings

(i) a Metric space (2Marks)
(ii) Pseudometric (2 Marks)
(iii) Distance between two vectors (2 Marks)
(b) Explain the concept of an ordered field. (6 Marks)

(3) (a) Define the followings:

(i) a function(2 Marks)(ii) Real-valued function(2 Marks)(iii) Vector-valued function.(2 Marks)

(b) Let A and B be metric spaces. Prove that $f: A \to B$ is continuous if and only if $f^{-1}(V)$ is an open set in A whenever V is open in B. (6 Marks)

Click to download more NOUN PQ from NounGeeks.com

- (4) (a) Define the following:
 - (i)Totally bounded metric space

(2 Marks)

(ii) Sequentially compact metric space

(2 Marks)

- (b) Let X be a metric space and let Y be a subspace of X. Prove that
 - (i) If X is compact and Y is closed in X, then Y is compact. (4 Marks)
 - (ii) If Y is compact, then it is closed in X.

(4 Marks)

(5) a(i) Define a topological space

(2 Marks)

(ii) Give three examples of topological spaces

(3 Marks each)

- (b) Let (K, d_K) be a compact metric space. Let (Y, d_Y) be any metric space and let $f: K \to Y$ be continuous. Prove that f(K) is compact. (4 Marks)
- (6) a(i) If (A, d_A) and (B, d_B) are metric spaces, when is a function

$$f: A \rightarrow B$$
 said to be continuous?

(2 Marks)

- a(ii) Let f and g be real-valued functions with domain(f) = Range (g) = D $\subset \mathcal{R}^N$. If $\lim_{x\to x_0} f(x) = l$ and $\lim_{x\to x_0} g(x) = m$ then state the three limit theorems concerning the sum, product and quotient of the above function. (2 Marks each)
- (b) Given the function $f: \Re^2 \to \Re$ and $(x_0, y_0) = (1,3)$. Compute the limits of the following functions as $(x, y) \to (1,3)$:

(i)
$$\lim_{(x_0, y_0) \to (1,3)} f(x, y)$$
, if $f(x, y) = \frac{2x}{x^2 + y^2 + 1}$. (2 Marks)

(ii)
$$\lim_{(x_0, y_0) \to (1,3)} f(x, y)$$
, if $f(x, y) = x^2 + y^2 + 1$. (2 Marks)