CHick to download more NOUN PO from NounGeeks.com

The default category for questions shared in context 'MTH105'.
Multiple Choice Questions (MCQs)
MCQ1
Given these propositions
I. Garri is from yam and $8+1=6$
II. Garri is from maize and $2+4=8$
III. Garri from cassava and $3+4=9$
IV. Garri is from cassava and $4+5=9$
The only proposition is
i
0.0000000
ii
0.0000000
iii
0.0000000
iv
1.0000000
MCQ2
Given that p ? q this means the symbols speak about
Conjunction p ? q
1.0000000
Disjunction p ? q
0.0000000
Conjunction p v q
0.0000000
Disjunction p/q
0.0000000
MCQ3
If P is a given negation, its negation is \qquad

Click to download more NOUN PQ from NounGeeks.com

```
? p
0.0000000
v p
0.0000000
~ p
1.0000000
/ p
0.0000000
MCQ4
Conditional statement is of the form "if P then Q." then the symbolical representation is
p?q
0.0000000
p à q
1.0000000
p v q
0.0000000
p ~ q
0.0000000
MCQ5
Bi-conditional statement can be symbolically represented as
```

\qquad

```
p?q
0.0000000
p à q
0.0000000
p ó q
1 . 0 0 0 0 0 0 0
pvq
0.0000000
MCQ6
Given that (p\veeq)\veer=p v (q\veer)
Commutative
```


Click to download more NOUN PQ from NounGeeks.com

0.0000000

Idempotent
0.0000000

Associative
1.0000000

Distributive
0.0000000

MCQ7
If $p \vee(q ? r)=(p \vee q) ?(p \vee r)$ then it is $a(a n)$ \qquad
Identity
0.0000000

Commutative
0.0000000

Distributive
1.0000000

Associative
0.0000000

MCQ8
If $A=200050001$ then A is matrix
Square
0.0000000

Diagonal
1.0000000

Transpose
0.0000000

Symmetric
0.0000000

MCQ9
Given $A=123242$ and $B=104213$ find $A+B$
104212
0.0000000

126453
0.0000000

Click to download more NOUN PQ from NounGeeks.com

227455
1.0000000217545
0.0000000
MCQ10
If $A=213312$ and $B=212122$ then $2 A+B=$
428433
0.0000000
638746
1.0000000637556
0.0000000638756
0.0000000
MCQ11
Given that $A=123457$ and $B=124365$ find $A B$
27236658
1.0000000
23662758
0.000000066582327
0.000000023276658
0.0000000
MCQ12
Find the determinant of $A=4365$
20
0.000000018
0.00000005

Click to download more NOUN PQ from NounGeeks.com

0.0000000

2
1.0000000

MCQ13
Find the determinant of 12-47
15
1.0000000

12
0.0000000

9
0.0000000

6
0.0000000

MCQ14
Find det X, given that $X=123321411$
15
0.0000000

12
0.0000000
-12
1.0000000
-15
0.0000000

MCQ15
Given that 32 X 1 is a singular matrix, find X .
21/2
0.0000000

11/2
1.0000000

1
0.0000000
$1 / 2$

Click to download more NOUN PQ from NounGeeks.com

```
0.0000000
MCQ16
Given that M=221+62-X213 find X, for M to be singular
21/2
0.0000000
31/2
0.0000000
41/2
0.0000000
51/2
1.0000000
MCQ17
Solve for }x\mathrm{ and }y\mathrm{ in }x+3y=4\mathrm{ and }3x+4y=
2/5,6/5
1.0000000
6/5,2/5
0.0000000
-6/5,2/5
0.0000000
6/5,-2/5
0.0000000
MCQ18
Given that co-factor matrix M=16-12-4-5-33-12-3find the Adj M
```

