Click to download more NOUN PQ from NounGeeks.com

top
Default for MTH211 Exams
The default category for questions shared in context 'MTH211 Exams'.
top
Default for MTH211
The default category for questions shared in context 'MTH211'.
Multiple Choice Questions (MCQs)
MCQ1
In a principle ideal Domain an element is prime if and only if it is
Irreducible
0.0000000

Reducible
1.0000000

Even
0.0000000 odd
0.0000000

MCQ2
Let R be an integral domain. We say that an element $x \in R$ is irreducible if
(I) x is not a unit
(II) If $x=a b$ with $a, b \in R$ then a is a unit or b is a unit.

Which of the following is the definition of irreducible element
I only
1.0000000

II only
0.0000000

I and II
0.0000000

None of the option
0.0000000

MCQ3
In $Q x$ find the g.c.d of $p(x)=x 2+3 x-10$ and $q(x)=6 x 2-10 x-4$
$x-2$

Click to download more NOUN PQ from NounGeeks.com

$X+5$
0.0000000
$3 x+1$
1.0000000

None of the option
0.0000000

MCQ4
An element $d \in R$ is a greatest common divisor of $a, b \in R$ if
Id/a and d/b
II For any common divisor c of a and $\mathrm{b}, \mathrm{c} / \mathrm{d}$ which of the following is a properties of greatest common divisor

I only
0.0000000

II only
1.0000000

I and II
0.0000000

None of the option
0.0000000

MCQ5
Let R be an integral domain. We say that a function $\mathrm{d}: \mathrm{R} \backslash\{0\} \mathrm{N} \cup\{0\}$ is a Euclidean valuation on R if which of the following conditions are satisfied:
$\mathrm{Id}(\mathrm{a}) \leq \mathrm{d}(\mathrm{ab}) \forall \mathrm{a}, \mathrm{b} \in \mathrm{R} \backslash\{0\}$
II for any $a, b \in R, b \neq 0 \exists q, r \in R$ such that $a=b q+r$ where $r=0$ or $d(r)<d(b)$
I only
0.0000000

I and II
0.0000000

II only
1.0000000

None of the option
0.0000000

Click to download more NOUN PQ from NounGeeks.com

MCQ6
Let p be a prime number consider $x p-1-T \in Z P[x]$. Use the fact that $Z P$ is a group of order p. show that every non - zero element of $Z P$ is a root of $x p-1-T$. In particular if p $=3$

$$
x 3-1-T=(x-T)(x-)
$$

1.0000000

$$
x 3-1-T=(x+)(x+)
$$

0.0000000
$x 3-1-T=(x+)(x+)$
0.0000000

None of the option
0.0000000

MCQ7
In the given polynomial $f(x)=x-32(x+2), 3$ is a root of multiplicity
1
1.0000000

2
0.0000000

0
0.0000000

None of the option
0.0000000

MCQ8
Let F be a field and $f(x) \in F[x]$. We say that an element $a \in F$ is a root of $f(x)$ if
$\mathrm{f}(\mathrm{a}) \neq 0$
0.0000000
$f(a)=1$
1.0000000
$f(a)=0$
0.0000000

None of the option
0.0000000

MCQ9
Express $x 4+x 3+5 x 2-x$ as $(x 2+x+1)+r x$ in $Q[x]$

Click to download more NOUN PQ from NounGeeks.com

```
\(x 4+x 3+5 x 2-x=x 2+x+1 x 2+4-(5 x+4)\)
0.0000000
\(x 4+x 3+5 x 2-x=x 2+x+1 x+4-(5 x+4)\)
0.0000000
\(x 4+x 3+5 x 2-x=x 2+x+1 x 2-4-(5 x+4)\)
0.0000000
None of the option
```

1.0000000

MCQ10
Let F be a field. Let $f(x)$ and $g(x)$ be two polynomials in $F[x]$ with $g(x) \neq 0$. Then
I There exist two polynomial $q(x)$ and $r(x)$ in $F[x]$ such that $f(x)=q(x) g(x)+r(x)$, where $\operatorname{degr}(\mathrm{x})<\operatorname{degg}(\mathrm{x})$.

