MAY/JUNE 2012 EXAMINATION CIT 445Principles & Techniques of Compilers

1a) Define formal Grammar.) 4 marks

A formal grammar (sometimes called a grammar) is a set of rules of a specific kind, for forming strings

in a formal language.

b) List and define the four basic types of grammars in the field of Computer Science) 8 marks
i. Type-0 grammars (unrestricted grammars) include all formal grammars.

ii. Type-1 grammars (context-sensitive grammars) generate the context-sensitive languages. &
iii. Type-2 grammars (context-free grammars) generate the contextfree languages. 0

iv. Type-3 grammars (regular grammars) generate the regular languages. ¢
c. Given the grammar G with following production rules, S - a | a$S ,détermine whether
the string bbaaba can be generated by the grammar) Zmarksg

Using 00

S=bS o

S =ba Q

S = bbaaS= bbaaba o&
2a. Define formal language) 3 mal&‘

A formal language is a set of word finite strings of letters, symbols, or tokens.
b. State three of the uses&al languages) 3 marks
c. What is a translat arks

A translator is \amme that takes as input a programme written in one programming language (

the sourt&uage)and produces as output a programme in another language (the object or target lan

hy do we need a translator?) 3 marks

We need translators to overcome the rigour of programming in machine language, which involves
communicating directly with a computer in terms of bits, register, and primitive machine operations.
e. Enumerate the functions performed by the lexical analyser) 4 marks

The main function is to simplify the overall design of the compiler. Lexical analyser also performs other

functions such as keeping track of line numbers, producing an output listing if necessary, stripping out
white space (such as redundant blanks and tabs), and deleting comments.

3a. Compare interpreter and compiler) 5 marks

Compiler: A compiler is a programme that translates a source programme written in some high-level
programming language (such as Java) into machine code for some computer architecture (such as the
Intel Pentium architecture).

Interpreter: An interpreter reads an executable source programme written in a high-level progra@
language as well as data for this programme, and it runs the programme against the data t ce

some results.

90
b. State any five qualities of a compiler) 5 marks Q*
i. the compiler itself must be bug-free QQ
ii. it must generate correct machine code Q
iii. the generated machine code must run fast o0
iv. the compiler itself must run fast (compilation tir@ust be proportional to programme size)
v. the compiler must be portable (i.e. modul porting separate compilation)
vi. it must print good diagnostics an essages

vii. the generated code must w@el with existing debuggers

viii. must have consistent dictable optimisation.

c. State the knowled ded to build a compiler)4 marks

i. programmin ges (parameter passing, variable scoping, memory allocation, etc.)

omata, context-free languages, etc.)

ii. theory

ms and data structures (hash tables, graph algorithms, dynamic programming, etc.)

mputer architecture (assembly programming)
v. software engineering.

4) With the aid of illustrative diagram describe the phases of a compiler.) 14 marks

) x
Ele Edt View Window Help *

Do | BB |® ® (=] @[] H B |2 2|k Tools | Fill&Sign | Comment

Source Programme

Lexical Analysis

Table Management Intermediate Code Error Handling
Generation
Code Optimisation
Code Generation

Targel Programme
Fig. 1: Phases of a Compiler

5) Consider the grammar G below:
GEE+T/T

TT*F/F

F (E)/i

a) Generate the non-left recursive version of the grammar) 5 marks

E=>E+T
ST+T
=F+T
=id+T
=id+T*F
=id+F*F

=id+id*F o&

= id +id * id 0

*
b) Find FOLLOW of all the nonterminal symbols in the non-left recursive @Jf the gramm

<&
&

b. List the common techniques for building tables for an ”LR@ser stating the characteristics of each?

ar)
6a) What are the benefits of LR parsing?) 5 marks

) 6 marks

c. Consider the grammar, C®
G: E->E+T|T &‘

T>T*F | F

F>(E)]|i bz
What is the augn@mar for this grammar.) 4 marks

Answer:

G:E >

l

T->T* | F

F_(E)|i

7) Consider the grammar,

G:S—>a|aS|bS
a) Find the LR(0) items for this grammar) 10 marks

b) Construct an NFA whose states are the LR(0) items from (a).