$16-5-5-12-312-43-3$
1.0000000
16-12-5-12-312-412-3
0.0000000
16-5-5-1212-3-43-3

Click to download more NOUN PQ from NounGeeks.com

0.0000000

16-3-5-121212-4-12-3
0.0000000

MCQ19
Find the magnitude of $3 i-4 j$
3
0.0000000

4
0.0000000

5
1.0000000

7
0.0000000

MCQ20
Let x, y, z be the heights assigned to A, B, C such that $x+2 y+3 z=11,2 x+4 y+5 z=21$
and $x+2 y+3 z=11$
$x=2, y=3, z=2$
0.0000000
$x=2, y=-3, z=1$
0.0000000
$x=2, y=3, z=1$
1.0000000
$x=2, y=3, z=-2$
0.0000000

MCQ21
Find the unit vector in the direction of the vector $4 i-3 j$
$1 / 5(4 i-3 j)$
1.0000000
$1 / 5(4 i+3 j)$
0.0000000

1/5(3i-4j)

Click to download more NOUN PQ from NounGeeks.com

```
0.0000000
1/5(3i + 4j)
0.0000000
MCQ22
If Z1= 3+i and Z2= 4+3i, find Z1+Z2
12+3i
0.0000000
7+4i
1.0000000
12-3i
0.0000000
7-4i
0.0000000
MCQ23
Given that Z1= 3-2i and Z2= 5+3i, find Z1 - Z2
2+4i
0.0000000
2-4i
0.0000000
2+4i
0.0000000
-2-4i
1.0000000
MCQ24
If Z1= 2-2i and Z2= 5-3i, find Z1/ z2
.(2-2i)(5+3i)34
1.0000000
(2-2i)(5-3i)34
0 . 0 0 0 0 0 0 0
(2+2i)(5+3i)34
0.0000000
(2+2i)(5-3i)34
```


Click to download more NOUN PQ from NounGeeks.com

0.0000000

MCQ25
Find the distance between $\mathrm{A}(5,-3)$ and $\mathrm{B}(-1,3)$
-63
0.0000000
-62
0.0000000

63
0.0000000

62
1.0000000

MCQ26
Find the angle of inclination if $A(2,-3)$ and $B(4,5)$
900
0.0000000

600
0.0000000

450
1.0000000

300
0.0000000

MCQ27
Find the distance between $\mathrm{A}(0,1)$ and $\mathrm{B}(9,6)$
104
0.0000000

105
0.0000000

106
1.0000000

107
0.0000000

MCQ28
Find the distance between A $(6,3)$ and $(6,9)$

Click to download more NOUN PQ from NounGeeks.com

0.0000000

6
1.0000000

4
0.0000000

2
0.0000000

MCQ29
Find the gradient of the straight line $A(-2,0)$ and $B(6,-4)$
2/3
0.0000000

3/2
0.0000000

1/2
1.0000000

2/2
0.0000000

MCQ30
Find the distance between $A(6,9)$ and $B(11,15)$
36
0.0000000

25
0.0000000

61
1.0000000

51
0.0000000

MCQ31
Find the equation of a line with $A(2,3)$ and $B(6,8)$
$5 x+4 y=-2$
0.0000000
$5 x-4 y=-2$

Click to download more NOUN PQ from NounGeeks.com

```
1.0000000
5x+4y=2
0.0000000
5x-4y=2
0.0000000
MCQ32
Find the equation of a line, which passes through the points A (0, 3) and (6,0)
x+2y=6
0.0000000
x-2y=6
0.0000000
y-2x=6
0.0000000
y+2x=6
1.0000000
MCQ33
Find the coordinate of the point of intercept of the equations 2x+3y=5 and x+2y=3.
1,1
1.0000000
1,-1
0.0000000
-1,1
0.0000000
-1, -1
0.0000000
MCQ34
Find the gradients of these equations }x+y=5\mathrm{ and }x+2y=6\mathrm{ respectively
-1 and -1/2
1.0000000
1 and 1/2
0.0000000
-1 and 1/2
0.0000000
```


