Default for PHY205

The default category for questions shared in context 'PHY205'.
Fill in the Blank (FBQs) for PHY 205
FBQ1
Astronomers used to specify the position of a celestial object through \qquad and Azimuth

* Altitude *
1.0000000
0.0000000

FBQ2

Altitude of an object equal to the angle in degrees above the \qquad .

* horizon *
1.0000000
0.0000000
0.0000000
0.0000000

FBQ3
With careful attention to the changing positions of the Sun, Moon, planets, and stars, people were able to develop calendars and ultimately predictions of rare events including eclipses without any \qquad .

* instrument *
1.0000000
tool
1.0000000

FBQ4
Which direction did the five bright planetsâ€"Mercury, Venus, Mars, Jupiter, and Saturn move against the background of the stars?
east
1.0000000
eastward
1.0000000

FBQ5

In which direction did ancient astronomers in many different places around the globe noted that Mars, Jupiter, and Saturn sometimes moved.
*westward *
1.0000000
west
1.0000000

FBQ6
The Chinese determined the approximate length of the \qquad at about the same time as the Egyptians.

year

1.0000000
0.0000000

FBQ7
The Maya of Central America kept a continuous record of days from day \qquad
zero
1.0000000
0.0000000

FBQ8
The adjustment required in the Maya calendar illustrate a common problem faced by ancient \qquad
Astronomers
1.0000000
0.0000000

FBQ9
In ancient times, people imagined that celestial events, especially the \qquad motions, were connected with their own fortunes.
Planetary
1.0000000
0.0000000

FBQ10
Moon provides the background against which the motions of the \qquad are measured.
planets
1.0000000
0.0000000
0.0000000

FBQ11
An azimuth of an object equals to its angle in the horizontal \qquad , with north at $0 \hat{A}^{\circ}$, east at $90 \hat{A}^{\circ}$, south at $180 \hat{A}^{\circ}$, and west at $270 \hat{A}^{\circ}$.
*direction *
1.0000000
0.0000000

FBQ12
Most \qquad in astronomy includes three parts, or phases.
1.0000000
job
1.0000000
0.0000000

FBQ13
Who first observed astronomical objects by guiding telescopes?
astronomers
1.0000000
0.0000000
0.0000000

FBQ14
Some astronomers work solely on observation and analysis, and some work solely on developing new \qquad .
theories
1.0000000
0.0000000

FBQ15
Which instrument will not be used at all by theoretical astronomers?
telescopes
1.0000000
0.0000000
0.0000000

FBQ16
Astronomers learn about astronomicalobjects by observing the \qquad they emit
Energy

1.0000000
0.0000000

FBQ17
Earthâ $€^{T M}$ s atmosphere complicates studies by absorbing many wavelengths of the electromagnetic \qquad .
spectrum
1.0000000
0.0000000

FBQ18
Until the 20th century, all observational astronomers studied the visible light that
astronomical objects \qquad
emit
1.0000000
0.0000000
0.0000000

FBQ19
How many planets were found between 1781 and $1930 ?$

* 3 *
1.0000000
* three *
1.0000000
0.0000000

FBQ20
Rising of the star Sirius in the pre-dawn sky was used-to mark the time when the Nile River could be expected to \qquad
*flood *
1.0000000
overflow
1.0000000
0.0000000

FBQ21
Astronomers learnt about astronomical
through the energies they emit
objects
1.0000000

* object*
1.0000000

FBQ22
In order of increasing distance from the Sun, the planets in our solar system are given as Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and \qquad .

*Neptune *

1.0000000
0.0000000

FBQ23
Observatories for electromagnetic waves with wavelengths ranging from just longer than visible light to 1,000 times longer than visible light wavelengths are located on certain high mountain tops or in \qquad .
Space
1.0000000
0.0000000

FBQ24
Every warm object \qquad some infrared radiation
Emits
1.0000000
0.0000000

FBQ25
Every \qquad object emits some infrared radiation
Polarisation
1.0000000
0.0000000

FBQ26
astronomers use giant dish antennas to collect and focus signals in the radio
The \qquad spectrum.
radio
1.0000000
0.0000000