JANUARY/FEBRUARY 2013 EXAMINATION CIT 445 Principles & Techniques of Compilers
1a) Explain what is meant by the term handle?) 2 marks

A handle of a string is a substring that matches the right side of a production whose reduction to @

nterminal on the left represents one step along the reverse of a rightmost derivation. o

b) Consider the following grammar for list structure:

90
sea|ﬂl|(T) Q@“

i) find the rightmost derivations for:) 7marks :

(i) (a, (a, a)) (\o

(i) (((a, @), ~, (a)), a)
ii) Indicate the handle of each right sententiab@che derivations in (a) above) 5 marks

&

2a) Briefly describe the operatiéerformed by the shift-reduce parser) 6 marks

The shift-reduce parser op shifting zero or more symbols onto the stack until a handle appears
on the top. The pars educes the handle to the left side of the corresponding production. This
process contin il'an error occurs or the start symbol remains on the stack.

b) Givel@&xt-free grammar G below:
OQ E
E E*E
E (E)
E id
State the steps performed by the shift-reduce parser when analyzing the input string:

id1 + id2 *id3) 8 marks

Answer:

Tie ot View VindowHp *
Do [SREZES P E R ez | Tools | Fill&Sign Cummcm‘
R = g Sonin
L] N T —
reduce by £ > id [Proious [New I} | pgopeexponror
i [
shift Selet PDF File:
reduce by L > id s o
seduce by £ — E*E T
reduce by £ E+E J—
accept [Misrosot W o -]
Another way of analysing this could be as below: g Tetin g US)
Stack Tnpu Action
s ey Shift Comer
siy +ig%igS reduce
SE +itisS sing S T
SE+ L*isS shi N
SE+i; *iys reduce L
SE+E *is$ reduce L. Send Pl
SE *is$ shift 1. =
SE* is$ Shift
SE*i; reduce
SE*E s reduce
SE 5 Accept
Shift reduce parsing is not adequate. Tn parsing there are four possible
actions:

Fie Est e vinsan reip

Do |EBERBEEH|® - Tools | FilsSign | Comment

 gunror
e
B e
o
oot
fce by £ > id.
e by £ EE g0
luce by £ — E~E
sccept
= Comvert
» Gomeron
e
i
» s
= in U

OR

3a) Explain what is meant by the term Viable Prefix?) 3 marks
A viable prefix is so called because it is always possible to add terminal symbols to the end of a viable

prefix to obtain a right sentential form.

b) Given the grammar G with following production rules, S - a | aS | bS, determine whether the

N

string aababbba can be generated by the grammar) 5marks

c) Enumerate any three of the errors which can be detected during lexical analysi

marks 6 ¢

Strange characters: Some programming languages do not use all possible char@t S0 any strange

ones which appear can be reported. Q

Long quoted strings I: Many programming languages do not allo @%ings to extend over more
than one line; in such cases a missing quote can be detectedoé

Long quoted strings Il: If quoted strings can extend ove%iple lines then a missing quote can cause
quite a lot of text to be 'swallowed up' before arfferror is detected.

Invalid numbers: A number such as 12 &Qould be detected as invalid during lexical analysis
(provided the language does not aI@ full stop to appear immediately after a number).

43a) Explain what is mean&p-down parsing technique) 2 marks

Top-down parsing ca @Ned as an attempt to find a leftmost derivation for an input string or as

attempting to ¢

of the pa@

he difficulties in top-down parsing) 6 marks

a parse tree for the input string starting from the root and creating the nodes

e'in pre-order

i ich production will you apply? If the right production is not applied you will not get the input string.
ii. If you are not careful, and there is a left recursive production, it can lead to continue cycling without
getting to the answer i.e. input string.

iii. The sequence in which you apply the production matters as to whether you are going to get the

input string or not. That is, there is a particular sequence that will lead you to the input string.

iv. If you apply a production and find out that the production cannot work, you have to start all over
again.

c) Using examples, state and illustrate how to minimized) 6 marks

e Eloip
2w 1 S 128 | 7 >) | w0 |- | o4 | @ 2 | W) Tools | Fill 22Slgn | Comment ‘

- metting the
ie lefr

53083

which one do we expand A (07 We can get rid of
= ing 0 the right

G:E E+T/T

TT*F/F

F(E)/i

a) Find all the first and last terminals in this grammar) 5 marks

Fle Gt Vew Mindou Help

Do | QRFREEE|®W = @] 580z |k

ares opULE S

). and i >). We add the reations * > $,+ > $.) > S, and i > §
according t0 rule (if). The precedence reltions for our arammar are as
shown i the fable below:

Table 2: Operator-Precedence Relations

E A [I

+ c
> le < |» |« > o

+
> |» e |5 |< |

Cle Jo Je [+ Je

S > >

R >

S le Je s <

These operator precedence relations allow us to delimit the handles in

the ight seatential forms: <~ marks the lefi end. = appears in the
interior of the handle, and > marks the ight end.

Let s assume that berween the symbols a, and a,., there is exactly one

erate the operator precedence passing

6a) Define the following for any given grammar?) 5 marks
FOLLOW A: for non-terminal A to be the set of terminals a, that can appear immediately

to the right of A in some sentential form.