Click to download more NOUN PQ from NounGeeks.com

1 and -1/2
0.0000000

MCQ35
Find the coordinate of the meeting points of equations $x+y=3$ and $x+2 y=5$
$-1,-2$
0.0000000

1, -1
0.0000000
-1, 2
0.0000000

1, 2
1.0000000

MCQ36
Find the equation of a line that is perpendicular to $2 x+5 y=10$
$5 x-2 y=4$
0.0000000
$5 x-2 y=-4$
1.0000000
$2 x-5 y=-10$
0.0000000
$2 x+5 y=10$
0.0000000

MCQ37
Given that two (2) lines with gradients M 1 and M 2 are parallel, then \qquad
M1 ? M2
0.0000000
$\mathrm{M} 1<\mathrm{M} 2$
0.0000000

M2 < M1
0.0000000
$\mathrm{M} 1=\mathrm{M} 2$
1.0000000

MCQ38

Click to download more NOUN PQ from NounGeeks.com

Find the equation of the line which is parallel to $3 x+2 y=5$ and passes through the point (3, -6).
$3 x+2 y=3$
0.0000000
$3 y+2 x=3$
0.0000000
$3 x+2 y=-3$
1.0000000
$3 y+2 x=-3$
0.0000000

MCQ39
Find the equation of the line which is perpendicular to $2 x+3 y=6$ and passes through the point ($2,-4$)
$2 x-3 y=8$
0.0000000
$2 x+3 y=-8$
1.0000000
$2 x-3 y=-8$
0.0000000
$2 x+3 y=8$
0.0000000

MCQ40
Given $x 2+y 2-24 x-10+60=0$, find the coordinate of the centre.
12, 5
1.0000000

5, 12
0.0000000
-12, -5
0.0000000
$-5,-12$
0.0000000

MCQ41
Find the coordinate of the centre and radius of circle of the equation
$x 2+y 2-24 x-6 y+86=0$

Click to download more NOUN PQ from NounGeeks.com

$(-12,-3), r=7$
0.0000000
(12, -3), r=7
0.0000000
(12, 3), r= 7
1.0000000
$(-12,3), r=7$
0.0000000

MCQ42
Given that nth term of a Sequence $4,6,8 \ldots \ldots$. is $a-n=a+(n-1) d$, find the 7 th term
10
0.0000000

12
0.0000000

14
0.0000000

16
1.0000000

MCQ43
Given the two (2) sequences 1, 3, $5 \ldots .$. and 2, 4, 6.......the 8th terms of the two (2) sequences are

11 and 12
0.0000000

13 and 14
0.0000000

15 and 16
1.0000000

17 and 18
0.0000000

MCQ44
Find the 16 th term of an A.P whose first term is 102 and common difference -3 .

Click to download more NOUN PQ from NounGeeks.com

0.0000000

47
0.0000000

57
1.0000000

67
0.0000000

MCQ45
The 4th and 9th terms of an A.P are 10 and 20 respectively; find the first term and the common difference.

4, 2
1.0000000

4, 3
0.0000000

4, 5
0.0000000

4, 7
0.0000000

MCQ46
Find the common ratio of the following $6,18,54$
2
0.0000000

3
1.0000000

4
0.0000000

5
0.0000000

MCQ47
Find the common ratio of $1 / 32,1 / 16,1 / 8$ \qquad
4
0.0000000

2

Click to download more NOUN PQ from NounGeeks.com

1.0000000

1/2
0.0000000

1/4
0.0000000

MCQ48
Find the limit of $5 x x+1$ as X à 8
0
0.0000000

1
0.0000000

5
1.0000000

6
0.0000000

MCQ49
The derivative of $5 x 3+3 x+2 / x$
$15 \times 2+3+2 / \times 2$
0.0000000
$15 \times 2-3+2 / x 2$
0.0000000
$15 \times 2+3-2 / x 2$
1.0000000
$15 \times 2-3-2 / x 2$
0.0000000