IIThe polynomial $q(x)$ and $r(x)$ are unique, which of the following is a properties of
Division Algorithm
I only
1.0000000

II only
0.0000000

I and II
0.0000000

None of the option
0.0000000

MCQ11
Which of the following polynomial ring is free from zero divisor
Z6
1.0000000

Z7
0.0000000

Z4

Click to download more NOUN PQ from NounGeeks.com

Z8
0.0000000

MCQ12
Let R be a ring and $f(x)$ and $g(x)$ be two non - zero element of $R[x]$. Then $\operatorname{deg}(f(x) g(x))$
$\leq \operatorname{degf}(x)+\operatorname{degg}(x)$ with equality if
R has a zero divisor
0.0000000
R is an integral domain
0.0000000
R does not have a zero divisor
1.0000000

None of the option
0.0000000

MCQ13
If $p(x), q(x) \in Z[x]$ then the $\operatorname{deg}(p(x) \cdot q(x))$ is
$\operatorname{Deg} p(x)+\operatorname{deg} q(x)$
0.0000000

Max (deg $p(x), \operatorname{deg} q(x))$
1.0000000

Min (deg $p(x), \operatorname{deg} q(x))$
0.0000000

None of the option
0.0000000

MCQ14
If $f(x)=a 0+a 1 x+\ldots+a n x n$ and $g(x)=b 0+b 1 x+\ldots+b m x m$ are two polynomial in $R[x]$, we define their product $f(x) \cdot g(x)=c 0+c 1 x+\ldots+c m+n x m+1$ where $c i$ is
ai bi $\forall \mathrm{i}=0,1, \ldots, \mathrm{~m}+\mathrm{n}$
1.0000000
ai $b 0 \forall i=0,1, \ldots, m+n$
0.0000000
ai $b 0+a i+1 b 1+\ldots+a 0$ bi $\forall i=0,1, \ldots, m+n$

Click to download more NOUN PQ from NounGeeks.com

None of the option
0.0000000

MCQ15
Consider the two polynomials $p(x), q(x)$ in $Z[x]$ by $p(x)=1+2 x+3 x 2, q(x)=4+5 x+7 x 3$.
Then $p(x)+q(x)$ is
$4+7 x+3 x 2+7 x 3$
0.0000000
$5+7 x+3 \times 2+7 x 3$
1.0000000
$1+7 x+3 x 2+7 x 3$
0.0000000

None of the option
0.0000000

MCQ16
Determine the degree and the leading coefficient of the polynomial $1+x 3+x 4+0 . x 5$ is
0.0000000
$(3,1)$
1.0000000
$(5,1)$
0.0000000
$(5,0)$
0.0000000

MCQ17
The Degree of a polynomial written in this form $\operatorname{deg}\left(\sum i=0 n a i x i\right)$ if an $\neq 0$ is
0
1.0000000
n
0.0000000
i
0.0000000

None of the option
0.0000000

Click to download more NOUN PQ from NounGeeks.com

MCQ18Let R be a domain and $x \in R$ be nilpotent then $x n=0$ for some $n \in N$. Since R has nozero divisors this implies that
$\mathrm{x}=0$
0.0000000$x=1$
1.0000000
$x=2$
0.0000000
None of the option
0.0000000
MCQ19
An ideal $m Z$ of Z is maximal if and only if m is
An even number
1.0000000
An odd number
0.0000000
A prime number
0.0000000
None of the option
0.0000000
MCQ20
Every maximal ideal of a ring with identity is
A prime ideal
0.0000000
A field
1.0000000
An integral domain
0.0000000
None of the option
0.0000000
MCQ21
Let R be a ring with identity. An ideal M in R is Maximal if and only if R / M is

Click to download more NOUN PQ from NounGeeks.com

An ideal
0.0000000
A field
1.0000000
An integral domain
0.0000000
None of the option
0.0000000
MCQ22
An ideal p of a ring R with identity is a prime ideal of R if and only if the quotient ring
An integral domain
1.0000000
An ideal
0.0000000
Zero ideal
0.0000000
None of the option
0.0000000
MCQ23
The characteristics of a field is either
Zero or even number
0.0000000
Zero or prime number
0.0000000
Zero or odd number
0.0000000
None of the option
1.0000000
MCQ24
Zn is a field if and only if
n is an even number
1.0000000
n is an old number

Click to download more NOUN PQ from NounGeeks.com

0.0000000
n is a prime number
0.0000000

None of the option
0.0000000

MCQ25
Which of the following is an axioms of a field
Is commutative
1.0000000
R has identity (which is denoted by I) and $\mathrm{I} \neq 0$
0.0000000

Every non - zero element $x \in R$ has a multiplicative inverse which we denote by $x-1$
0.0000000