) FIRST(q)

b) Consider the grammar, °®

G: ES>E+T|T 0

TST*F | F 9‘

F>(E) | e*
&

)4

II) Find the FIRST(a) for any string derivable fror@) 5 marks

I) Find the FOLLOW(A) for all the terminal in G

7a) Consider the grammar

S>L=R|R &
o
L->*R i ‘
6‘\

R->L 6@

a) Compu@ (0) items for the above grammar)10 marks

Construct anv
oo SCHOOL OF SCIENCE AND TECHNOLOGY

JUNE/JULY EXAMINATION

hose states are the LR(0) items from (a))4 marks

COURSE CODE: CIT445
COURSE TITLE: Principles & Techniques of Compilers

TIME ALLOWED: 2% hrs

INSTRUCTION: Answer any five (5) questions. Each question carries 14 marks
1) With the aid of an illustrative diagram describe the phases of a compiler.

14 marks

]
Bl Ecit Yiew Wndow Fep %

Pon |QRBQOBEEE|®F[s]= @@ w]]|HE| 22| Tooks Fil&Sgn | Comment

L‘ Find £ Signin
Source Programme W‘ Bxport POF

Adobe ExportPOF

Conver FDFies o Word o xeel

) anlne,
Lexical Analysis
\

\ Sl Fiz
N\ PEES

12 162

Comett o

VicosotWee cox) -

RecognizeTecin Engl<h1US)
Change

Table Mznagement Intermediate Code Error Hand ing ‘
Generation
» Create POF
Code Opt misation T —
» Edit POF
\ » Send Files
» Store Files
(ode Generztion 9 ‘
Targel Programme et
RN DM ge

Fig.1: Phases of a Compiler

V18

2a) What are the benefits of LR parsing? o 4%
marks Q
i. it detects syntactic errors when the input does form to the grammar as soon as possible.

ii. It is more general than operator precﬁ‘@ any other common shift-reduce techniques
iii. LR parsing also dominates the commonforms of top-down parsing without backtrack.\
iv. LR parsers can be constrt recognlse virtually all programming language constructs for which

context-free grammars ritten

oY
R

b) common techniques for building tables for an “LR” parser stating the
istics of each?
Q LR
i. smallest class of grammars ii. smallest tables (number of states) iii. simple, fast construction

Canonical LR
i. full set of LR(1) grammars ii. largest tables iii. slow, expensive and large construction

Lookahead LR

i. intermediate sized set of grammars ii. same number of states as SLR(1)

iii. canonical construction is slow and large iv. better construction techniques exist

b) Consider the grammar,

G: E->E+T|T

T>T*F | F
F->(E)|i @
What is the augmented grammar for this grammar. @1 rks

3a) Briefly describe the operations performed by the shift-reduce parser, l 9 ¢

6 marks e

i. shift - the next input symbol is shifted onto the top of the stack e
ii. reduce - the parser knows the right end of the handle is at th thestack. It must then locate

the left end of the handle within the stack and decide with \@nonterminal to replace the handle
iii. accept - the parser announces successful completion ofparsing
iv. error - the parser discovers that a syntax &ccurred.
b) Given the context-free grammar G t&&
O

G: E E+E

EE*E e
E (E) ‘bb

E i Q\
@9& the grammar,

G:S->a|aS|bs

a) Find the LR(0) items for this grammar

10 marks

b) Construct an NFA whose states are the LR(0) items from (a). 4
marks
5a) Explain what is meant by the term Viable Prefix? 3
marks

b) Given the grammar G with following production rules, S = a | aS | bS, determine whether

the string aababbba can be generated by the grammar

5 marks &
O

c) Enumerate any three of the errors which can be detected during lexical analysiso

6 marks

X o°
6) Consider the grammar G below: Q

O
o“(\
o

&
O
O
o"p‘a
A
&
00

G:E E+T/T

TT*F/F

F (E)/i

a) Generate the non-left recursive version of the grammar

5 marks

b) Find FOLLOW of all the nonterminal symbols in the non-left recursive version of the

grammar 9 marks

O

7a) Define formal language 6 *
marks et
b) State three of the uses of formal languages g@ 3

oV

¢) What is a translator? Q
2 marks &

d) Why do we need a transla%
3 marks 6

e) Enumerate thea s performed by the lexical analyser

4 marks \00

October, %ination CIT 445 Principles& Techniques of Compilers
e the term parsing (3 marks)
(b) State and discuss four examples of analytic grammar formalisms (8 marks)
the Language Machine: directly implements unrestricted analytic grammars.
top-down parsing language (TDPL): a highly minimalist analytic grammar formalism developed in the
early 1970s to study the behaviour of top-down parsers.

link grammars: a form of analytic grammar designed for linguistics, which derives syntactic structure by

examining the positional relationships between pairs of words.

parsing expression grammars (PEGs): a more recent generalisation of TDPL designed around the
practical expressiveness needs of programming language and compiler writers.