MCQ50
If $y=\sin -1 x$, find $d y / d x$
$1 / 1-x 2$
0.0000000
$1 / 1+x 2$
0.0000000

1/1-x2
1.0000000

Click to download more NOUN PQ from NounGeeks.com

1/1+x2
0.0000000

Fill in the Blank (FBQs)
FBQ1
A matrix, which has the same number of rows and columns is called \qquad
square matrix
1.0000000
0.0000000

FBQ2
\qquad is a matrix in which all its diagonal elements are one
identify matrix
1.0000000

FBQ3
The disjunction of X and Y is denoted by \qquad
XVY
1.0000000
0.0000000

FBQ4
\qquad is the conjunction of X and Y
($\mathrm{X} \wedge Y$)
1.0000000
0.0000000

FBQ5
The statement of the form ' m ' If and only If ' n ' or ' m ' If ' n ' is denoted by \qquad
m <-> n
1.0000000

FBQ6
Let ' a ' be she is tall and ' b ' be she is nice. The state in symbolic is written as \qquad
($\left.\mathrm{a}^{\wedge} \mathrm{b}\right)$
1.0000000

FBQ7
Let ' a ' be she is fair or ' b ' be she is beautiful. The statement in symbolic form is
(a ? b)
1.0000000

FBQ8
If ' p ' is she is tall and ' q ' is she is beautiful. The statement that she is tall or short and beautiful can be symbolically represented as \qquad

Click to download more NOUN PQ from NounGeeks.com

$\left(p ?\left(\sim p^{\wedge} q\right)\right)$
1.0000000
0.0000000

FBQ9
If p and q stand for he is tall and handsome respectively, then $\left(\sim p^{\wedge}-q\right)$ is \qquad ?

He is neither tall nor handsome
1.0000000
0.0000000

FBQ10
The equilibrium prices and quantities for two commodity market models $X d j=-2-p+q$ and $\mathrm{Xsi}=-2-q$ is \qquad
$(2,4)$
1.0000000

FBQ11
The equation of the line passing through the points $A(2,3)$ and $B(4,6)$ is \qquad ?
$2 y=3 x$
1.0000000

FBQ12
is defined to be the matrix obtained by replacing every number aij of the given matrix A by its cofactor in the determinant of A.
cofactor
1.0000000

FBQ13
Given that $A=1425$, the determinant of A is \qquad
-3
1.0000000
0.0000000

FBQ14
The determinant of $A 2-2 A$ is \qquad , Given that $A=1221$

15
1.0000000

FBQ15
If $A=200010203$ it is called \qquad ?
diagonal matrix
1.0000000

FBQ16
The determent of $1-11-223-121$ is

Click to download more NOUN PQ from NounGeeks.com

1.0000000

FBQ17
The conditional statement of the form if ' a ' then ' b ' is \qquad
(a->b)
1.0000000

FBQ18
\qquad are the vectors with the same magnitude and directions.
equal vectors
1.0000000

FBQ19
Equal directions and magnitude means the vectors are \qquad
Parallel
1.0000000
0.0000000

FBQ20
If three or more points lie on a straight line, they are said to be \qquad
Collinear
1.0000000

FBQ21
The modulus $|. \mathrm{a}|$ is the same thing as \qquad
Magnitude
1.0000000

FBQ22
A complex variable Z is of the form $a+b i$ where a and b are called \qquad
real number
1.0000000
0.0000000

FBQ23
In a complex variable Z of the form $a+b i, i$ is called \qquad
imaginary number
1.0000000

FBQ24
Two or more complex numbers $\mathrm{Z} 1, \mathrm{Z} 2$ and $\mathrm{Z} 3 \ldots$. . are said to be equal if their \qquad are equal
real parts
1.0000000

FBQ25
Given that a complex number $Z=a+b i$, then its conjugate is written as \qquad

Click to download more NOUN PQ from NounGeeks.com

$Z=a-b i$
1.0000000
a-bi
1.0000000

FBQ26
If $\mathrm{Zn}=\mathrm{rn}(\cos ?+\mathrm{I} \sin ?)=r(\cos ?+\mathrm{I} \sin ?) \mathrm{n}$, it is called \qquad
De Moivre's Theorem
1.0000000

FBQ27
The slope is the same thing as \qquad of the line with x-axis
tangent of an angle inclination
1.0000000

FBQ28
The gradient of a line is the same as the \qquad of that line,, usually denoted by 'm'.