FBQ27
The oldest known representations of groups of stars are called \qquad .
constellations
1.0000000
0.0000000 FBQ28
One of the ways astronomers give the position of a \qquad object is by specifying its altitude and its azimuth
celestial
1.0000000
0.0000000

FBQ29
As Earth \qquad astronomical objects appear to rise and set
rotates
1.0000000
0.0000000
0.0000000

FBQ30
The celestial sphere is a giant imaginary globe surrounding \qquad .
Earth
1.0000000
0.0000000

FBQ31
A solar system consists of a central star orbited by \qquad . 0
Planets
1.0000000
0.0000000

FBQ32
results from turbulence in Earth's atmosphere
Twinkling
1.0000000
0.0000000

FBQ33
The ___ astronomer make use of a telescopes and imaging equipment to study light from objects.

* Optical*
1.0000000
0.0000000

FBQ34
The inner planets of the solar system Mercury, Venus, Earth, and \qquad
*Mars *
1.0000000
0.0000000

FBQ35
Dwarf planet refers to \qquad
*Pluto *
1.0000000

Multiple Choice Questions (MCQs)
MCQ1

Which of the following is not part of the reasons why scientists map the sky?
It helps to navigate
0.0000000

It helps to measure time
0.0000000

It helps in tracking celestial events
0.0000000

None of the option is correct
1.0000000

MCQ2
The oldest known representations of groups of stars are known as \qquad
Coordinates
0.0000000

Constellations
1.0000000

Radios
0.0000000

Optical
0.0000000

MCQ3
In ancient England, what does keeping track time represent?
It was marked for accurate preparation
0.0000000

It was marked for accurate evaluation
0.0000000

It marked accurate sensitization
0.0000000

It marked accurate navigation
1.0000000

MCQ4
Astronomers gather different
 of electromagnetic radiation depending on the objects that are being studied

Frequencies
0.0000000

Wavelengths
1.0000000

Distances

0.0000000

Energies
0.0000000

MCQ5
Conventional telescopes work only for \qquad and the parts of the spectrum near visible light, such as the shortest infrared wavelengths and the longest ultraviolet wavelengths mercury light
0.0000000
oxygen light
0.0000000
visible light
1.0000000
opaque light
0.0000000

MCQ6
How many constellations divide the sky without overlapping?
25
0.0000000

10
0.0000000

88
1.0000000

151
0.0000000

MCQ7
The largest refracting telescope is the 40-in (1-m) telescope at the Yerkes Observatory in Williams Bay, Wisconsin, founded in the late \qquad .

18th century
0.0000000

17th century
0.0000000

19th century
1.0000000

16th century
0.0000000

MCQ8
Lenses \qquad different colours of light by different amounts.
stray
0.0000000
move
0.0000000
bend
1.0000000
hit
0.0000000

MCQ9
Images produced by large lenses can be tinged with \qquad , often limiting the observations to those made through filters
paint
0.0000000
colour
1.0000000
prism
0.0000000 glass
0.0000000

MCQ10
Gamma rays have the \qquad wavelengths
longest
0.0000000
quickest
0.0000000 slowest
0.0000000
shortest
1.0000000

MCQ11
Most of the instruments on the Hubble Space Telescope (HST) are sensitive to \qquad radiation.
solar
0.0000000
gamma
0.0000000
ultraviolet
1.0000000
visible
0.0000000

MCQ12
Earthâ $€^{T M}$ s atmosphere \qquad infrared radiation
reflects
0.0000000
resists
0.0000000
drives
0.0000000
absorbs
1.0000000

MCQ13
The two most widely used coordinate's system in the world are \qquad
Altazimuth system and Equatorial system
1.0000000

Azimuth system and X-ray system
0.0000000

Altazimuth system and lonosheric system
0.0000000

Optical system and Radio system
0.0000000

MCQ14
Which wave has the longest wavelength?

Gamma

0.0000000

Visible light
0.0000000

Radio
1.0000000

X-rays
0.0000000

MCQ15

The northern hemisphere constellations that astronomers recognize today are based on the \qquad constellations.