(c) Given the grammar G with the following production rules, S = a | aS | bS, determine whether the

string babbaa can be generated by the grammar (3 marks)

2.(a) What is the difference between a translator and a compiler (6 marks) &
A compiler is a programme that translates a source programme written in some high—level o
programming language (such as Java) into machine code for some computer archit

A translator is a programme that takes as input a programme written in one r@ ming language (

the source language) and produces as output a programme in another | @

(b) State and describe four components of the structure of a c@ (8 marks)

1. Front end o
2. Back-end :

3. Tables of information od
4. Runtime library K‘

i) Front-End: the front-end is re e for the analysis of the structure and meaning of the source

text.

ii) Back-End: The a@&responsible for generating the target language.

iii) Tables of rmation: It includes the symbol-table and there are some other tables that provide
inforn-cb uring compilation process.

@w-Time Library: It is used for run-time system support.

3.(a) With the aid of a diagram describe the functions of a T.diagram (8 marks)

E] x

Ble it View Window Help x
Do [EREAREBM|A® 7 alced(w[]EB|len|d Tools | Fil&Sign | Comment
L. CIT#45 MODULE 1 Find x|~ Signin
T Diagram w|| | v Export POF
i this course, we will concern ourselves with mostly the front-end i 22 I | [pV— @
those parts of compilation that can be automated which are lexical. e S
syntas and probably semantic analyses. B
i 1 st
36 T-Diagrams
They are used to describe the nature of a compilation. Ttis usually in the WT‘
form of T and is diagrammatically represented as in figure 2 below: kbt
gt Tt EghshUS)
Compier G
Source Language Target Language Coer
» Create PDF
» Edit POF
» Send Files
» Store Files.

Language
Implementation

90
ot

(b) State the Roles of a Parser (6 marks) e

* The parser reads the sequence of tokens generated by the lexical

* It verifies that the sequence of tokens obeys the correct sy @tructure of the programming

language by generating a parse tree implicitly or explicio e sequence of tokens

2
o
&

¢ It enters information about tokens into the symbol table

e |t reports syntactic errors to the user

4.(a) State four difficulties with Top-down parsing (6 marks)

i. Which production will you apply? If the right production is not applied you will not get the input string.
ii. If you are not careful, and there is a left recursive production, it can lead to continue cycling without

getting to the answer i.e. input string.

iii. The sequence in which you apply the production matters as to whether you are going to geté@

input string or not. That is, there is a particular sequence that will lead you to the input stri

iv. If you apply a production and find out that the production cannot work, you h%t@rt all over

again. e
(b) State five benefits of LR Parsing (7 marks) gz

i. it detects syntactic errors when the input does not conform t Qmmar as soon as possible.

ii. It is more general than operator precedence or any o mon shift-reduce techniques

iii. LR parsing also dominates the common forms of % parsing without backtrack.\

iv. LR parsers can be constructed to recognis@ﬁll programming language constructs for which

context-free grammars can be writtEn K‘

5.With the aid of illustrati éram describe the phases of a compiler (14 marks)
CHECK 2012 FOR{dH RAM
6.(a) State a escribe the three main techniques for loop optimisation (6 marks)

. Strela duction which replaces an expensive (time consuming) operator by a faster one;
@rtion Variable Elimination which eliminates variables from inner loops;

e Code Motion which moves pieces of code outside loops.

(b) State any sixqualities of a compiler (8 marks)

i. the compiler itself must be bug-free

ii. it must generate correct machine code

iii. the generated machine code must run fast

iv. the compiler itself must run fast (compilation time must be proportional to programme size)
v. the compiler must be portable (i.e. modular, supporting separate compilation)

vi. it must print good diagnostics and error messages

vii. the generated code must work well with existing debuggers

viii. must have consistent and predictable optimisation.

R\

7. Consider the grammar G below: 0

2
G:E E+T/T q ' 9
TT*F/F e

F(E)/i QQ

(a) Generate the non-left recursive version of the grammaoc (5 marks)

(b)Find FOLLOW of all the nonterminal symbols in t eft recursive version of the

grammar
(9 marks)od

MARCH/APRIL 2014 EXA Ié)N CIT 445 PRINCIPLES & TECHNIQUES OF COMPILERS
1. (a) What do you under y the term Viable Prefix? (3 marks)

(b) Given the@ G with following production rules, S = a | aS | bS, determine

whethe@

(c) E te any three of the errors which can be detected during lexical analysis

ring aababbba can be generated by the grammar (5marks)

arks)
2. (a) What is the difference between a translator and a compiler (6 marks)
(b) State and describe four components of the structure of a compiler (8 marks)
3. (a) What do you understand by top-down parsing technique (2 marks)

(b) State the difficulties in top-down parsing (6 marks)