Slope
1.0000000
0.0000000

FBQ29
The gradient or slope of any line can be determined by the \qquad in y and/over that of x.
rate of change
1.0000000
0.0000000

FBQ30
The equation of a straight line $y-m x-c=0$ has \qquad and \qquad as slope and the intercept on the y-axis.
m and c
1.0000000

FBQ31
The equation of a line that passes through the origin is \qquad
$y=m x$
1.0000000

FBQ32
The equation of a line given one point and the slope is generally written as \qquad
$y-y 1=m(x-x 1)$
1.0000000

FBQ33
___ is the locus of curve equidistant from a point.
Circle
1.0000000

Click to download more NOUN PQ from NounGeeks.com

FBQ34
Differentiation is the inverse process of \qquad
Integration
1.0000000

FBQ35
If the value of turning point in \qquad is negative then it is a maximum point.
second derivative
1.0000000

FBQ36
If the value of the turning point in the second derivation is positive, then it is a \qquad
minimum point
1.0000000

FBQ37
__ is the point at which curve is neither a maximum nor minimum.
point of inflexion
1.0000000

FBQ38
At point of inflexion, the turning points are equal and can be referred to as \qquad
double stationary points
1.0000000

FBQ39
At the point of inflexion, the value of the stationary point at the second derivation is \qquad
Zero
1.0000000

FBQ40
If a die is rolled, the probability of getting odd and prime number is \qquad
14
1.0000000

FBQ41
___ is the amount by which a resource is underutilized in optimization model.

Slack

1.0000000
0.0000000

FBQ42
Comparing straight line equations with business that is demand function, we have $y=$ $m x+c$ and $q=m p+c$, where $y=q$ stands for \qquad
function of goods demanded
1.0000000

FBQ43

Click to download more NOUN PQ from NounGeeks.com

Comparing straight line equations with business that is demand function, we have $y=$ $\mathrm{mx}+\mathrm{c}$ and $\mathrm{q}=\mathrm{mp}+\mathrm{c}$, where $\mathrm{mx}=\mathrm{mp}$ then m stands for
gradient of x and p respectively
1.0000000

* coefficient of x and p respectively*
1.0000000

FBQ44
Comparing straight line equations with business that is demand function, we have $y=$ $\mathrm{mx}+\mathrm{c}$ and $\mathrm{q}=\mathrm{mp}+\mathrm{c}$, where $\mathrm{mx}=\mathrm{mp}$ then x and p stand for \qquad
variable price of the goods demanded
1.0000000

FBQ45
The equation of a line with two points and the slope is \qquad
$m=y 2-y 1 / x 2-x 1=y-y 1 / x-x 1$
1.0000000
$m=y 1-y 2 / x 2-x 1=y-y 2 / x-x 2$
1.0000000

FBQ46
Give that $A B-=-B A-$ are vectors of the same magnitude but in \qquad direction.

Opposite
1.0000000

FBQ47
If $A B-=1$, then $A B$ - and it is called a \qquad vector

Unit
1.0000000

FBQ48
Given $A B-=-B A-$ are vectors of the \qquad magnitude but in opposite direction.

same

1.0000000

FBQ49
a-is equal to -a lf " a " is less than \qquad
Zero
1.0000000

0
1.0000000

FBQ50
a - is equal to " a " If ' a ' is greater than \qquad
Zero
1.0000000

0
1.0000000Zero*

Click to download more NOUN PQ from NounGeeks.com

1.0000000

0
1.0000000