All of the option
0.0000000

MCQ26
Let R be a ring, the least positive integer n such that $n x=0 \forall x \in R$ is called
Characteristics of R
0.0000000

The order of R
1.0000000

The value of R
0.0000000

None of the option
0.0000000

MCQ27
Which of the following is not a property of an integral domain
Is a commutative ring
1.0000000

Is with unity element
0.0000000

Does not contain a zero divisor

Click to download more NOUN PQ from NounGeeks.com

0.0000000

None of the option
0.0000000

MCQ28
A non - zero element in a ring R is called zero divisor in R if there exist a non - zero element b in R such that
$a b \neq 0$
0.0000000
$a b=0$
1.0000000
$a b-1=0$
0.0000000

None of the option
0.0000000

MCQ29
If H is a subgroup of a group G and $a, b \in G$ then which of the following statement is true?
$\mathrm{aH}=\mathrm{H}$ Iff $\mathrm{a} \in \mathrm{H}$
0.0000000
$\mathrm{Ha}=\mathrm{H}$ Iff $\mathrm{a} \in \mathrm{H}$
1.0000000
$\mathrm{Ha}=\mathrm{Hb}$ Iff $\mathrm{a}-1 \mathrm{a} \in \mathrm{H}$
0.0000000

All the option
0.0000000

MCQ30
Let G be a group and $a \in G$ such that $O(G)=t$, then $a n=a m$, if and only if
$\mathrm{n} \equiv \mathrm{m}(\bmod \mathrm{t})$
0.0000000
$\mathrm{n} \equiv \mathrm{t}(\bmod \mathrm{n})$
0.0000000
$\mathrm{m} \equiv \mathrm{t}(\bmod \mathrm{n})$
0.0000000

None of the option
1.0000000

Click to download more NOUN PQ from NounGeeks.com

MCQ31
Which of these does not hold for ' x ' distributive over \cup, \cap and ' -
$A \times(B \cup C)=A \times B \cup A \times C$
1.0000000
$A \times(B \cap C)=A \times B \cap A \times C$
0.0000000
$A \times(B-C)=A \times B-A \times C$
0.0000000

None of the above
0.0000000

MCQ32
The symmetric difference of two given sets A and B, denoted by $A \Delta B$ is defined by
$A \Delta B=(A-B) \cap(B-A)$
0.0000000
$A \Delta B=(A-B) \cup(B-A)$
0.0000000
$A \Delta B=(A-B)$ or $(B-A)$
1.0000000

None of the above
0.0000000

MCQ33
The (relative) complement (or difference) of a set A with respect to a set B denoted by $B-A$ (or $B \backslash A$) is the set
$B-A=\{x \in B: x A\}$
0.0000000
$B-A=\{x B: x A\}$
0.0000000
$B-A=\{x B: x \in A\}$
1.0000000

None of the option
0.0000000

MCQ34
Which of the following is of the operations U and \cap

Click to download more NOUN PQ from NounGeeks.com

Idempotent : $A \cup A=A=A \cap A$ for every set A
0.0000000

Associative $A \cup(B \cup C)=(A \cup B) \cup C$ and $A \cap(B \cap C)=(A \cap B) \cap C$ for three sets A, B, C
1.0000000

Commutative: $A B=B \cup A$ and $A \cap B=B \cap A$ for any two sets A, B
0.0000000

All the option
0.0000000

MCQ35
The intersection of two sets A and B written as $A \cap B$ is
The set $A \cap B=\{x: x \in A$ and $x \in B\}$
1.0000000

The set $A \cap B=\{x: x \in A$ or $x \in B\}$
0.0000000

The set $A \cap B=\{x: x \in A$ and $x \notin B\}$
0.0000000

The set $A \cap B=\{x: x \in A$ or $x \notin B$
0.0000000

MCQ36
A set X of n elements has
n subsets
0.0000000

2 n subsets
1.0000000

2 subsets
0.0000000

All the option
0.0000000

MCQ37
If G is a finite group such that $O(G)$ is neither I nor a prime, then G has
Non - trivial proper subgroup

Click to download more NOUN PQ from NounGeeks.com

1.0000000

Trivial proper subgroup
0.0000000

Subgroup of order prime
0.0000000

Non - trivial subgroup of order prime
0.0000000

MCQ38
Which of the following is not the definition of Euler Phi - function $\phi: N \rightarrow N$
$\phi(\mathrm{i}=1$ (
1.0000000
$\phi x=$ number of natural numbers less than n and relatively prime to n
0.0000000
$\phi \mathrm{x}=$ number of natural numbers greater than n and relatively prime to n
0.0000000