(c) Using examples state and illustrate how to minimize (6 marks)
4. (a) State and describe the three main techniques for loop optimisation (6 marks)
(b) State eight qualities of a compiler (8 marks)
5. With the aid of illustrative diagram describe the phases of a compiler (14 marks)
6. (a) With the aid of a diagram describe the functions of a T.diagram (8 marks)

(b) State the Roles of a Parser (6 marks)

7. Consider the grammar G below: 0®
GE E+T/T 0

TT*F/F 9’
ot

F(E)/i
(a) Generate the non-left recursive version of the grammar (5 marks)
(b) Find FOLLOW of all the nonterminal symbols in the non-left recursive version of the

grammar (9 marks)

OCTOBER/NOVEMBER 2014 EXAMINATION CIT 445 Principles and Techniques of Compilers

¢ declaring procedure e lexical level of declaration e storage class (base add@%&fset in

1a. List the ten (10) types of information required by a compiler (10 marks)

e textual name e data type e dimension information (for aggregates)

storage
¢ if record, pointer to structure table e if parameter, by-reference or e?
¢ can it be aliased? to what other names? ¢ number and typeégments to functions

O

1b. Explain the term “formal system” (2 marks)
A formal system consists of a formal language toge rw?a deductive apparatus

1c. Outline any two properties an optimisin iler should provide (2 marks)

¢ the transformations should preserye &&mantics of the programmes, that is the changes should
guarantee that the same input @ the same outputs (and should not cause errors)

¢ the transformations shoE ed up considerably the compiler on the average (although occasionally

on some inputs t@

¢ the transfo tion should be worth the intellectual effort.

t be demonstrated, on most of the inputs it should become faster)

2a. De ach of the following parameter passing method:

@ value: The calling procedure calculates and passes the address containing the

value of the actual parameter.

Call by reference: The called procedure uses this address to refer to the parameter.

Call by name: This call implementation requires a textual substitution of the formal parameter name by

the actual parameter.

Call by value result: A parameter can be stored as both value and result. In this case, the local location
of the formal parameters is initialised to the valu contained in the address of the actual parameter and
the called procedure returns the result back to the actual parameter.

2b. Define the term “Translators” (2 marks)

A translator is a programme that takes as input a programme written in one programming language (
the source language)and produces as output a programme in another language (the object or target
0(0
O

3a. Complete the table by inserting the Translators and Target languages of the'm‘@e‘d Source

languages. (10 marks) e

language).

Source Language Translat t Language

X O

LaTeX Text e PostScript

Formatt 0®
er ‘

saL s Query Evaluation Plan

0 Query Optimiser

Java Qé Javac Compiler Java Byte Code

Englis°<§ Natural Semantics (meaning)
o Languag

e
Underst

anding

Regular Expressions JLex Scanner Generator A Scanner in Java
BNF of a language Cup A Parser in Java
parser
generat
or
3b. Explain the term “Formal Grammer” 2 marks 0

9 2
A formal grammar (sometimes called a grammar) is a set of rules of a specific ki& orming strings

in a formal language. e
3c. Why Do We Need Translators? 2 marks g

We need translators to overcome the rigour of programmin |ne language, which involves

communicating directly with a computer in terms of bit er, and primitive machine

4a. Outline the challenges involved in developn@pllers (11 marks)

i. Many variations
- many programming languages (e. %AN C++, Java)
- many programming paradi & object-oriented, functional, logic)

-many computer archit (e.g. MIPS, SPARC, Intel, alpha)

-many operati@ s (e.g. Linux, Solaris, Windows)

i. Qualit@a
g nd useful.
compiler itself must be bug-free

- it must generate correct machine code

mpiler: these concerns the qualities that are compiler must possess in other to be

- the generated machine code must run fast

- the compiler itself must run fast (compilation time must be proportional to programme size)
- the compiler must be portable (i.e. modular, supporting separate compilation)

- it must print good diagnostics and error messages

- the generated code must work well with existing debuggers

- must have consistent and predictable optimisation.

iii. In-depth knowledge: : &

Building a compiler requires in-depth knowledge of: 0
L 2

- programming languages (parameter passing, variable scoping, memory aIIocati@

- theory (automata, context-free languages, etc.) e

- algorithms and data structures (hash tables, graph algorithms, dynam@gramming, etc.)

- computer architecture (assembly programming) 0

- software engineering. Qo

4b. What is a Compiler? 3 marks 6
a compiler is a programme that translateS{@ programme written in some high-level

programming language (such as Java in
tel Pentium architecture) e

5a. Explain the four (4) nts of a compiler (8 marks)

chine code for some computer architecture (such as the In

i) Front-End: the@n is responsible for the analysis of the structure and meaning of the source

text.

ii) Baco *The back-end is responsible for generating the target language.

il les of Information: It includes the symbol-table and there are some other tables that provide
information during compilation process.

iv) Run-Time Library: It is used for run-time system support.