Aristotle
0.0000000 Greek
1.0000000

Philosophical
0.0000000

Galaxy
0.0000000

MCQ16
Meteorology includes atmospheric chemistry and atmospheric physics with a major focus on \qquad forecasting
space
0.0000000
sky
0.0000000
weather
1.0000000
stand
0.0000000

MCQ17
A familiar group of stars in the northern hemisphere is called the \qquad .

Quarks
0.0000000

Holes
0.0000000

Big Dipper
1.0000000

Milky way
0.0000000

MCQ18
When was telescope invented?
1800s
0.0000000

1900s
0.0000000

1600s
1.0000000

1903s
0.0000000

Which of the following roles was first played by telescope when it was invented?
The structure of the solar system which led to the discovery of new planets around the sun
1.0000000

The structure of moon only
0.0000000

The structure of the solar cycle whichled to the discovery of new sun
0.0000000

All the options are correct
0.0000000

MCQ20
Which of the following is/are the uses of a telescope?
measurement of distances to nearby stars
0.0000000

It is use to understand the structures of the planets
0.0000000

It was used to discovered that the stars are made of the same elements
0.0000000

All the options are correct
1.0000000

MCQ21
The equatorial coordinate system is based on the celestial \qquad
oval
0.0000000
acoustic
0.0000000
sphere
1.0000000
hole
0.0000000

MCQ22
The equivalent of longitude on the celestial sphere is called right \qquad -
ascension
1.0000000
recession
0.0000000
depression
0.0000000
occurrence
0.0000000

MCQ23
The Sun produces its energy by fusing hydrogen into helium in a process called nuclear \qquad .

Build
0.0000000 energy
0.0000000

Fusion
1.0000000

Break
0.0000000

MCQ24
The first law of Keppler states that each planet moves in an orbit, with the Sun at one focus of the ellipse.
elliptical
1.0000000
circular
0.0000000
tangential
0.0000000 oscillatory
0.0000000 MCQ25
In Kepplerâ $€^{T M}$ s first law, Eccentricity: is the ratio between \qquad from centre of ellipse to focal point and semi-major axis.

Object
0.0000000
angle
0.0000000
planet
0.0000000 distance
1.0000000

MCQ26
The Second law of Keppler states that a line from the Sun to a given planet sweeps out equal areas in equal \qquad .
rate
0.0000000 times
1.0000000 rotor

magnitude

0.0000000

MCQ27
Which of the following system gives an objectâ $€^{T M}$ s coordinates with respect to the sky visible above the observer?

Radio system
0.0000000

Equatorial system
0.0000000

Altazimuth system
1.0000000

Optical system
0.0000000

MCQ28
Satellites are designed to last only about \qquad in orbit.

10 years
0.0000000

15 years
1.0000000

20 years
0.0000000

25 years
0.0000000

MCQ29
The transponder is a combination of elements within the \qquad .

Lander
0.0000000

Mast
0.0000000

Payload
1.0000000

Antenna
0.0000000

A spacecraft is the actual piece \qquad of that is launched into orbit to become an artificial satellite for the purpose of providing a radio repeater station

Load
0.0000000

Lift
0.0000000

Ladder
0.0000000

Hardware
1.0000000

MCQ31
The principal advantage of LEO satellites is the shorter range that the \qquad signal has to traverse, requiring less power and minimizing propagation delay.
radio
1.0000000
bacon
0.0000000
sky
0.0000000
radar
0.0000000 MCQ32
A geosynchronous \qquad could be elliptical or inclined with respect to the equator (or both)
signal
0.0000000
disc
0.0000000
orbit
1.0000000
moment
0.0000000

MCQ33

Which of the following is not part of the techniques of astronomy?

Optical astronomers

0.0000000

Ray astronomers
1.0000000

X-ray astronomers
0.0000000

Infrared astronomers
0.0000000

MCQ34
Which of the astronomy make use of giant dish antennas to collect and focus signals?
Optical astronomy
0.0000000

Radio astronomy
1.0000000

X-ray astronomy
0.0000000

Infrared astronomy
0.0000000

MCQ35
Which of the following system designates an objectâ $€^{T M}$ s location with respect to Earthâ€ $\epsilon^{\text {TM }}$ s entire night sky, or the celestial sphere?

Radio system
0.0000000

Equatorial system
1.0000000

Altazimuth system
0.0000000

Optical system
0.0000000