None of the option
0.0000000

MCQ39
Every group of prime order is
Non - abelian
1.0000000

Cyclic
0.0000000

Distinct
0.0000000

All the option
0.0000000

MCQ40
An element is of infinite order if and only if all its power are
Real

Click to download more NOUN PQ from NounGeeks.com

1.0000000

Imaginary
0.0000000

Distinct
0.0000000

None of the above
0.0000000

MCQ41
Consider the following set of $82^{\prime} 2$ matrices over C . $\mathrm{Q} 8=\{ \pm \mathrm{I}, \pm \mathrm{A}, \pm \mathrm{B}, \pm \mathrm{C}\}$
where $\mathrm{I}=1001, \mathrm{~A}=01-10, \mathrm{~B}=0 \mathrm{i} 0-\mathrm{i}, \mathrm{C}=i 00-\mathrm{i}$ and $\mathrm{i}=-1$. If $\mathrm{H}=\langle\mathrm{A}\rangle$ is a subgroup, how many distinct right cosets does it have in Q8

2

0.0000000

4
0.0000000

8
1.0000000

6
0.0000000

MCQ42
Let $\mathrm{H}=4 \mathrm{Z}$. How many distinct right coset of H in Z do we have?
2
1.0000000

4
0.0000000

6
0.0000000

8
0.0000000

MCQ43
A function $f: A \rightarrow B$ is called one - one if and only if different element of B. some time is called

Click to download more NOUN PQ from NounGeeks.com

Surjective
0.0000000

Injective
0.0000000

Bijective
1.0000000

None of the above
0.0000000

MCQ44
Let G be a group, $\mathrm{g} \in \mathrm{G}$ and $\mathrm{m}, \mathrm{n} \in \mathrm{Z}$. which of the following does not hold
$g m g-m=e$ that is $g-m=(g m)-1$
0.0000000
(gm) $\mathrm{n}=\mathrm{gmn}$
1.0000000
$g m g n=g m+n$
0.0000000

None of the above
0.0000000

MCQ45
Let G be a group. If there exist $g \in G$ has the form $x=g n$ for some $n \in Z$ then G is
A cyclic group
1.0000000

A noncyclic group
0.0000000

An infinite group
0.0000000

All the option
0.0000000

MCQ46
Let $\mathrm{H}=\{\mathrm{I},(1,2)\}$ be a subgroup of S 3 . The distinct left cosets of H in S3are
H, (13)H, (23)H
0.0000000

H, (123)H, (12)H

Click to download more NOUN PQ from NounGeeks.com

1.0000000

H, (132)H
0.0000000

None of the option
0.0000000

MCQ47
The order of 01-10 in Q8 is

0
0.0000000

2
0.0000000

4
1.0000000

6
0.0000000

MCQ48
The order of (12) in S3 is
1
1.0000000

2
0.0000000

3
0.0000000

4
0.0000000

MCQ49
A group generated by g is given by $\langle g>=\{e, g, g 2, \ldots, g m-1\}$ the order of g is
M
0.0000000

M-1
0.0000000

Click to download more NOUN PQ from NounGeeks.com

0
1.0000000

2
0.0000000

MCQ50
Let H be a subgroup of a finite group G . We call the number of distinct of H in G is
Order of subgroup
0.0000000
index
1.0000000

Order of the group
0.0000000

Order of an element
0.0000000

Fill in the Blank (FBQs)
FBQ1
Let $G=\{1,-1, i,-i\}$. Then G is a group under usual multiplication of complex numbers, in this group, the order of i is \qquad .
4
1.0000000
0.0000000

FBQ2
The degree and the leading coefficient of the polynomial $1+x 3+x 4+0 . x 5 i s$
(4,1)
1.0000000
0.0000000
0.0000000

FBQ3
The degree of a polynomial written in this form ($\sum \mathrm{i}=0$ naixi) if an$=0$
is \qquad .

* ${ }^{\text {* }}$
1.0000000
0.0000000

FBQ4

Click to download more NOUN PQ from NounGeeks.com

The order of (12) in S3is \qquad .