5b. Mention six (6) reasons why there is a need to study LR grammars (6 marks)

¢ LR (1) grammars are often used to construct parsers. We call these parsers LR(1) parsers and it is

everyone’s favourite parser

e virtually all context-free programming language constructs can be expressed in an LR(1) form

¢ LR grammars are the most general grammars parse-able by a deterministic, bottom-up parser

o efficient parsers can be implemented for LR(1) grammars

¢ LR parsers detect an error as soon as possible in a left-to-right scan of the input

¢ LR grammars describe a proper superset of the languages recognised by predictive (i.e., LL) parsers

6a. Clearly explain the four (4) benefits of parsing (8 marks) &

i. it detects syntactic errors when the input does not conform to the grammar as soon as p@le.

ii. It is more general than operator precedence or any other common shift-reduce,telc uzs

iii. LR parsing also dominates the common forms of top-down parsing witho track.\

iv. LR parsers can be constructed to recognise virtually all programminage constructs for which
context-free grammars can be written 0

6b. Consider porting a compiler for C written in C from ng machine A to an existing machine B.
Write out the steps to cross compilation? (6 ks

a. Write new back-end in C to generate code 0ﬁter B

b. Compile the new back-end and ug& isting C compiler running on computer A generating code

for computer B. e

c. We now have a compil éng on computer A and generating code for computer B.

d. Use this new c\ ?generate a complete compiler for computer B. In other words, we can
compile the piler on computer A to generate code for computer B

e. WEG ve a complete compiler for computer B that will run on computer B.

@/ this new compiler across and run it on computer B (this is cross Compilation).

7a. What are the errors that could occur during Lexical Analysis (8 marks)

Long quoted strings I: Many programming languages do not allow quoted strings to extend over more
than one line; in such cases a missing quote can be detected.

Strange characters: Some programming languages do not use all possible characters, so any strange

ones which appear can be reported.

¢ Long quoted strings Il: If quoted strings can extend over multiple lines then a missing quote can cause
quite a lot of text to be 'swallowed up' before an error is detected.

Invalid numbers: A number such as 123.45.67 could be detected as invalid during lexical analysis
(provided the language does not allow a full stop to appear immediately after a number).

7b. Discuss the following: (6 marks)

I. Loop Optimizations 0

Strength Reduction: This concept refers to the compiler optimisation method of substituting some
machine instruction by a cheaper one and still maintaining equivalence in results.

Function chunking: is a compiler optimisation for improving code locality.

MARCH/APRIL 2015 CIT 445 PRINCIPLES AND TECHNIQUES OF COMPILERS
1a) In the context of Computer Science, what do you understand by the word “Formal Grammar”
A formal grammar (sometimes called a grammar) is a set of rules of a specific kind, for formin%

in a formal language.

b) In the classic formalization of generative grammars first proposed by Noam @ ﬁst any three

component of a grammar “G”? e

a. Type-0 grammars (unrestricted grammars) include all formal g

grammars. 3
b. Type-1 grammars (context-sensitive grammars) generaé@

context-sensitive languages.

c. Type-2 grammars (context-free grammars) te the contextfree

languages. K‘

d. Type-3 grammars (regular gr generate the regular

languages.

c) Discuss the fo b@%s of grammars

Type-0: Unr &Grammars

These ars generate exactly all languages that can be recognized by a Turing machine.

@: Context-Sensitive Grammars

These grammars have rules of the form with being a non-terminal and strings of terminals and non-
terminals
Type2: Context-Free Grammars

A context-free grammar is a grammar in which the left-hand side of each production rule consists of

only a single non-terminal symbol

Type-3: Regular Grammars

In regular grammars, the left hand side is again only a single nonterminal symbol, but now the right-
hand side is also restricted.

d) What is a formal language?

A formal language is a set of words, i.e. finite strings of letters, symbols, or tokens.

2a) It is customary to partition the compilation process into a series of sub-process called phﬁ@

What do you understand by the term “phase”?

¢
A phase is a logically cohesive operation that takes as input one representation o@'ce

programme and produces as output another representation. e

b) With the aid of a suitable diagram list the different phases of the c ilation process
CHECK 2012 FOR ANSWER oc
c) Discuss the operation of a compiler Qo

Front End: &
* The lexical analysis (or scanning) o
¢ The syntax analysis E K‘

¢ Semantic analysis

Back End: z 6
¢ Intermediate c@misation

¢ Code gener Q

e Cod ﬁation

@efly describe and distinguish among the following: i) Translator (ii) compiler (iii) interpreter
A translator is a programme that takes as input a programme written in one programming language (
the source language)and produces as output a programme in another language (the object or target
language).

Compiler: A compiler is a programme that translates a source programme written in some high-level

programming language (such as Java) into machine code for some computer architecture (such as the
Intel Pentium architecture).

Interpreter: An interpreter reads an executable source programme written in a high-level programming
language as well as data for this programme, and it runs the programme against the data to produce
some results.

b) List any five qualities of compiler

i. the compiler itself must be bug-free ii. it must generate correct machine code &

iii. the generated machine code must run fast iv. the compiler itself must run fast (compilation time
must be proportional to programme size) v. the compiler must be portable (i.e. modular, supporting s
eparate compilation) vi. it must print good diagnostics and error message vii. the generated code
must work well with existing debuggers viii. must have consistent and predictable optimisation.

c) With the aid of a suitable diagram, clearly state the use of T-d3iagrams

4a) List the steps to implement Lex

1. Read input lang. spec &

2. Construct NFA with epsilon-moves (Can also do DFA directly) 0

3. Convert NFA to DFA @ l 9 ¢

4. Optimise the DFA

5. Generate parsing tables & code gz

K‘o b) Write a Lexprogramme to print all alphabetic

words in an input stream 6

Answer (7
\006

c) Explair@ess to create a lexical processor with Lex
P gramme into a file, say file.l.

Coaile the lex programme with the command:

¢ |ex file.l
This command produces an output file lex.yy.c.
Compile this output file with the C compiler and the lex library -1l:gcc lex.yy.c -ll

The resulting a.out is the lexical processor.

5a) Briefly describe a “parser” and state any three roles of the parser
The Parser takes tokens from lexer (scanner or lexical analyser) and builds a parse tree
Role of the Parser

* The parser reads the sequence of tokens generated by the lexical

analyser
* It verifies that the sequence of tokens obeys the correct syntactic o&
structure of the programming language by generating a parse tree 0

2
implicitly or explicitly for the sequence of tokens ‘ ' 9

¢ It enters information about tokens into the symbol table e

¢ It reports syntactic errors to the user. g

b) State the need and constituents of a context-free Grammar. Q

CFG's are very useful for representing the syntactic struc rogramming languages.

1. A finite set of terminal symbols, 2. A finite no ty set of nonterminal symbols,

3. One distinguished nonterminal called the @s mbol, and 4, A finite set of rewrite rules, called

productions

c) How are the following rep

i) Grammar symbols (ii) strings

of terminals (iii) productions

6a) Write short notes on the following:
i) Operator precedence (ii) operator Grammar (iii) operator precedence e Grammar
An operator precedence parser is a bottom-up parser that interprets an operator-precedence @

Operator grammars have the property that no production right side is empty or two or moejjacent

. L 2
non-terminals.

An operator precedence grammar is an -free operator grammar in which th@@dence relations

define above are disjoint

b) State the operator precedence parser algorithm Oc

(\0

&
O
O
o"p‘a
A
&
00

= x

Fie Edt View Vindon _Hep x
Do | QRRAEER|O@® [/ @@= HB|2]|d Tools _ Fill&Sign | Cpmmem‘
L] Using this formal method, compute the precedence relationship matri: fisd x|]
table for the grammar G in the Self -Assessment Exereise 1 above. Operator recedence v|| | v Export POF
[| Met]} | pecpontor e
3.16 Operator Precedence Parsing Algorithm CometPFhestoWord r e
anine

Initialise: Set ip to point to the first symbol of 1§ Select OF il

Repeat: Let X be the top stack symbol, and a the symbol pointed & crseet

by THe /RN
if s on the top of the stack and ip points to $ then refurn [

e
Let a be the top terminal on the stack. and b the symbol pointed to by ip e R L]

if a< b or a=b then
push b onto the stack

advance ip to the next input symbol o
elseif @0 then

repeat » Crete POF

pop the stack » Edit PDF

until the top stack terminal is related by < » Send Files

to the terminal most recently popped) Store Files

else error()

end
3.1.7 Making Operator Precedence Relations
The operator precedence parsers usually do not store the precedence
table with the relations: rather they are implemented in a special way

s _uiBiE

7a)Suppose we have a grammar G: e

o

ET

T T*F Q

TF

F (E) ‘o
Fa K
Z
SEPTEMBER/OCTOBER CIT 445 Principles & Techniques of Compilers
1) Define form Ngage) 3 marks
A formal | age is a set of words, i.e. finite strings of letters, symbols, or tokens.
b Qwee of the uses of formal languages) 3 marks
c. What is a translator?) 2marks
A translator is a programme that takes as input a programme written in one programming language (
the source language)and produces as output a programme in another language (the object or target
language).

d. Why do we need a translator?) 3 marks

We need translators to overcome the rigour of programming in machine language, which involves
communicating directly with a computer in terms of bits, register, and primitive machine operations.

e. Enumerate the functions performed by the lexical analyser) 4 marks

The main function is to simplify the overall design of the compiler. Lexical analyser also performs other
functions such as keeping track of line numbers, producing an output listing if necessary, stripping out
white space (such as redundant blanks and tabs), and deleting comments.