2

1.0000000
0.0000000

FBQ5
In a permutation, any cycle of length two is called \qquad .
Transposition
1.0000000
0.0000000

FBQ6
A field K is called \qquad of F if F is a subfield of K, thus Q is a subfield of R and R is a field extension of Q
Field extention
1.0000000
0.0000000

FBQ7
A non - empty subset S of a field F is called a subfield of F if it is a field with respect to the operations on F. if $S \neq F$, then S is called \qquad of F
Proper subfield
1.0000000
0.0000000

FBQ8
Let $f(x)=a 0+a 1 x+\ldots a n x n \in Z x$. We define the content of $f x$ to be the g.c.d of the integers $a 0, a 1, \ldots, a n$, we say $f(x)$ is \qquad if the content of $f(x)=1$
primitive
1.0000000
0.0000000

FBQ9
We call an integral domain R a \qquad if every non - zero element of R which is not a unit in R can be uniquely expressed as a product of a finite number of irreducible elements of R
Unique factorization domain
1.0000000
0.0000000

FBQ10
An element $d \in R$ is a \qquad of $a, b \in R$ if

Click to download more NOUN PQ from NounGeeks.com

$\mathrm{d} \mid \mathrm{a}$ and $\mathrm{d} \mid \mathrm{b}$ and (i)i for any common divisor c of a and $\mathrm{b}, \mathrm{c} \mid \mathrm{d}$
Greatest Common divisor 1.0000000
0.0000000
FBQ11
Given two elements a and b in a ring R, we say that $c \in R$ is a \qquad of a and b if $\mathrm{c} \mid \mathrm{a}$ and $\mathrm{c} \mid \mathrm{b}$.
Common divisor
1.0000000
0.0000000
FBQ12
We call an integral domain R a \qquad if every ideal in R is a principal ideal.
Principal ideal
1.0000000
0.0000000
FBQ13
The number of unit that can be obtained in $R=a+b-5 \mid a, b \in Z$ is \qquad
2
1.0000000
0.0000000
FBQ14
Let R be an integral domain, an element $a \in R$ is called a unit or an \qquad in
R if we can find $b \in R$ such that $a b=1$ i.e if a has a multiplicative inverse
Invertible element
1.0000000
0.0000000
FBQ15
A domain on which we can define a Euclidean valuation is called \qquad .
Euclidean domain
1.0000000
Euclidean
1.0000000
FBQ16
Let R be an integral domain. We say that a function $d: R 0 \rightarrow N \cup 0$ is a
\qquad on R if the following conditions are satisfied.

$$
d(a) \leq d \forall a, b \in R 0 \text { and }
$$

Click to download more NOUN PQ from NounGeeks.com

for any $a, b \in R, b \neq 0 \exists q, r \in R$ such that $a=b q . r$, where $r=0$ or $d r<d b$.
Euclidean Evaluation
1.0000000
0.0000000FBQ17Let F be a field and $f(x) \in F x$, we say that an element $a \in F$ is a
\qquad (where) m is positive integer of $f(x)$ if $(x-a) m \mid f(x)$ but $(x-a) m+1 \times f 1$
Root of multiplicity m
1.0000000
0.0000000
FBQ18
Let F be a field and $f(x) \in F x$ we say that an element $a \in F$ is a
\qquad (or zero) of $f(x)$ if $f(a)=0$
Factor
1.0000000
Divides
1.0000000
FBQ19
If S is set, an object ' a ' in the collection S is called an
\qquad of S
Element
1.0000000
0.0000000FBQ20A set with
\qquad element in S is called an empty set
No
1.0000000
0.0000000FBQ21method is sometimes used to list the element of a large set
Roster
1.0000000
0.0000000
FBQ22
The set of rational numbers and the set of real numbers are respectively representedby the symbol $\{\# 1\}$ and $\{\# 2\}$

Click to download more NOUN PQ from NounGeeks.com

```
10434 10435,10436
FBQ22 {100:SHORTANSWER:%100%Q}
Q
1.0000000
FBQ22 {100:SHORTANSWER:%100%R}
R
1.0000000
FBQ23
The symbol }\exists\mathrm{ denotes
```

\qquad

``` .
*There exist*
1.0000000
0.0000000
FBQ24
If \(A\) and \(B\) are two subsets of a set \(S\), we can collect the element that are common to both \(A\) and \(B\), we call this set the
``` \(\qquad\)
``` of \(A\) and \(B\).
*Intersection*
1.0000000
0.0000000
FBQ25
A relation \(R\) defined on a set \(S\) is said to be
``` \(\qquad\)
``` if we have \(\mathrm{aRa} \forall \mathrm{a}\) \(\in S\).
*Reflexive*
1.0000000
0.0000000
0.0000000
FBQ26
A relation \(R\) defined on a set \(S\) is said to be
``` \(\qquad\)
``` if
\(a R b \Rightarrow b R a \forall a, b \in S\).
*Symmetric*
1.0000000
0.0000000
FBQ27
A relation \(R\) defined on a set \(S\) is said to be
``` \(\qquad\)
``` if \(\mathrm{a} R \mathrm{~b}\) and \(\mathrm{b} R \mathrm{a} \forall \mathrm{a}\), \(b, c \in S\)
*Transitive*
```