2a) Briefly describe the operation performed by the shift-reduce parser) 6 marks &

b) Given the context-free grammar G below: 0
G: E E+E 9 .
EE*E e*
E (E) QQ
N

E id

State the steps performed by the shift-reduce parser analyzing the input string:

id: + id2 * id3s) 8 marks &

JULY 2017 EXAMINATION CIT 445 Pl&&es & Techniques of Compilers Marking Scheme

O

1) a) With the asztrative diagram describe the phases of a compiler. (14 marks)

b) Consider the r G below:

G:E E+T/T \
TT*F/@

Generate the non-left recursive version of the grammar (5 marks)
Answer:
E=E+T

=>T+T

=id+T

=id+T*F

=id+F*F

=id+id*F

= id +id * id

c) Explain what is meant by the term Viable Prefix? (3 marks)

A viable prefix is so called because it is always possible to add terminal symbols to the end of a viable
prefix to obtain a right sentential form.

2a. What are the benefits of LR parsing?) 4 marks

i. it detects syntactic errors when the input does not conform to the grammar as soon as possi%&
ii. It is more general than operator precedence or any other common shift-reduce techniqués

iii. LR parsing also dominates the common forms of top-down parsing without bagk @ ¢

iv. LR parsers can be constructed to recognise virtually all programming Ian&a@onstructs for which
context-free grammars can be written

b) List the common techniques for building tables for an "L@stating the characteristics of

each? (6 marks) o
Simple LR :

i. smallest class of grammars ii. smallest tab mber of states) iii. simple, fast construction

Canonical LR K‘

i. full set of LR(1) grammars |®é tables iii. slow, expensive and large construction
Lookahead LR

i. intermediate si ammars ii. same number of states as SLR(1)

iii. canonical @uction is slow and large iv. better construction techniques exist

c) (‘0 r the grammar,

Q SE+T|T

T>T*F | F

F>(E)|i

What is the augmented grammar for this grammar (2 marks)

[EE RN N S e P Sl meom i R OO R

3 a) Briefly describe the operation performed by the shift-reduce parser (6 marb&

i. shift - the next input symbol is shifted onto the top of the stack 0

ii. reduce - the parser knows the right end of the handle is at the top of thestackyl r@t‘hen locate
the left end of the handle within the stack and decide with what nonterminé%alace the handle
iii. accept - the parser announces successful completion of parsing g

iv. error - the parser discovers that a syntax error has occurredo

b) State three of the uses of formal languages (3

- Formal languages are often used as the basis for riCRer constructs endowed with semantics.

- In computer science they are used, amor@'

gs, for the precise definition of data formats and

the syntax of programming languag
- Formal languages play a cr ci@& the development of compilers, typically produced by means of a
P

compiler, which may be%
s (e.g. lex), and p@nerators (e.g. yacc).

- Formal lan re also used in logic and in foundations of mathematics to represent the syntax of
Ss.

rogramme or may be separated in tools like lexical analyser generator

forma

@y do we need a translator? (3 marks)

We need translators to overcome the rigour of programming in machine language, which involves com
municating directly with a computer in terms of bits, register, and primitive machine operations.

43a) What is a translator? (2marks)

A translator is a programme that takes as input a programme written in one programming language (

the source language)and produces as output a programme in another language (the object or target

language).

b) Consider the grammar,

G:S->alaS|bs

Find the LR(0) items for this grammar (10 marks

5a) Enumerate the functions performed by the lexical analyser (4 marks)

R
&
00

The main function is to simplify the overall design of the compiler. Lexical analyser also performs other
functions such as keeping track of line numbers, producing an output listing if necessary, stripping out

white space (such as redundant blanks and tabs), and deleting comments.

b) Enumerate any three of the errors which can be detected during lexical analysis (6
marks)

Strange characters: Some programming languages do not use all possible characters, so any strange

ones which appear can be reported. &

Long quoted strings I: Many programming languages do not allow quoted strings to extent@ore

than one line; in such cases a missing quote can be detected.
Long quoted strings Il: If quoted strings can extend over multiple lines then a &uote can cause
quite a lot of text to be 'swallowed up' before an error is detected. 9
Invalid numbers: A number such as 123.45.67 could be detected during lexical analysis
(provided the language does not allow a full stop to appear étely after a number)
6) a) Define formal language (3 marks)
A formal language is a set of words, i.e. finite f letters, symbols, or tokens.

&
b) Find FOLLOW of all the nonteéal symbols in the non-left recursive version of the
grammar (9 marks) 0

\
o°§