Click to download more NOUN PQ from NounGeeks.com

1.0000000
0.0000000

FBQ28
A relation R defined on a set S that is reflexive, symmetric and transitive is called
\qquad relation
Equivalence
1.0000000
0.0000000

FBQ29
A \qquad f from a non - empty set A to a non - empty set B is a rule which associates with every element of A exactly on element of B
Function
1.0000000
0.0000000

FBQ30
A function $f: A \rightarrow B$ is called \qquad if associates different elements of A with different element of B
Injective
1.0000000
One to one
1.0000000

FBQ31
A function $f: A \rightarrow B$ is called \qquad if the range of f is B.
Onto
1.0000000
Surjective
1.0000000

FBQ32
Consider two non - empty set A and B, we define the function $\pi 1 a, b=a . \pi 1$ is called the
\qquad
Projection
1.0000000
0.0000000

FBQ33
A function that is both one to one and onto is called \qquad
Bijective
1.0000000

Click to download more NOUN PQ from NounGeeks.com

0.0000000

FBQ34
Any set which is equivalent to the set $1,2, \ldots, n$, for some $n \in N$, is called a
\qquad set.
Finite
1.0000000
0.0000000

FBQ35
A set that is not \qquad is called infinite set
Finite
1.0000000
0.0000000

FBQ36
A function $f: A \rightarrow B$ has an inverse if and only if is \qquad
Bijective
1.0000000
0.0000000

FBQ37
A natural number $p(\neq 1)$ is called \qquad if its only divisor are 1 and p
Prime
1.0000000
0.0000000

FBQ38
If a natural number $n(\neq 1)$ is not a prime, then it is called a \qquad number
Composite
1.0000000
0.0000000

FBQ39
Let A be any set, the function $I A: A \rightarrow A: I A a=a$ is called \qquad on A.

Identity function
1.0000000
0.0000000

FBQ40
Let S be a non - empty set, any function $S \times S \rightarrow S$ is called a \qquad on S.

Click to download more NOUN PQ from NounGeeks.com

*Binary operation*1.0000000
0.0000000FBQ41Let * be a binary operation on a set S. we say that: * is
\qquad on a subset T ofS if $a * b \in T \forall a, b \in T$
Closed
1.0000000
0.0000000
FBQ42
Let * be a binary operation on a set S. we say that: * is
\qquad if, for all $a, b, c \in$ $S,\left(a^{*} b\right)^{*} c=a \times\left(b^{*} c\right)$.
Associative
1.0000000
0.0000000
FBQ43
\qquad if for all $\mathrm{a}, \mathrm{b} \mid \mathrm{s}$,
$a * b=b^{*} a$
Commutative
1.0000000
0.0000000
FBQ44
If ${ }^{\circ}$ and * are two binary operations on a set S, we say that * is
\qquad .

Distributive over

1.0000000
0.0000000
FBQ45
Let * be a binary operation on a set S. if there is an element $e \in S$ such that $\forall a \in S$, $a^{*} e=a$ and $e^{*} a=a$ then e is called an \qquad for *.
Identity element
1.0000000

Click to download more NOUN PQ from NounGeeks.com

0.0000000

FBQ46
The Cayley table is named after the famous mathemathecian
Arthur Cayley
1.0000000
0.0000000

FBQ47
system consists of a set with a binary operation which satisfies certain properties is called a group
Algebraic
1.0000000
0.0000000

FBQ48
Let G be a group, for $a \in G$, we define
$a 0=e$
$a 0=a n-1$, if $n>0$
$a-a=(a-1) n$, if $n>0$
n is called the exponent (or index) of \qquad an of a
The integral power
1.0000000
integral power
1.0000000

FBQ49
\equiv is an equivalence relation, and hence partition Z into disjoint equivalence classes called \qquad modulo n.

Congruence class
1.0000000
0.0000000

FBQ50
If the set X is finite, say $X=(1,2,3, \ldots, n)$ then we denote $S(x)$ by $S n$ and each of Sn is called a \qquad on n symbols
Permutation
1.0000000
0.0000000

